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Subjects. Six subjects (one male) participated in experiment 1.
Seven different participants (four male) took part in experiment
2. An additional four participants (two male) took part in ex-
periment 3, and a further two (one male) participants took part
in experiment 4. There was no overlap of subjects across ex-
periments. All subjects had normal or corrected to normal vision.
All participants gave written, informed consent in accordance
with procedures and protocols approved by the local ethics
committee of the Faculty of Information and Mathematical
Sciences of the University of Glasgow.

Stimuli and Design. Participants were presented with static natural
visual scenes with the lower-right quadrant occluded (Fig. 1A) in
either a block design (experiments 1, 3, and 4) or a rapid-event–
related design (experiment 2). There were three individual scenes,
a people scene, a car scene, and a boat scene (Fig. S1A). In ex-
periments 1and2 the samescenesalsowerepresentednonoccluded
as a control. The entire stimulus spanned 22.5 × 18° of visual angle,
and the occluded region spanned ≈11 × 9° of visual angle, ap-
proximately one-quarter of the full stimulus (Fig. 1A).
In experiment 1, each run comprised six sequences of stimu-

lation with intervening fixation periods. Each stimulation se-
quence lasted 96 s, consisting of one presentation of each of the six
trial types (three scenes, occluded or nonoccluded) for 12 s, with
12-s fixation at the beginning and the end of each such series.
Within each 12-s block of stimulus presentation, the stimulus was
flashed on and off (200 ms on/200 ms off) 30 times; we used this
presentation cycle to maximize the signal-to-noise ratio (1). The
trial order within each sequence was pseudorandom with the
constraint that the occluded and nonoccluded versions of one
scene could never follow one another directly. Participants were
instructed to maintain fixation throughout each run. The task of
the participant was to monitor the stream of frames for a change
in color (randomly chosen frames were changed from gray-scale
to red). With six sequences of 96 s (576 s total), the scanning time
was less than 10 min per run. For two of the six subjects the ex-
perimental runs were kept independent from the mapping runs;
for the other four subjects mapping and experimental conditions
were interleaved in the same run.
In the independentmappingprocedure,we localized the cortical

representation of the occluded stimulus region (Fig. 1B and ref. 2).
Participants viewed checkerboard stimuli in a traditional block
design in either a target or a surround region. The procedure
consisted of alternating 12-s blocks of fixation or stimulation.
Within each stimulation block, participants viewed contrast-
reversing checkerboard stimuli (4 Hz) in one of four locations
[target right visual field (RVF), surround (RVF), target left visual
field (LFV), surround (LVF)], each presented on six occasions.
We initially included the LVF stimuli to provide an additional
control; however, we subsequently decided not to use any regions
defined from that visual field in the present analyses. To minimize
the influence of any spillover of activity of neighboring (and
therefore stimulated) areas, we included several precautions.
First, the occluded stimulus began 0.5° (diagonally) from the
center of fixation. Second, the surround-area mapping stimulus
comprised the inner 1° (diagonally from fixation) of the non-
stimulated region in the main experiment, and the target stimulus
was further offset diagonally by 1° from the inner edge of the
surround-area stimulus. Thus the target region was diagonally≈2°
away from the stimulated region. However, because we accept
only vertices that show a significant target-area response with no

significant surround-area response, our effective border is likely
to be much greater. The target region spanned 9.6 × 7.5°.
For the final four participants, we optimized this cortical map-

ping procedure by including the cortical mapping blocks within
each run of themain experiment andmapping only theRVF.Each
mapping sequence consisted of presentation of checkerboard
stimuli (parameters as above) in both the target RVF and the
surround-area RVF position, each for 12 s, with 12 s of fixation
between each stimulus and at the beginning and end of the se-
quence. Two such sequences were included in each run, at ran-
domly chosen breaks between the main stimulus sequences, with
the order of the mapping stimuli counterbalanced across repeti-
tions. Scanning time was about 12 min per run; each participant
completed four runs of this version of experiment 1.
In experiment 2 (rapid-event–related design), in each run each

scene was presented 20 times occluded and 20 times nonoccluded
as a control. Each 4-s trial consisted of the presentation of one
image in a cycle of 200 ms on/200 ms off for three cycles, followed
by just the fixation checkerboard for 2,800 ms. The participant’s
task was to perform one-back repetition detection across trials.
Participants were instructed to maintain fixation throughout each
experimental run. Trial order was pseudorandom with the con-
straint that the occluded and nonoccluded versions of the same
scene could never follow one another directly. Each run com-
prised 120 trials (six trial types × 20 repetitions of each) preceded
and followed by 20 s of fixation. Thus each run lasted less than
9 min. Seven participants performed either four or eight runs of
the experiment in one or two scanning sessions (giving 80 or
160 trials per condition). All participants also performed the in-
dependent mapping experiment (once during each scanning ses-
sion but as an independent run), as described above.
In experiment 3, we again used the successful block design of

experiment 1 with the following changes: (i) only occluded trials
were shown to participants, and (ii) the task was changed to de-
tection of a change in the color of the fixation marker. We showed
twice as many occluded trials to maximize our chances of finding
the effect; instead of six trials per trial type per run (and six trial
types), there were 12 trials per trial type per run (but only three
trial types). Thus within each main sequence we presented each
occluded scene twice in pseudorandom order (each trial type be-
ing constrained not to follow itself). In all other respects the design
was identical to that of the version of experiment 1 that included
mapping trials within the main runs. Each participant performed
four runs. The paradigm in experiment 4 was exactly the same as in
experiment 3, the only difference being in the preprocessing ap-
plied to the scene stimuli before the experiment was run. This
processing (spectral normalization) allowed control of low-level
image properties such as global luminance, contrast, and energy at
different spatial frequencies and orientations within the naturally
stimulated region of the image (image processing methods are
described fully in the section, “Low-Level Image Control”).

MRI Data Acquisition. Participants viewed the images through a set
of high-quality visual display goggles (Nordic Neurolab). MRI
data were collected with a 3-T Siemens Tim Trio System with
a 12-channel head coil and integrated parallel imaging techniques
(IPAT factor: 2). Blood oxygen level-dependent (BOLD) signals
were measured with an echo-planar imaging sequence (echo
time: 30 ms, repetition time: 1,000 ms, field of view: 210 mm, flip
angle: 62°, 10% gap, 16–18 axial slices). We pushed for higher
spatial resolution throughout the experiment and began with
voxel sizes of 2.5 × 2.5 × 4.4 mm (experiment 1) and 3 × 3 ×
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4 mm (experiment 2) but improved the resolution for later
subjects to 2.3 × 2.3 × 3 mm (experiment 1) and 2.5 × 2.5 × 4.4
mm (experiment 2). All participants were recorded with reso-
lution of 2.3 × 2.3 × 3 mm in experiment 3 and with a resolution
of 2.5 × 2.5 × 3 mm in experiment 4. The slices were positioned
to maximize coverage of occipital regions. A high-resolution 3D
anatomical scan (3D MPRAGE, 1 × 1 × 1-mm resolution) was
recorded in the same session as the functional scans. For par-
ticipants who performed two sessions of the main experiment,
separate anatomical scans were recorded in each scanning ses-
sion (a faster scan making use of IPAT was used in the second
session) to facilitate realignment of the functional data.

MRI Data Processing. The following steps were carried out in-
dependently for each participant in each experiment. Functional
data for each run (main runs andmapping runs) were corrected for
slice time and 3Dmotion, temporally filtered (high-pass filtered at
0.01 Hz and linearly detrended), and spatially normalized into the
Talairach space with Brain Voyager QX (Brain Innovation). We
then projected the anatomical data onto a flattened surface rep-
resentation and overlaid the functional data (2–4).
Themapping data (either themain runs inclusive of mapping or

the independent mapping run, depending on the participant) then
were subjected to a standard general linear model (GLM) with
one predictor for each condition. We defined a patch of primary
visual cortex (V1) and a patch of visual area (V2) from the
contrast of target area minus surround area (Fig. 1B). Within
these patches we selected for further analyses only the vertices
that met the following profile: significant positive effect for tar-
get area alone (t > 1.65, uncorrected P < 0.05) and, crucially, no
significant effect for surround area alone (absolute t < 1.65,
uncorrected P > 0.05). With this definition we sought to mini-
mize the potential for any spillover activity from stimulated re-
gions affecting the signal in our selected vertices. Full details on
the selected vertices are given in Tables S1–S3.
We then extracted the time course from each selected vertex

and applied a GLM to estimate response amplitudes on a single-
block basis (experiments 1, 3, and 4) or a single-trial basis (ex-
periment 2), independently per run. The resulting beta weights
estimate peak activation for each single block or trial of stimu-
lation, assuming a standard 2γ model of the hemodynamic re-
sponse function. We used these estimates (beta weights) from
the target vertices as the input to the pattern classifier.

Multivariate Pattern Classification Analysis. We performed the
pattern classifier analysis independently for occluded and control
trial types (experiments 1 and 2). Thus we trained a linear classifier
[Linear Discriminant Analysis (LDA) or Linear Support Vector
Machine (SVM)] to learn the mapping between a set of multi-
variate observations of brain activity and the particular scene
(people, car or boat) that had been presented (5–9). We then
tested the classifier on an independent set of test data. We trained
the classifiers with a set of single-block (or single-trial) brain-ac-
tivity patterns (beta values). We tested the classifiers either on
independent single blocks (single trials) or on the average brain-
activity pattern for each stimulus class in the independent set of
test data.
In building our classifiers we chose randomly from the set of

designated target vertices (i.e., those showing an effect for the
target area but not for the surround area), initially pooled across
V1 and V2, sampling 30 times for each of several different vertex
set sizes (1, 5, and then to 70 vertices in increments of 5, giving 15
different set sizes) (5). In subsequent analyses we performed the
analyses independently for each visual region (choosing vertices
randomly, again in set sizes from 1–30). Note that for experiment
2, using our explicit criteria (target area response> 1.65, surround
area response < 1.65), some participants had fewer than 30 valid
vertices within either V1 or V2 (1 subject in V1, 2 subjects in V2;

see Tables S2 and S3 for full details). These participants were
included in the classifier analyses to the extent possible (i.e. if
a participant had 12 vertices defined for V1, then data from that
participant would go into the subject averages only for vertex set
sizes of 1, 5, and 10). To assess the performance of our classifiers,
we used an n-fold leave one run out cross-validation procedure;
thus our models were built from n − 1 runs and were tested on the
independent nth run (repeated for the n different possible par-
titions of the runs in this scheme) (6, 10, 11). Note that the ran-
dom sampling procedure gives an estimate of the variance
associated with classifier performance for each given vertex level
across the target vertices, providing a good indication of whether
the signal in the region of interest can discriminate among the
three scenes presented for the specific vertex level considered.
Independent classifiers were constructed for occluded and con-
trol trials for each participant, and we report average classifier
performance across participants. The same procedure was fol-
lowed for both experiments (the only differences being the
number of training and test examples). We also applied the same
basic method in further generalization analyses where the clas-
sifier was trained on one type of trial (e.g., occluded) and then was
tested on the other type of trial [e.g., control (8, 12)]. Note,
however, that for these latter analyses we used all available data
for each trial type either to train or test the classifier (because we
generalize here across trial types), and therefore there is no run-
specific partitioning for these analyses.
The classifier analysis for experiments 3 and 4 proceeded in

a similar manner, although for this analysis we report single-
participant performance rather than subject averages because we
had a smaller number of participants in these experiments.
The LDA classifier was implemented in MATLAB by the

Statistics Toolbox function Classify. The linear SVM was imple-
mented using the LIBSVM toolbox (13), with default parameters
(notably C = 1). Note that the activity of each vertex was nor-
malized (separately for training and test data) within a range
of −1 to 1 before input to the SVM.

Permutation Test. To be sure that single-trial classification per-
formance statistically exceeded chance in the occluded condition
of experiment 2, we performed an additional permutation test (14,
15) at the group level. Note that this effect was the weakest we
report here as assessed by a standard one-sample t test against
chance; t(6)= 2.06, P=0.043 [39% correct against chance (33%)].
This test involved permuting the relationship between the

stimulus labels and the data (independently for each run) 100
times for each subject and computing classifier performance as
before (i.e., with n-fold cross-validation and the same set of
vertex samples as for the observed data) for each permutation of
the labels. This computation gave a permutation distribution for
each subject to which the matching observed value was ap-
pended. We then sampled 104 combinations of sample size seven
(we had seven subjects), one value from each subject-specific
distribution each time, and found the probability of these sam-
ples having a mean equaling or exceeding the observed value of
39% correct (15).

Eye Tracking. Eye movements were recorded for all participants in
experiment 3 by an eye- tracking camera with a 60-Hz sample rate
integrated into the goggle display system (Nordic Neurolab) in
concertwith theViewPoint software.Wedetrended the time series
from each run in segments of 96 s, because this time corresponded
to one sequence of the block design (including fixation periods at
the beginning and at the end). We then transformed the data into
units of degrees of visual angle and classified as an eye movement
any succession of samples whose radius exceeded 1.5° of visual
angle for a duration of 150 ms (4). We then tested whether either
the mean number of saccades or the mean position on the x or y
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axis differed across the three conditions in this experiment. We
report the results of this analysis in Fig. S4.

Low-Level Image Control (Experiment 4). In experiment 4, we in-
vestigated the contribution of basic low-level stimulus features to
the context effect reported. The experimentwas identical to that of
experiment 3 except that the scene stimuli first were preprocessed
as follows: The amplitude spectrum of each complete scene was
replacedwith themeanacross the three scenes, thereby controlling
exactly the global luminance, contrast, and the energy present at
each spatial frequency and orientation in the complete image. This
replacement was achieved by taking a 2D fast Fourier transform
(FFT) of the image, thus decomposing it into the amplitude and
phase spectrum, finding the average amplitude spectrum across
the scenes, and then performing an inverse 2DFFT to combine the
average amplitude spectrum across scenes with the phase spec-
trum of each image. Of course, because we then occluded the
lower-right portion of the image, the control of such propertieswas
no longer perfect; however, at least in terms of global contrast and
luminance, the stimulated areas remainedwell matched across the
three scenes (contrast: mean 0.24, range 0.013; luminance: mean
0.4, range 0.024 on a 0–1 scale).
Wedidnotattempt tonormalize thescenewith theoccludedfield

overlaid, for two reasons. First, edge artifacts would be present
because of the abrupt change in contrast change from the naturally
stimulated region to the uniform white occluded field. Second,
normalizing in such a manner would lead to the low-level statistics
within the occluded region changing across the three scenes. Ob-
viously the latter situationmust beavoided in thepresent paradigm.
The argument we put forward here is simply that the possible
contribution of global contrast, luminance, and energy at different
spatial frequencies and orientations (in the naturally stimulated
region) to explaining any possible context effect in experiment 4 is
much reduced as compared with the earlier experiments.

Weight Analysis.To shed some light on the possible role of spillover
activity/spreading activity and lateral interaction (as opposed
to cortical feedback) in explaining the observed effects, we in-
vestigated the relationship between the weights of each classifier
solution in the occluded condition and the univariate t-values
for the two independent mapping conditions (target area and
surround area; Fig. 1B). The logic is that if high (absolute) weights
are correlated with high t values for the surround mapping stim-
ulus, then that correlation might suggest a possible influence of
spillover signal (or spreading activity) in our classifiers. On the
other hand, a positive correlation with the target mapping con-
dition would indicate that the more important vertices in the
classifier decision function are those with a strong signal to the
target stimulus, as we would expect to be the case (purely on
signal-to-noise considerations).
Independently for each participant in experiment 1, we ex-

tracted the absolute value of the weights of the SVM and LDA
linear classifiers for the analysis incorporating both V1 and V2 in
the occluded condition.We extracted theseweights for the specific
vertex set size leading to asymptotic performance (defined as the
maximal number of vertices for SVM but as a vertex set size of 25
for LDA, where it achieves maximal performance), for each
sampling iteration (30), cross-validation fold (four), and binary
classification problem (three). The absolute value of the weight at
each vertex for a given instantiation of the classifier indicates the
relative influence of each vertex on the classifier’s solution (e.g.,

8, 16). We note, however, that in the SVM highly correlated
vertices, which necessarily have lower weight, still may contribute
to the solution (because the SVM is a regularized classifier; ref.
17). This possibility must be borne in mind when considering the
analysis using the SVM weights, especially for relatively larger
vertex set sizes (where we might expect more correlated vertices).
We Pearson-correlated the absolute value of the weight for

each vertex with the corresponding t values from the target-area
and the surround-area mapping conditions. We used the abso-
lute and not the signed weights because we were interested in
finding a relationship between the overall importance of each
vertex (its contribution to the classifier solution) and the map-
ping t values, not in the direction in which each vertex is im-
portant (e.g., a higher beta value for scene 1 vs. scene 2). We
then averaged the resulting correlation values (30 sampling
iterations × four cross-validation runs × three binary classifica-
tion problems) for each participant and performed a two-tailed
t test to test if the mean correlation across participants was sig-
nificantly different from zero.
This analysis revealed a significant positive correlation between

the LDA weights and the target mapping condition [r = 0.14,
t(5) = 2.7, P = 0.042] and a nonsignificant but suggestive neg-
ative correlation with the surround-area mapping condition [r =
−0.08, t(5) = 2.2, P = 0.081]. As expected, the more important
vertices in the LDA classifier were associated with higher re-
sponses to the target region and, if anything, with lower re-
sponses to the surround area. For the SVM, the results were
reversed, with a significant negative relation with the target
mapping condition [r = −0.18, t(5) = 4.25, P < 0.01] and a
nonsignificant positive correlation with the surround area [r =
0.06, t(5) = 1.59, P = 0.17]. Thus this pattern of correlations
suggests that the more important vertices for the LDA classifier
do not necessarily match the more important vertices for the
SVM classifier, at least when measured using absolute and not
signed values. Note that the same pattern held when we in-
vestigated the SVM classifier with a vertex set size of 25, thus
matching the LDA classifier in terms of feature dimensions (with
target area: r = −0.16, P = 0.0252; with surround area: r = 0.065,
P= 0.168). It is important to realize that the discrepancy between
the two classifiers observed here might reflect the smaller weight
values necessarily given to correlated vertices in the SVM (17).
Importantly, the broad pattern of correlation results also was

replicated in experiment 2 with equal vertex set sizes (70) as input:
LDA with target area (r = 0.20, P = 0.006), LDA with surround
area (r = −0.091, P = 0.027), SVM with target area (r = −0.14,
P = 0.003), and SVM with surround area (r = 0.052, P = 0.156).
We did not assess such correlations for experiments 3 and 4 be-
cause of the lower number of participants in these experiments.
Because the interpretation of SVM weights is arguably more

complex than that of LDA (17), and because both classifiers found
above-chance levels of decoding in almost all tests in every exper-
iment (the sole exception was the LDA classifier in experiment 2 in
one type of cross-generalization; Fig. 2G and Table S4), we believe
that the pattern of results observed with the LDA classifier dem-
onstrates that classification of surrounding visual context is possible
with a set of vertices that have no significant positive relation to
surround-area mapping activity but instead have a significant pos-
itive relation to the target.Weargue that this pattern speaks against
a spreading activity (or spillover) explanation of our data.
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Fig. S1. Stimuli, time courses, and response-pattern estimates. (A) The three visual scenes used in the present experiments; as shown in the control condition
(experiments 1 and 2) (Left), the occluded condition (experiments 1–3) (Middle), and the occluded scenes as presented in the low-level image-control ex-
periment (experiment 4, spectral normalization) (Right). (B–D) Univariate time course and GLM-based hemodynamic response functions (HRF) in experiments
1 and 2. B shows the event-related average for each condition in experiment 1 (pooled across V1/V2 and averaged across participants). C shows the HRF for
each condition in experiment 1, estimated with deconvolution. (D) HRF estimate for experiment 2 (rapid-event–related design). As shown in the legend, control
(nonoccluded) trials are coded in darker colors (blue, black, and purple); occluded trials are coded in the lighter corresponding colors. The positive beta weights
in the occluded condition (C and D) must be considered relative to the contrast change that takes place between fixation (gray screen) and presentation of
a scene in the occluded condition (white occluder; Methods). Note the clear distinction between control and occluded trials in experiments 1 and 2 (B–D). Note
also the large degree of overlap between the three scenes in the occluded compared with the control condition. (E and F) Single-subject response-pattern
estimates. E shows the full observations by vertices single-block beta-weight matrix for a representative participant in experiment 1 (pooled across V1/V2).
Rows of this matrix correspond to the estimated activation pattern for a given block of stimulation. All patterns input to the classifiers are sampled from this
matrix. The top half of the matrix represents activation patterns for control trials; the bottom shows the activation patterns for occluded trials (see colored
labels at left edge). Within each half-panel, observations are organized according to each specific scene (see color code at left). F shows the average activation
pattern for the three scenes in both the control and the occluded conditions (singe-subject data taken from E). Error bars reflect one SE across observations.
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Fig. S2. Definition of V1 and V2 and selected vertices in experiment 1. Each panel shows a close-up view of the cortical reconstruction of the left hemisphere,
centered on early visual cortex, for one participant in experiment 1. The color map reflects the contrast of target minus surround area from the mapping data
(green, target > surround area; red, surrounding area > target; Methods). Overlaid on this map, within the defined V1 and V2 regions (approximately de-
lineated with white outlines), is the location of the selected vertices input to the pattern classification analyses (shown in black) (Methods and Fig. 1B). Note
that such vertices met two additional criteria, in addition to target > surround area: a significant effect for target alone and a nonsignificant effect for the
surround area alone (Methods and Fig. 1B).

Fig. S3. Pattern-classification performance for experiment 1 split by visual area. (A–D) Classifier performance for V1. A shows performance (percentage
correct) for the two linear classifiers LDA and SVM in decoding which scene was presented in control trials as a function of the number of vertices entering the
classifier, for both average level and single-block prediction for vertices in V1. Performance is averaged across participants (error bars represent 1 SEM). Chance
performance is indicated by the dark green bar at 33%. B shows the same information for occluded trials. C and D show the results for the trial-type
generalization analyses (see main text). (E–H) Classifier performance for V2, arranged as for V1.
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Fig. S4. Pattern classification analysis for experiment 2 split by visual area. Data presentation is as in Fig. S2.
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Fig. S5. Mean eye gaze position for each participant and condition in experiment 3. (A) The mean eye gaze position for each condition for S1. Each colored
circle represents the mean position collapsed across all scanning sessions for one condition (one scene). The black circle represents a radius of 3° outward from
fixation, and the shaded gray region represents the actual visual extent of the scenes presented. B–D show the same data for the remaining three participants.
There were no significant differences across the three scenes shown in terms of the mean eye position on the x [F(2,6) < 1, P = 0.66], or y axis [F(2,6) < 1, P =
0.98], or the mean number of saccades [F(2,6) = 1.13, P = 0.38]. Note the same pattern holds if subject 4 is excluded from these analyses. Thus eye movements
are not responsible for the effects we observe.

Table S1. Statistics for the selected vertices in experiments 1–3 (vertices pooled over V1 and V2)

Experiment Subject Vertices (n) MaxT MinT MaxS MinS nUSigO nUSigC USigO USigC

Experiment 1 1 281 21.38 6.05 1.63 −1.60 32 153 0.21 0.14
2 354 19.78 2.68 1.64 −1.65 86 120 0.57 0.43
3 194 31.37 9.66 1.65 −1.62 6 105 0.55 0.01
4 151 27.50 5.30 1.64 −1.49 0 110 0.67 0.00
5 199 29.59 12.91 1.64 −1.60 29 67 0.21 0.30
6 179 27.71 9.87 1.65 −1.65 59 108 0.05 0.00

Experiment 2 1 129 24.25 12.52 1.59 −1.56 0 19 0.33 0.07
2 187 40.57 3.08 1.64 −1.65 4 105 0.41 0.00
3 177 29.45 5.62 1.65 −1.63 16 37 0.48 0.55
4 159 15.28 3.46 1.55 −1.65 18 66 0.67 0.08
5 100 10.12 1.86 1.58 −1.49 0 79 0.34 0.01
6 326 11.00 1.84 1.64 −1.63 102 202 0.06 0.02
7 271 14.05 3.05 1.64 −1.64 66 151 0.11 0.03

Experiment 3 1 86 24.33 6.57 1.64 −1.65 39 0.04
2 111 24.44 4.58 1.62 −1.48 31 0.35
3 76 25.51 4.89 1.65 −1.65 1 0.38
4 244 30.26 3.56 1.63 −1.64 165 0.00

MaxT, maximum t values for the target mapping stimulus; MinT, minimum t values for the target mapping
stimulus; MaxS, maximum t values for the surround mapping stimulus; MinS, minimum t values for the surround
mapping stimulus; nUniSigO, number of vertices showing significant univariate discrimination between the
three scenes for occluded trials; nUniSigC, number of vertices showing significant univariate discrimination
between the three scenes for control trials; USigO, P value from a test of univariate discrimination pooled
across all vertices for occluded trials; USigC, P value from a test of univariate discrimination pooled across all
vertices for control trials. Note that nUniSigC and USigC are not defined for participants in experiment 3.
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Table S2. Statistics for the selected vertices of the V1 patch in experiments 1 and 2

Experiment Subject Vertices (n) MaxT MinT MaxS MinS nUSigO nUSigC USigO USigC

Experiment 1 1 35 16.92 6.05 1.57 −1.58 19 20 0.01 0.02
2 106 13.62 4.07 1.64 −1.63 46 50 0.24 0.36
3 103 31.37 15.36 1.65 −0.36 6 103 0.41 0.00
4 92 27.50 5.30 1.64 −1.44 0 92 0.61 0.00
5 81 29.59 12.91 1.64 −1.48 26 36 0.16 0.17
6 84 27.71 9.87 1.62 −1.49 57 83 0.02 0.00

Experiment 2 1 16 24.25 12.79 1.58 −1.54 0 9 0.92 0.01
2 90 40.57 8.29 1.61 −1.64 2 85 0.65 0.00
3 93 29.45 6.74 1.65 −1.53 13 29 0.87 0.48
4 101 14.28 3.75 1.55 −1.65 18 15 0.42 0.62
5 98 10.12 1.86 1.58 −1.49 0 77 0.35 0.01
6 314 11.00 1.84 1.64 −1.63 102 190 0.06 0.02
7 182 13.84 3.05 1.64 −1.63 37 72 0.17 0.07

Table S3. Statistics for the selected vertices of the V2 patch in experiments 1 and 2

Experiment Subject Vertices (n) MaxT MinT MaxS MinS nUSigO nUSigC USigO USigC

Experiment 1 1 246 21.38 8.22 1.63 −1.60 13 133 0.28 0.17
2 248 19.78 2.68 1.63 −1.65 40 70 0.84 0.16
3 91 23.11 9.66 1.64 −1.62 0 2 0.85 0.80
4 59 14.60 8.01 1.62 −1.49 0 18 0.93 0.13
5 118 26.85 18.86 1.64 −1.60 3 31 0.25 0.37
6 95 27.25 13.04 1.65 −1.65 2 25 0.22 0.13

Experiment 2 1 113 23.90 12.52 1.59 −1.56 0 10 0.24 0.11
2 97 19.44 3.08 1.64 −1.65 2 20 0.33 0.07
3 84 24.85 5.62 1.63 −1.63 3 8 0.20 0.37
4 58 15.28 3.46 1.51 −1.63 0 51 0.92 0.00
5 2 8.53 8.34 1.58 1.49 0 2 0.11 0.02
6 12 5.33 1.96 1.12 −0.88 0 12 0.27 0.00
7 89 14.05 3.94 1.63 −1.64 29 79 0.09 0.00

Table S4. Mean performance of the SVM and LDA classifiers in experiments 1 and 2

Classifier

Experiment 1 (block design)
Experiment 2 (rapid-
event–related design)

ST AV pST pAV ST AV pST pAV

SVM Occluded 0.50 0.65 1.18 × 10−2 8.23 × 10−4 0.39 0.53 4.26 × 10−2 3.07 x 10−2

Control 0.81 0.96 6.11 × 10−6 5.18 × 10−7 0.48 0.79 3.32 × 10−5 7.72 x 10−5

G1 0.47 0.70 6.70 × 10−3 2.95 × 10−3 0.41 0.61 2.49 x 10−2 3.66 ×10−2

G2 0.57 0.79 1.16 × 10−3 1.75 × 10−3 0.42 0.69 1.66 x 10−2 1.49 × 10−2

LDA Occluded 0.48 0.60 6.19 × 10−3 1.89 × 10−3 0.42 0.60 1.65 x 10−2 4.06 × 10−3

Control 0.71 0.82 1.02 × 10−6 2.76 × 10−6 0.51 0.80 1.52 x 10−5 3.56 × 10−5

G1 0.45 0.55 9.19 × 10−3 2.41 × 10−3 0.43 0.45 1.73 x 10−2 1.26 × 10−1*
G2 0.51 0.65 2.57 × 10−3 7.93 × 10−4 0.46 0.74 1.24 x 10−3 2.51 × 10−3

All analyses are for maximal number of vertices (70), except LDA in experiment 1 (peak performance for 25
vertices). AV, average prediction; ST, single block or single trial prediction (experiment 1 or experiment 2); pAV;
P value from one-tailed t test across subjects against chance for average performance; pST, P value from one-
tailed t test across subjects against chance for single-block or single-trial performance.
*This is the only analysis that is nonsignificant.
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