
Supporting Information

Hassan et al. 10.1073/pnas.1007698107

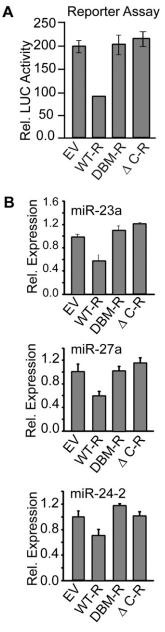

Human and Mouse miR-23a~27a~24-2 Cluster Promoter

Fig. S1. Schematic of the human and mouse miR-23a~27a~24-2 cluster promoter. Representation of the -0.639-kb miR-23a~27a~24-2 cluster promoter fragment and chromosome location for human and mouse. Transcription factor (TRANSFAC; TESS) analysis of the proximal promoter identified a Runx binding site (TGTGGT; -129 to -134 for mouse, -152 to -157 for human) which is bound by Runx2 in osteoblasts. Two other important motifs, the INR (Initiator; CCCCACCTCC) motif and the CT motif in sequence at -56 to -34, were characterized in the proximal miR-23a~27a~24-2 cluster promoter (1, 2).

1. Lee Y, et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051-4060.

2. Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of microRNA core promoters in four model species. PLOS Comput Biol 3:e37.

Fig. S2. Runx2 DNA binding and C-terminal domains are required for repression of the miR cluster expression. (*A*) The miR cluster promoter [WT miR promoter-LUC (-639-LUC)] was cotransfected as described earlier with backbone vector (control), WT Runx2 (WT-R), DNA binding mutant of Runx2 (DBM), or C terminus deletion mutant of Runx2 (Δ C) expression construct to examine the promoter activity by LUC assay. WT Runx2 represses LUC activity, but not Runx2 mutants. (*B*) MC3T3-E1 cells were cotransfected with control, WT Runx2, DMB Runx2, and Δ C Runx2. Total RNA from each overexpression was analyzed by real-time qPCR analysis as described in *Materials and Methods*. Endogenous biosynthesis of miRs was decreased only by WT Runx2.

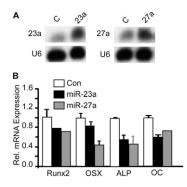
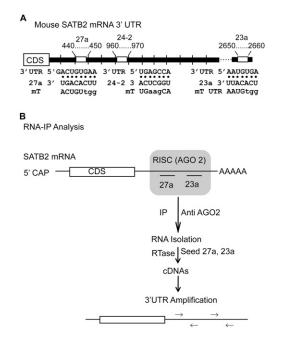



Fig. S3. Expression of cluster miRNAs 23a and 27a inhibit differentiation of MC3T3-E1 cells. (A) Northern blot showing levels of lentiviral-mediated overexpressed miR-23a and -27a in preosteoblast MC3T3-E1 cells at day 7. (B) The mRNA expression of osteoblast-specific marker genes. Transcription factors Runx2 and osterix, ALP, and osteocalcin are represented as markers of early and late osteoblastogenesis.

Fig. 54. RNP-IP analysis for in vivo cellular binding of the miR-23a and -27a to SATB2. (*A*) Schematic illustration of the 3' UTR of SATB2 mRNA with target sequences of each miR. Three putative target sites of miR-23a, -27a, and -24-2 were predicted in SATB2 mRNA by TargetScan, HOCTAR, and miRanda programs. Lowercase nucleotides indicate the mutations in the seed sequence of respective miR binding. (*B*) SATB2 3' UTR and RNP-IP strategy. The miR-silencing complex from MC3T3-E1 polysomal extract was immunoprecipitated with anti-argonaute (Ago2) antibody. cDNAs were made from immunoprecipitated RNA using miR-23a and -27a seed sequences. The miR-23a and -27a binding to SATB2 3' UTR were validated by PCR using primers (arrows) derived from the upstream and downstream sequences of the binding site (Table S1).

Туре	Real-time qPCR primers (5'-3')
Bone marker genes	
Runx2	F: CGG CCC TCC CTG AAC TCT
	R: TGC CTG CCT GGG ATC TGT A
ALP	F: CCA ACT CTT TTG TGC CAG AGA
	R: GGC TAC ATT GGT GTT GAG CTT TT
BSP	F: CAG GGA GGC AGT GAC TCT TC
	R: AGT GTG GAA AGT GTG GCG TT
ос	F: CTG ACA AAG CCT TCA TGT CCA A
	R:GCG CCG GAG TCT GTT CAC TA
OSX	F: ATG GCG TCC TCT CTG CTT G
	R: TGA AAG GTC AGC GTA TGG CTT
Col1A1	F: GCT CCT CTT AGG GGC CAC T
	R: CCT TTGTCA GAA TAC TGA GCA GC
Precursor miRNA	
miR-23a	F: TTT GAT GCC AGT CAC AAA TCA CAT TG
miR-27a	F: GTC GTG TTC ACA GTG GCT AAG
miR-24-2	F: CAC TGG CTC AGT TCA GCA GG
Mature miRNA	
miR-23a	ATC ACA TTG CCA GGG ATT TCC
miR-27a	TTC ACA GTG GCT AAG TTC CGC
miR-24-2	TGG CTC AGT TCA GCA GGA ACA G
Chromatin IP	miR cluster ChIP primers (5'-3')
Murine promoter	F: TAG AGG AGG GCT AGG GTG TG
	R: GCT TGC CTG CCT ATC TTG AC
Rat promoter	F: CCT CCC GAT CTC ACT TTC CT
	R: GCA CAG GGT TCA GTT GGA AAT
EMSA (Runx2 site in miR promoter)	Gel shift primers $(5'-3')$
WT	CTT AAA CTG TGt gtg gtG AGGTGT ACC
miR MT	CTT AAA CTG TGt gta ctG AGGTGT ACC
Control	Control primers (5'–3')
GAPDH	F: AGG TCG GTG TGA ACG GAT TTG
	R: TGT AGA CCA TGT AGT TGA GGT CA
U6	F: CGC TTC GGC AGC ACA TAT AC
	R: AAA ATA TGG AAC GCT TCA CGA
Northern probes	Primers (5'-3')
Mouse/rat miR-23a	GGAAATCCCTGGCAATGTGAT
Mouse/rat miR-27a	GCGGAACTTAGCCACTGTGAA
Mouse/rat miR-24-2	CTGTTCCTGCTGAACTGAGCCA
RIP-ChIP primers	
Mmu satb2 3′UTR (23a)	F: CTTGCCAGATCTTTGCGAAT
	R: GGGAAATTGTGCTTTGTCAAG
Mmu satb2 3′UTR (27a)	F: TCGACCATAGTAATTCTAGTCACG
	R: CACACTTGCAGCTTCCTTCA
miR-23a SEED	CAATGTGAA
miR-27a SEED	ACTGTGAA
siRNAs (Qiagen)	
Mouse Runx2 siRNA	5′-r(UGC CUC UGC UGU UUG AAA) d(TT)-3′)
NS siRNA	5'-r(UUC UCC GAA CGU GUC ACG U) dTdT-3

Table S1. Nucleotide sequences of primers and probes used for qPCR, ChIP, EMSA, and Northern blot

PNAS PNAS