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1. Accuracy of Rotational Correlation Function (RCF) from a Finite Mo-
lecular Dynamics (MD) Trajectory (Fig. S4). For free diffusion (corre-
sponding to an exponential decay of the RCF, αn ¼ 1), the
accuracy of an RCF is severely limited by the finite duration
of the trajectory simulated (1, 2). To evaluate the accuracy of
an RCF computed for a finite trajectory, we first computed T̄1

and T̄2 from simulated trajectories of a free 1D normal Brownian
motion using Eq. 2 of the main text and compared the numerical
results to the exact analytical RCF. The RCFs computed numeri-
cally were very accurate only up to about 1% of the duration of
the trajectory because, at longer times, the statistics for the initial
conditions t0 in Eq. 2 of the main text were incomplete, and spur-
ious oscillations of the RCF occur although the decay of the RCF
was reproduced very qualitatively, in agreement with ref. 2. By
extrapolating these results to an RCF computed from MD, the
RCF T̄2 and P̄2 computed from a trajectory of 80 ns (duration
used in the present work) should be very accurate only up to
about 1 ns.

For most of the residues along the sequence of the amino
acids, the RCF of the dihedral angles γ and of the N-H bonds
computed from an MD trajectory of 80 ns converge to a plateau
value on the 1-ns time scale and are therefore accurately
described, as for γ11 and γ20 in Fig. S4a and for ðN-HÞ11, ðN-HÞ20,
and ðN-HÞ35 in Fig. S4b. Noisy oscillations were found at about
t > 2 ns for some RCFs that do not converge to a plateau on the
nanosecond time scale as shown, for example, for γ35 and γ39 in
Fig. S4a and for ðN-HÞ39 in Fig. S4b. The oscillations are due to
insufficient sampling of the long-time fluctuations of γ and N-H
bonds (t ≫ 1 ns) of these residues on the duration of the MD
trajectories. For the coarse-grained dihedral angles, nonmono-
tonic behavior of the RCF occurs, in particular, for dihedral
angles with multiple-minima free-energy profiles (FEPs) (as for
γ35 and γ39 in Fig. S4a). As shown previously (3), the transitions
between different minima of V ðγÞ are rare events on the time
scale of the duration of the present MD trajectories (80 ns)
and are thus responsible for a nonmonotonic behavior of the
long-time mean-square displacement (MSD) (see figure 2 in
ref. 3) and RCF of these dihedral angles. The RCF of N-H bonds
and of dihedral angles behave similarly: Backbone amide N-H
bonds of residues corresponding to the virtual bonds forming
the dihedral angles with multiple-minima FEP are also inaccurate
at long time; i.e., (t ≫ 1 ns) [as, for example, ðN-HÞ39 in Fig. S4b].

Finally, it should be mentioned that, to extract the type of
behavior of an RCF, one needs to fit the RCF to at least one
decade of time (2, 4). Consequently, to improve the accuracy
of the RCF of γ and N-H bonds shown in Fig. S4, up to 10 ns
would require MD runs of 1 μs long and extensive computational
resources. Because NMR relaxation probes subnanosecond and
nanosecond motions and we, therefore, extracted the parameters
α and Dα from RCF computed up to 1 ns, this was not necessary
as the inaccuracies of some RCFs occur at about t > 2 ns and do
not affect our conclusions.

2. Comparison of Values of α and Dα Extracted from RCFs up to 50 ps
and 1 ns. 2.1. Dihedral angles (Fig. S5 b and c) The values of the
exponent α and of the diffusion constant Dα extracted from a
fit of the RCF up to 50 ps by using a stretched exponential were
compared to the values of these quantities computed indepen-
dently by fitting the MSDðtÞ of each angle γn by 2Dαtα for
t < 50 ps. The exponents and diffusion constants computed from
the MSD were in excellent agreement with those deduced from

the RCF, as shown in Fig. S5 b and c. However, some deviations
are observed for the exponents of residues 35 to 39 (Fig. S5c),
which have pronounced anharmonic free-energy profiles
(Fig. S3). For example, the value of the exponent of γ37 extracted
from T̄2 by fitting the RCF by a stretched exponential was
α ¼ 0.22, whereas the value deduced from its MSD was α ¼ 0.24.

The values of Dα computed by fitting the RCF by a stretched
exponential up to 1 ns (empty triangles) are close to the values
obtained by fitting the RCF up to 50 ps (filled diamonds, super-
posed to the filled squares) except for a few residues (n ¼ 5, 6, 38,
and 40) (Fig. S5b). The quantity 2Dα is the variance of the dis-
tribution of the angular steps of the dihedral angles moving each
picosecond (3) and is not expected to vary so much with the time
scale. The values of α computed by fitting the RCF by a stretched
exponential up to 1 ns (empty triangles) are, in general, lower
than the values obtained by fitting the RCF up to 50 ps (filled
diamonds, superposed to the filled squares) with a few exceptions
(n ¼ 3, 26, 33, and 39) (Fig. S5c). A variation of the exponent of
the RCF as a function of the time scale considered is expected
and reflects the fact that the RCF of most of the dihedral angles
γ are decaying functions on the 50-ps time scale and converge to a
plateau (corresponding to α ¼ 0) on the 1-ns time scale.

2.2. N-H bonds (Fig. S6 b and c). The values of the exponent α and
of the diffusion constant Dα extracted from a fit of the RCF up
to 50 ps by using a stretched exponential were compared to the
values of these quantities computed independently by fitting the
MSDðtÞ of each N-H bond by 4Dαtα for t < 50 ps. The diffusion
constants computed from the MSD were in excellent agreement
with those deduced from the RCF, as shown in Fig. S6b (a small
deviation is observed only for residues 30 and 37). The exponents
(Fig. S6c) computed independently from the MSD and extracted
from the stretched exponential fitted to the RCFup to 50 ps agree
for most of the residues. Deviations are observed for the expo-
nents of residues 21, 37, 38, and 40, which have anharmonic
free-energy profiles.

As found for the dihedral angles γ, the values of Dα computed
by fitting the RCF by a stretched exponential up to 1 ns (empty
triangles) are extremely close to the values obtained by fitting the
RCFup to 50 ps (filled diamonds, superposed to the filled squares
for most of the residues) except for few residues (n ¼ 9, 20, 21,
38, 40, 42, and 43). The values of α computed by fitting the RCF
by a stretched exponential up to 1 ns (empty triangles) are in gen-
eral lower than the values obtained by fitting the RCF up to 50 ps
(filled diamonds, superposed to the filled squares for most of the
residues) with a few exceptions (n ¼ 26, 27, 28, and 37). As for
the dihedral angles γ, the variation of the exponents reflects the
convergence of most of the RCFs to a plateau on 1-ns time scale,
whereas they are a decaying function on the 50-ps time scale.

3. Relation Between RCF and MSD at Short Time (Demonstration of
Eq. 1 of Main Text). 3.1. Diffusion on a circle. Fluctuations of each
coarse-grained dihedral angle γ are represented by the stochastic
rotations of a vector u defining the position of a random walker
on the unit circle (the subscript n is omitted in the notations for
clarity). Indeed, at each time t, for each dihedral angle γ, one may
define a unit vector by uðtÞ≡ fcos½γðtÞ�; sin½γðtÞ�g. The motion of
this 2D unit vector is thus in a plane and describes the stochastic
motion of a point on a circle. The concept of Brownian motion on
a circle can also be understood as follows: The angle γn is the
angle between two planes, so the fluctuations of γn correspond
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indeed to a stochastic motion on a circle perpendicular to the
bond CαðnÞ-Cαðnþ 1Þ.

The scalar product xðt0; t0 þ tÞ≡ uðt0Þ • uðt0 þ tÞ is the cosine of
the angular displacement Δγðt0; t0 þ tÞ of u between t0 and t0 þ t
and −π ≤ Δγðt0; t0 þ tÞ ≤ π. In this representation, the RCFs of
Δγ are those of a random walk on a circle, which are the time
(or ensemble) averages of Tchebychev polynomials (see ref. 5):

T̄lðtÞ ¼ hcos½lΔγðt0; t0 þ tÞ�it0 ¼ ClðtÞ; [S1]

where the average in Eq. S1 is over all initial orientations of u
(all t0). For T̄1 and T̄2 analyzed in the main text, it is found from
Eq. S1 that

T̄1ðtÞ ¼ hcos½Δγðt0; t0 þ tÞ�it0 ; [S2]

T̄2ðtÞ ¼ 2hcos2½Δγðt0; t0 þ tÞ�it0 − 1. [S3]

For short times t, the most probable displacements Δγ are
small [see the equation of the probability density function
(PDF), FðΔγ;tÞ of Eq. S17 and Fig. S8 g–j] and, using the second
order expansion of cosðΔγÞ ≈ 1 − ðΔγÞ2∕2, it is found from
Eqs. S2 and S3 that

T̄1ðtÞ ≈ 1 −
MSDðtÞ

2
; [S4]

T̄2ðtÞ ≈ 1 − 2MSDðtÞ; [S5]

where the MSD of the dihedral angles is defined as usual:

MSDðtÞ≡ h½Δγðt0; t0 þ tÞ�2it0 : [S6]

Comparing Eqs. S4 and S5 with Eq. 1 of the main text, it is
found that K1 ¼ 1∕2 for T̄1 and K2 ¼ 2 for T̄2, as announced
in the main text.

3.2. Diffusion on a sphere. Fluctuations of each ðN-HÞn (Fig. S1)
(except for PRO residues) are represented by the stochastic rota-
tions of a vector u defining the position of a random walker on the
unit sphere (the subscript n is omitted in the notations for clarity).
Indeed, as each N-H bond is rotating in the 3D space, its direction
(defined by a unit vector u) defines the position of a point moving
on a sphere in 3D.

The scalar product xðt0; t0 þ tÞ≡ uðt0Þ•uðt0 þ tÞ is the cosine of
the angular displacement Δξðt0; t0 þ tÞ of u between t0 and t0 þ t. It
is worth noting that, whereas Δγ represents a one-dimensional
displacement (on a circle), Δξ represents a two-dimensional an-
gular displacement (on the surface of a sphere). The RCFs of Δξ
are those of a random walk on a sphere, which are time (or en-
semble) averages of the Legendre polynomials PlðtÞ (see ref. 5).

For P̄1 and P̄2, analyzed in the main text, they are given by

P̄1ðtÞ ¼ hcos½Δξðt0; t0 þ tÞ�it0 ; [S7]

P̄2ðtÞ ¼
1

2
½3hcos2½Δξðt0; t0 þ tÞ�it0 − 1�: [S8]

For short times t, the most probable displacements Δξ are
around 10° (see Fig. 2 of the main text, and Eqs. S24 and S26).
Using the second-order expansion of cosðΔξÞ ¼ 1 − ½Δξ�2∕2, it is
found from Eq. S7 and Eq. S8 that

P̄1ðtÞ ≈ 1 −
MSDðtÞ

2
; [S9]

P̄2ðtÞ ≈ 1 −
3

2
MSDðtÞ; [S10]

where the MSD was defined as usual:

MSDðtÞ≡ h½Δξðt0; t0 þ tÞ�2it0 : [S11]

Comparing Eqs. S9 and S10 with Eq. 1 of the main text, it is
found that K1 ¼ 1∕2 for P̄1 and K2 ¼ 3∕2 for P̄2 as announced in
the main text.

4. PDF and RCF of Rotational Diffusion with a Time-Dependent
Diffusion Coefficient. We demonstrate here that stretched
exponentials are RCFs of rotational diffusion equations with
an effective time-dependent diffusion coefficient DðtÞ ¼ αDαtα−1.

4.1. Useful properties of Tchebychev polynomials (ref. 6). The differ-
ential equation for Tchebychev polynomials is (see ref. 6)

∂2Tl½cosðΔγÞ�
∂½cosðΔγÞ�2 sin2ðΔγÞ − cosðΔγÞ ∂Tl½cosðΔγÞ�

∂½cosðΔγÞ� ¼ −l2Tl½cosðΔγÞ�:
[S12]

Using the chain rule of derivatives, we find

∂2Tl½cosðΔγÞ�
∂½Δγ�2 ¼ ∂2Tl½cosðΔγÞ�

∂½cosðΔγÞ�2 sin2ðΔγÞ − cosðΔγÞ ∂Tl½cosðΔγÞ�
∂½cosðΔγÞ� ;

[S13]

and we see that

∂2Tl½cosðΔγÞ�
∂½Δγ�2 ¼ −l2Tl½cosðΔγÞ�: [S14]

4.2. Free diffusion on a circle (ref. 5). The equation for free diffusion
of a walker on a circle is (see ref. 5)

∂FðΔγ; tÞ
∂t

¼ D
∂2FðΔγ; tÞ

∂Δγ2
; [S15]

where FðΔγ; tÞdγ is the probability that the vector u, representing
a dihedral angle γ (Fig. S1), is rotated by an angle Δγ after a time
t > 0 [with FðΔγ; 0Þ ¼ δðΔγÞ]. We consider Eq. S15 with a time-
dependent diffusion coefficient, i.e.,

D → DðtÞ ¼ αDαtα−1: [S16]

The solution of Eq. S15 with DðtÞ is

FðΔγ;tÞ ¼ 1

2π
þ 1

π∑
∞

l¼1

expð−l2DαtαÞTl½cosðΔγÞ�; [S17]

as is easily checked by using the property of Eq. S14. The constant
1∕2π in Eq. S17 ensures that F is normalized to 1. According to
the ergodic hypothesis, the RCF (Eq. 2 of the main text) of a ran-
dom walk on a circle can be computed from the PDF (Eq. S17):

ClðtÞ≡
Z

π

−π
dΔγTl½cosðΔγÞ�FðΔγ; tÞ: [S18]

By using Eq. S17 in Eq. S18 and the orthogonality of the Tche-
bychev polynomials (see ref. 6), it is found immediately that

ClðtÞ ¼ T̄lðtÞ ¼ expð−l2DαtαÞ: [S19]
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4.3. Useful properties of Legendre polynomials (ref. 6). The differen-
tial equation for Legendre polynomials is (see ref. 6)

∂2Pl½cosðΔξÞ�
∂½cosðΔξÞ�2 sin2ðΔξÞ − 2 cosðΔξÞ ∂Pl½cosðΔξÞ�

∂½cosðΔξÞ�
¼ −lðlþ 1ÞPl½cosðΔξÞ�: [S20]

Using the chain rule of derivatives, we find

∂Pl½cosðΔξÞ�
∂½Δξ� ¼ −

∂Pl½cosðΔξÞ�
∂½cosðΔξÞ� sinðΔξÞ;

∂2Pl½cosðΔξÞ�
∂½Δξ�2 ¼ ∂2Pl½cosðΔξÞ�

∂½cosðΔξÞ�2 sin2ðΔξÞ − cosðΔξÞ ∂Pl½cosðΔξÞ�
∂½cosðΔξÞ� ;

[S21]

and we obtain

∂2Pl½cosðΔξÞ�
∂½Δξ�2 þ cotðΔξÞ ∂Pl½cosðΔξÞ�

∂½Δξ� ¼ −lðlþ 1ÞPl½cosðΔξÞ�:
[S22]

4.4. Free diffusion on a sphere (ref. 5).The equation for free diffusion
of a walker on a sphere is (see ref. 5)

∂f ðΔξ; tÞ
∂t

¼ D
�
∂2f ðΔξ; tÞ
∂Δξ2

þ cotðΔξÞ ∂f ðΔξ; tÞ
∂Δξ

�
; [S23]

where f ðΔξ; tÞ is related to FðΔξ; tÞ by the following relation:

FðΔξ; tÞ ¼ 2πf ðΔξ; tÞ sinðΔξÞ: [S24]

The quantity FðΔξ; tÞdξ is the probability that the vector u,
representing an N-H bond (Fig. S1), is rotated by an angle Δξ
after a time t > 0 [with f ðΔξ; 0Þ ¼ δðΔξÞ]. Using Eq. S24 in
Eq. S23, we easily find the diffusion equation for F:

∂FðΔξ; tÞ
∂t

¼ D
�
∂2FðΔξ; tÞ

∂Δξ2
− cotðΔξÞ ∂FðΔξ; tÞ

∂Δξ

þ ðcot2ðΔξÞ þ 1ÞFðΔξ; tÞ
�
: [S25]

We consider Eq. S23 with a time-dependent diffusion constant
given by Eq. S16. The solution of Eq. S23 with DðtÞ is

f ðΔξ;tÞ ¼ 1

4π
þ 1

4π∑
∞

l¼1

ð2lþ 1ÞPl½cosðΔξÞ� expð−lðlþ 1ÞDαtαÞ;

[S26]

as is easily checked by using the property Eq. S22. The constant
1∕4π in Eq. S26 ensures that F (Eq. S24) is normalized to 1. Using
the ergodic hypothesis, the RCF (Eq. 3 of the main text) of a ran-
dom walk on a sphere can be computed from the PDF (Eq. S26):

ClðtÞ≡ 2π

Z
π

0

dΔξ sinðΔξÞPl½cosðΔξÞ�f ðΔξ; tÞ; [S27]

or using Eq. S24:

ClðtÞ≡
Z

π

0

dΔξPl½cosðΔξÞ�FðΔξ; tÞ: [S28]

By using Eq. S26 in Eq. S27 and the orthogonality of the
Legendre polynomials (see ref. 6), it is found that

ClðtÞ ¼ P̄lðtÞ ¼ exp½−lðlþ 1ÞDαtα�: [S29]

4.5. PDF for a randomwalk on a circle as a sum of Gaussians.Following
the arguments of Perrin (ref. 5), Eq. S17 can be formulated alter-
natively as a sum of Gaussians:

PðΔγ;tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dαπtα

p ∑
∞

k¼−∞

exp
�
−
ðΔγ þ 2kπÞ2

4Dαtα

�
: [S30]

5. Derivation of the Scaling Property (Eq. 4 in the main text) for the
PDF on a Circle. An approximate derivation of Eq. 4 for the PDF
Eq. S17 can be performed as follows: By assuming the rank l of
the orthogonal polynomials to be a continuous variable, we may
replace the sum in Eq. S17 by an integral, i.e.,

FðΔγ;tÞ ≈ 1

2π
þ 1

π

Z
∞

1

dl expð−l2DαtαÞ½cosðlΔγÞ�; [S31]

where, in addition, we used Tl½cosðΔγÞ� ¼ cosðlΔγÞ (see ref. 6).
Applying the transformation Δγ → Δγ∕hα∕2 to the right-hand side
(rhs) of Eq. S31, we find that the right-hand side of Eq. S31 is

rhs ¼ 1

2π∕hα∕2
þ 1

π

Z
∞

1

dl expð−l2DαtαÞ
�
cos

�
l

hα∕2
Δγ

��
: [S32]

By defining the variable k ¼ l∕hα∕2, Eq. S32 becomes

rhs ¼ hα∕2

2π
þ hα∕2

1

π

Z
∞

1∕hα∕2
dk exp½−k2DαðhtÞα�½cosðkΔγÞ�

≈ FðΔγ;htÞhα∕2; [S33]

where the last equality is deduced from Eq. S31. Eq. S33 is the
scaling property of Eq. 4 of the main text.

6. Numerical Test of the Scaling Property (Eq. 4 of the Main Text) for
the PDF of the γ Dihedral Angles (Fig. S8 g–j).We discuss a numerical
test of the scaling property (Eq. 4 of the main text) for FðΔγn;tÞ,
i.e.,

FðΔγn;htÞ ¼
1

hα∕2
F
�
Δγn
hα∕2

;t
�
: [S34]

Typical results, representative of the 215 PDFs FðΔγn;tÞ com-
puted for the 43 dihedral angles and the five MD trajectories, are
shown in Fig. S8 for γ11 (with a harmonic FEP, Fig. S8 g, Inset,
and i, Inset) and γ35 (with a multiple-minima FEP, Fig. S8 h, Inset,
and j, Inset). For each of these dihedral angles, the PDF com-
puted between 10 ps and 1 ns were first rescaled according to
Eq. S34 to the PDF computed at 100 ps (i.e., by choosing
h ¼ 1 in Eq. S34 at t ¼ 100 ps) with the values of ½α;Dα� at short
time [calculated by fitting the RCF T̄2 up to 50 ps (Fig. 1A of the
main text)]. The results are shown in panels (g) and (h). There is
a very good overlap between all PDFs for γ11 (panel g) and γ35
(panel h) but, because the parameters ½α;Dα� represent the decay
of the RCF up to only 50–100 ps (Fig. 1A of the main text), small
deviations are observed (Fig. S8 g and h) between the different
PDFs at time t > 100 ps, which are due to the (small) variation of
the exponent with time (as shown by the comparison of the two
stretched exponentials in Fig. 1C of the main text). Indeed, for
each dihedral angle, the PDFs computed between 10 ps and
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1 ns were rescaled next according to Eq. S34 to the PDF com-
puted at 1 ns (i.e., by choosing h ¼ 1 in Eq. S34 at t ¼ 1 ns) with
the values of ½α;Dα� at long time (calculated by fitting the RCF T̄2

up to 1 ns, Fig. 1C of the main text). The results are shown in
Fig. S8 i and j. There is very good superposition of all PDFs
at different times.

For dihedral angles with multiple-minima FEP, as for example
γ35 (Fig. S8h), there is a deviation of the PDF from a pure Gaus-
sian distribution (Fig. S8 b and c and h and j). Indeed, for dihedral
angles with multiple-minima FEP (see Fig. S3), displacements Δγ
correspond both to fluctuations within a minimum of the FEP
and to jumps (Δγ > Δγi� in Fig. S8 h and j) corresponding to tran-
sitions between different minima of the FEP.

7. Velocity–Velocity Correlation Function. The velocity–velocity
correlation function (see ref. 7) CvðtÞ is defined by

CvðtÞ ¼
��

∂γðtþ t0Þ
∂t0

��
∂γðt0Þ
∂t0

��
t0
; [S35]

where the average is over all possible initial positions of uðt0Þ,
i.e., all values of t0. At thermal equilibrium, the MSDðtÞ of the
dihedral angles (Eq. S6) is related to CvðtÞ by an exact relation
(see ref. 7):

MSDðtÞ ¼ 2t
�Z

t

0

dt0
�
1 −

t0

t

�
Cvðt0Þ

	
: [S36]

By definition, the diffusion coefficient DðtÞ is the term in
braces in Eq. S36. At the limit t → ∞, D is a constant:

Dð∞Þ ¼
Z

∞

0

dtCvðtÞ: [S37]

Assuming a (slow) power-law decay of CvðtÞ with an exponent
β < 0,

CvðtÞ ¼ Aβtβ; [S38]

we deduce for the term in braces in Eq. S36:

DðtÞ ¼ Aβ

ðβ þ 1Þðβ þ 2Þ t
βþ1: [S39]

By comparing Eq. S39 and the result DðtÞ ≈ αDαtα−1, we find
that β ¼ α − 2 and finally,

CvðtÞ ≈ α2ðα − 1ÞDαtα−2; [S40]

as stated in Results and Discussion in the main text. The power-
law velocity correlation function given by Eq. S40 implies that
random Langevin forces are correlated in time (8) as found in
fluorescence experiments by measuring the correlation function
of the distance between two residues within a protein (9). It is
worth noting that the rotational diffusion equation with a
power-law diffusion coefficient, DðtÞ, is a simple physical model
of the fluctuations of un, which accounts for the anomalous diffu-
sion (8). An exact (numerical) approach exists, which consists of
solving the generalized Langevin equation (as in ref. 9) for each
un in its own FEP, which is beyond the scope of the present work.

8. Exact Analytical Relations Between the FEP VðγÞ and Vðθ,φÞ and the
Generalized Order Parameters S2 of γ Dihedral Angles and N-H Bonds.
The generalized order parameter S2 is defined for the dihedral
angles γ and, for the N-H bonds, as the limit at t → ∞ of the
RCF T̄2 and P̄2, respectively. It can be related exactly to the
FEP by analytical relations as follows.

8.1. Diffusion on a circle (see Fig. S1).Using the following notations,

u ¼ ðux;uyÞ≡ uðt0Þ ¼ ðcos½γðt0Þ�; sin½γðt0Þ�Þ [S41]

and

ū ¼ ðūx;ūyÞ≡ uðt0 þ∞Þ ¼ ðcos½γðt0 þ∞Þ�; sin½γðt0 þ∞Þ�Þ; [S42]

the RCF (see Eq. S3) as t → ∞ is

T̄2ð∞Þ ¼ 2hðū · uÞ2i − 1; [S43]

T̄2ð∞Þ ¼ 2hūx2ux2 þ ūy2uy2 þ 2ðūxūyuxuyÞi − 1; [S44]

in which the averages h i are over all the times (Eq. S3).
By definition, the vectors ū and u are two orientations of the

same vector separated by an infinite time. They are, therefore,
statistically independent. Consequently, the average of their pro-
duct is equal to the product of their averages. Using this property,
we find

T̄2ð∞Þ ¼ 2½hūx2ihux2i þ hūy2ihuy2i þ 2hūxūyihuxuyi� − 1; [S45]

and

T̄2ð∞Þ ¼ 2½hux2i2 þ huy2i2 þ 2huxuyi2� − 1. [S46]

In the derivation of Eq. S46, we used

hūx2ðt0Þit0 ¼ hux2ðt0 þ∞Þit0 ; [S47]

hūy2ðt0Þit0 ¼ huy2ðt0 þ∞Þit0 ; [S48]

hūxðt0Þūyðt0Þit0 ¼ huxðt0 þ∞Þuyðt0 þ∞Þit0 ; [S49]

because a translation of the time scale by a constant (þ∞) does
not change the averages.

Because u is a unit vector, one has

uy2 ¼ 1 − ux2: [S50]

Using Eq. S50 in Eq. S46, we find the following expression:

T̄2ð∞Þ ¼ 1 − 4hux2i þ 4½hux2i2 þ huxuyi2�: [S51]

Finally, using the relation S41, one finds

T̄2ð∞Þ ¼ 1 − 4hcos2½γðt0Þ�it0
þ 4½ðhcos2½γðt0Þ�it0 Þ2 þ ðhcos½γðt0Þ� sin½γðt0Þ�it0 Þ2�: [S52]

Using the ergodic hypothesis, the averages over all times in
Eq. S52 can be computed as averages over the ensemble of all
possible values of the dihedral angles γ with the probability dis-
tribution PðγÞ. The latter is related to the FEP by the Boltzmann
formula:

PðγÞ ¼ exp½−V ðγÞ∕kT�: [S53]

Therefore, the order parameter S2 of the dihedral angles γ
were computed from the FEP V ðγÞ by using the following
formula:
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S2γ ¼ T̄2ð∞Þ
¼ 1 − 4hcos2ðγÞi þ 4½ðhcos2ðγÞiÞ2 þ ðhcosðγÞ sinðγÞiÞ2�; [S54]

in which

h i ¼
Z þπ

−π
dγPðγÞ: [S55]

8.2. Diffusion on a sphere (see Fig. S1).Using the following notations
and the spherical coordinates θ and φ (Fig. S1),

u ¼ ðux;uy;uzÞ≡ uðt0Þ
¼ ðsin½θðt0Þ� cos½φðt0Þ�; sin½θðt0Þ� sin½φðt0Þ�; cos½θðt0Þ�Þ; [S56]

and

ū ¼ ðūx;ūy;ūzÞ≡ uðt0 þ∞Þ
¼ ðsin½θðt0 þ∞Þ� cos½φðt0 þ∞Þ�; sin½θðt0 þ∞Þ�
× sin½φðt0 þ∞Þ�; cos½θðt0 þ∞Þ�Þ: [S57]

the RCF (see Eq. S8) as t → ∞ is

P̄2ð∞Þ ¼ 3

2
hðū · uÞ2i − 1

2
; [S58]

P̄2ð∞Þ ¼ 3

2
hūx2ux2 þ ūy2uy2 þ ūz2uz2i þ 3hūxūyuxuyi

þ 3hūxūzuxuzi þ 3hūzūyuzuyi −
1

2
: [S59]

By definition, the vectors ū and u are two orientations of the
same vector separated by an infinite time. They are therefore sta-
tistically independent. Consequently, the average of their product
is equal to the product of their averages. Using this property, we
find

P̄2ð∞Þ ¼ 3

2
½hūx2ihux2i þ hūy2ihuy2i þ hūz2ihuz2i� þ 3hūxūyihuxuyi

þ 3hūxūzihuxuzi þ 3hūzūyihuzuyi −
1

2
; [S60]

and

P̄2ð∞Þ ¼ 3

2
½hux2i2 þ huy2i2 þ huz2i2� þ 3huxuyi2 þ 3huxuzi2

þ 3huzuyi2 −
1

2
: [S61]

Eq. S61 follows from Eq. S60 because a translation of the time
scale by a constant (þ∞) does not change the averages:

hūαðt0Þūβðt0Þit0 ¼ huαðt0 þ∞Þuβðt0 þ∞Þit0 ; [S62]

where α ¼ x or y and β ¼ x or y.
Because u is an unit vector, one has

uz2 ¼ 1 − ux2 − uy2: [S63]

Using Eq. S63 in Eq. S61, we find the following expression:

P̄2ð∞Þ ¼ 1 − 3⌊hux2i þ huy2i⌋þ 3½hux2i2 þ huy2i2
þ hux2ihuy2i þ huxuyi2 þ huxuzi2 þ huzuyi2�: [S64]

It is interesting to note that the sum of the first two terms in
Eq. S64 is similar to the approximate expression of the generalized
parameter of a backbone N-H bond derived by Abergel and Bod-
enhausen in ref. 10 by assuming small displacements of the vector
u relative to its average position. Approximation of small displa-
cements (Δθ, Δφ) is, however, not fully justified (see, for exam-
ple, the FEP in Fig. 1B, Inset, and Fig. 3B of the main text) in
particular for the N-H bonds that exist in multiple substates
[as, for example, ðN-HÞ39]. The exact expression (S64) contains
additional terms, which contribute to P̄2ðt → ∞Þ when the displa-
cements are not small.

Finally, using the relation (S56), one finds

P̄2ð∞Þ ¼ 1 − 3ðhðsin½θðt0Þ� cos½φðt0Þ�Þ2i þ hðsin½θðt0Þ� sin½φðt0Þ�Þ2iÞ
þ 3ðhðsin½θðt0Þ� cos½φðt0Þ�Þ2i2 þ hðsin½θðt0Þ� sin½φðt0Þ�Þ2i2
þ hðsin½θðt0Þ� cos½φðt0Þ�Þ2ihðsin½θðt0Þ� sin½φðt0Þ�Þ2i
þ hðsin½θðt0Þ�Þ2 cos½φðt0Þ� sin½φðt0Þ�i2
þ hsin½θðt0Þ� cos½θðt0Þ� cos½φðt0Þ�i2
þ hsin½θðt0Þ� cos½θðt0Þ� sin½φðt0Þ�i2Þ: [S65]

Using the ergodic hypothesis, the averages over time in Eq. S65
can be computed as averages over the ensemble of all possible
values of the polar angles θ and φ with the probability distribution
Pðθ;φÞ. The latter is related to the FEP by the Boltzmann
formula:

Pðθ;φÞ ¼ exp½−V ðθ;φÞ∕kT�: [S66]

Therefore, the order parameters S2 of the N-H bonds were
computed from the FEP V ðθ;φÞ by using the following formula:

S2NH ¼ P̄2ð∞Þ
¼ 1 − 3ðhðsin½θ� cos½φ�Þ2i þ hðsin½θ� sin½φ�Þ2iÞ

þ 3ðhðsin½θ� cos½φ�Þ2i2 þ hðsin½θ� sin½φ�Þ2i2
þ hðsin½θ� cos½φ�Þ2ihðsin½θ� sin½φ�Þ2i
þ hðsin½θ�Þ2 cos½φ� sin½φ�i2 þ hsin½θ� cos½θ� cos½φ�i2
þ hsin½θ� cos½θ� sin½φ�i2Þ; [S67]

in which

h i ¼
Z

π

0

dθ
Z

2π

0

dφPðθ;φÞ: [S68]

9. Application of the Model-Free Approach to the RCF of the N-H Bonds
Computed from MD (Table S1 and Fig. S6). The “model-free” (MF)
approach (11, 12) was applied to the RCFs of the backbone N-H
bonds computed from MD. The MF approach is derived by
assuming that the relaxation time of the overall tumbling of
the whole protein [typically larger than 2 ns (13)] is much larger
than the relaxation time of the motions of the N-H bonds (11–13).
Under this assumption, C2ðtÞ is represented as a linear interpola-
tion between the limits, C2ð0Þ ¼ 1 and C2ð∞Þ≡ S2, i.e., (11–13)

C2ðtÞ ¼ S2 þ ½1 − S2�f 2ðtÞ; [S69]

where the function f 2ðtÞ describes the decay of the RCF as a
function of the time and obeys f 2ð0Þ ¼ 1 and f 2ð∞Þ ¼ 0. Gener-
ally, it is assumed that the RCF decays as an exponential (11),

f 2ðtÞ ¼ expð−t∕τf Þ; [S70]
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which means a free rotational diffusion of un with a relaxation
time τf (11).

The RCFs of the N-H bonds of VA3 computed by MD (run 1)
up to 1 ns were fitted by using Eqs. S69 and S70. The values of
the parameters ðS2;τf Þ calculated for each residue are given in
Table S1. For the N-H bonds moving in a single-minimum
FEP, we find 0.64 < S2 < 1 and τf < 53 ps, whereas, for N-H
bonds existing in multiple substates (multiminima FEP), we find
S2 < 0.8 and 80 ps < τf < 530 ps [except ðN-HÞ2, which has a
multiminima FEP and a τf < 60 ps). For N-H bonds existing
in multiple substates (residues 2, 26, 37, 38, 39, and 40), we have
also fitted the RCF computed by MD (run 1) up to 1 ns by using
the multiexponential MF approach (12). The RCF was fitted by
using Eq. S69 and (see ref. 12)

f 2ðtÞ ¼ af expð−t∕τf Þ þ ð1 − af Þ expð−t∕τsÞ; [S71]

with af a parameter weighting the fast motions and τs the relaxa-
tion time of a slow process [interpreted as the transitions between
different stable orientations of the bonds (12)]. The values of S2
using a monoexponential Eq. S70 or biexponential Eq. S71model
of the RCF are very similar as shown in Table S1. For the slow
process, we find 170 ps < τs < 380 ps. Introduction of a slow
process for bonds having multiminima FEP reduces the value
of their relaxation time to τf < 8 ps. The weight of the fast
process, af , varies between 0.48 and 0.78. It is worth noting that
the relaxation times found here are smaller than the typical
tumbling relaxation time of a protein as required to apply the
MF approach.

In order to compare the MF approach with the stretched ex-
ponential model used in the main paper, we develop expression
S71 at short time (t ≪ τf ):

f 2ðtÞ ≈ af ð1 − t∕τf Þ þ ð1 − af Þð1 − t∕τsÞ
¼ 1 − ⌊af∕τf þ ð1 − af Þ∕τs⌋t: [S72]

Using Eq. S72 in Eq. S69, we deduce

C2ðtÞ ≈ 1 − ð1 − S2Þðaf∕τf þ ½1 − af �∕τsÞt: [S73]

Comparing Eq. S73 with Eq. 1 of the main text, we deduce an
effective diffusion constant DMF for the MF approach:

DMF ¼ 1

6
ð1 − S2Þ½af∕τf þ ð1 − af Þ∕τs�: [S74]

In the monoexponential MF approach (af ¼ 1), the values of
the effective diffusion constant at short time scale t ≪ τf are
much more smaller than the values of Dα (shown in Fig. S6b):
DMF varies between 2 deg2 ∕ps and 12 deg2 ∕ps (Table S1).
Therefore, the values of the effective diffusion constant on a
short time scale t ≪ τf does not agree with the angular MSD
of the N-H bonds, as expected because the MSD does not grow
linearly with time as assumed in the MF approach and Eq. S73.
For N-H bonds existing in multiple substates, the constants DMF
were also computed by using the biexponential model of f 2ðtÞ and
their values are given in parentheses in Table S1. It is interesting
to note that, for these residues, including a slow process, i.e., a
multiexponential model of the RCF, increases the constant
DMF by an order of magnitude, similar to the one of Dα. This
effect is due to the large decreases of τf in the biexponential mod-
el. It is worth noting that a stretched exponential decay can, in
principle, be represented by an infinite sum of exponentials.
Therefore, including additional exponentials in f 2ðtÞ brings the
MF approach into better agreement with the stretched exponen-
tial decay that we observed in the RCF computed from MD.

Finally, the RCFs, computed from MD (run 1) up to 1 ns were
also fitted with the MFapproach by using Eq. S69 and a stretched
exponential model of the function f 2ðtÞ, namely,

f 2ðtÞ ¼ expð−6AtαÞ; [S75]

where A and α are the two parameters fitted to the RCFs com-
puted from MD. The parameter S2 in Eq. S69 was computed
from the FEP by using Eq. S67. In order to compare this nonex-
ponential MF approach with the stretched exponential model
used in the main paper, we expand expression S69 at short-time:

C2ðtÞ ≈ S2 þ ½1 − S2Þ�ð1 − 6AtαÞ ¼ 1 − 6ð1 − S2ÞAtα: [S76]

Comparing Eq. S76 with Eq. 1 of the main text, we deduce an
effective diffusion constant Dα, related to A and S2:

Dα ≡ Að1 − S2Þ: [S77]

The parameters α andDα deduced from Eqs. S69, S75, and S77
are compared to those deduced from the stretched exponential
model discussed in the main text and fitted to the RCFs up to 1 ns
in Fig. S6 b and c , respectively. The profile of Dα along the
sequence of the amino acids calculated from the present nonex-
ponential MF approach is similar to the one extracted from
the MSD of the N-H bonds and from the stretched exponential
model of the RCF’s (Fig. S6b). The values of Dα deduced from
Eq. S77 are of the right order of magnitude but are in general
much larger than the values deduced from the calculation of
the MSD of the bonds. Similarly, the profile of the exponents
deduced from the present nonexponential MF approach is only
qualitatively similar to the one deduced from the MSD (Fig. S6c).

10. Materials and Methods. Five MD simulations of VA3, each of a
duration of 80 ns, were carried out in explicit water [Simple Point
Charge (SPC) force field] with the GROMACS package (14) and
the all-atom Optimized Potentials for Liquid Simulations force
field (15). The initial structure of VA3 was taken from one of
the NMR models, model 1 (16). Six Cl− counterions were used
to neutralize VA3. The time step used was 2 fs, the temperature
was set to 300 K, and the pressure to 1 bar by using a Berendsen
thermostat and barostat (17), with coupling times of 0.1 and 1 ps,
respectively. The protein was solvated in a triclinic box of 3002
SPC water molecules (18) keeping a minimum distance of 1 nm
between the solute and each face of the box. The particle-mesh
Ewald method (19, 20) was used for the calculation of long-range
electrostatic interactions as it improves the accuracy of the force
field compared to NMR data as shown recently (21); 0.9 nm was
used for the van der Waals cutoff. Each MD simulation was
carried out with different initial conditions for VA3 after 600-ps
equilibrium time. The coordinates were saved every 1 ps. The
steepest-descent algorithm with tolerance of 1;000 kJ∕ðmol nmÞ
and maximum step size 0.01 nm implemented in GROMACS
(11) was used for energy minimization.

Because of the presence of disulfide bonds, VA3 remains
folded in all MD trajectories, which enables one to apply, with
confidence, the separation of internal motions of the protein
from its overall motion by aligning the MD snapshots on a refer-
ence structure. This procedure is required to define the orienta-
tion of the N-H bonds in a fixed molecular frame (reference
structure) in order to compute their internal RCFs (11–13, 22)
and their potential V ðθ;φÞ. The calculation of RCFs of dihedral
angles γ does not require aligning the MD snapshots because
motion of the molecule as a whole does not affect the values
of the γ angles.
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Fig. S1. (a) Definition of a coarse-grained dihedral angle γn constructed from four consecutive Cα atoms, and of the corresponding vector un and the angular
displacement Δγn on the unit circle. (b) Definition of the ðN-HÞn bond and of the corresponding vector un and the angular displacement Δξn on the unit sphere.
The polar coordinates θ and φ of the hydrogen atom of the ðN-HÞn bond at time t are represented in colors on the unit sphere. For PRO residues, the
displacements Δξn and the polar coordinates are not defined.
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4Dαtα for the dihedral angles γn and the ðN-HÞn bonds, respectively. The fits (thin lines) cannot be distinguished from the MD data at the scale of the figure.
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(a)

(b)

Fig. S4. (a) Typical results for RCF T̄2 of coarse-grained dihedral angles γn of VA3 computed from MD up to t < 8 ns. Results are presented for dihedral angles
γ11, γ20, γ35, and γ39 having free-energy profiles (shown schematically in Fig. 1A, Inset, of the main paper), representative of all VðγÞ calculated by MD (Fig. S3).
For each dihedral angle γn, the RCF T̄2 (bold lines) is compared to two stretched exponentials (dashed and dotted lines) with an exponent αn and diffusion
constant Dα computed from a fit of RCF up to 50 ps (dashed lines) and from a fit up to 1 ns (dotted lines), respectively. (b) Typical results for long-time behavior
(t < 8 ns) of RCF P̄2 of amide ðN-HÞn bonds (Fig. S1) of VA3 computed from MD (data shown are for n ¼ 11, 20, 35, and 39 from run 1). For each ðN-HÞn bond
associated with residue n, the RCF P̄2 (bold lines) is compared to two stretched exponentials (dashed and dotted lines) with an exponent αn and diffusion
constant Dα computed from a fit of RCF up to 50 ps (dashed lines) and from a fit up to 1 ns (dotted lines), respectively.
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stretched exponential expð−4DαtαÞ with an exponent α and diffusion constant Dα fitted to the RCF up to 50 ps (filled diamonds) and by using a stretched
exponential expð−4DαtαÞ with an exponent α and diffusion constant Dα fitted to the RCF up to 1 ns (empty triangles). Diffusion constants Dα calculated in-
dependently from a fit of the MSDðtÞ of γn by using MSDðtÞ≅2Dαtα up to 50 ps (filled squares) overlap perfectly the parameters obtained from a fit of the RCF
up to 50 ps by a stretched exponential (filled diamonds). Data are from trajectory 1 of VA3 and are representative of data obtained for all trajectories. (c)
Exponents α along the primary sequence of VA3 computed by fitting RCF T̄2 of dihedral angles γn up to 50 ps by using a stretched exponential expð−4DαtαÞwith
an exponent α and diffusion constant Dα fitted to the RCF up to 50 ps (filled diamonds) and by using a stretched exponential expð−4DαtαÞ with an exponent α
and diffusion constant Dα fitted to the RCF up to 1 ns (empty triangles). Exponents α calculated independently from a fit of the MSDðtÞ of γn by using
MSDðtÞ≅2Dαtα up to 50 ps (filled squares) overlap perfectly the parameters obtained from a fit of the RCF up to 50 ps by a stretched exponential (filled
diamonds) except for n between 35 and 39. Data are from trajectory 1 of VA3 and are representative of data obtained for all trajectories. (d) Main structural
elements of VA3 (β-sheets β1∕β2, helices α1∕α2, and the straight solid lines showing the positions of the three disulfide bonds).
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Fig. S6. Typical results for RCFs of ðN-HÞn bonds of VA3 computed fromMD at t < 100 ps. For each ðN-HÞn bond, the RCF P̄1 (bold lines) is compared to Eq. 1 of
the main text (thin lines) and to a stretched exponential expð−2DαtαÞ (dashed lines). In Eq. 1 of the main text, we use MSDðtÞ ¼ 4Dαtα with an exponent α and a
diffusion constant Dα computed by fitting the MSD up to 50 ps. The exponent α and diffusion constant Dα of the stretched exponential were computed by
fitting the RCF up to 50 ps. Exponents of the stretched exponential are given. The exponents computed by fitting the MSD are similar (α11 ¼ 0.03, α20 ¼ 0.09,
α35 ¼ 0.08, α39 ¼ 0.19). The RCF computed using Eq. 1 of the main text and the stretched exponential are hardly distinguishable for ðN-HÞ11, ðN-HÞ35, and
ðN-HÞ39. (b) Diffusion constants Dα along the primary sequence of VA3 computed by fitting RCF P̄2 of ðN-HÞn bonds up to 50 ps by using a stretched exponential
expð−6DαtαÞ with an exponent α and diffusion constant Dα fitted to the RCF up to 50 ps (filled diamonds) and by using a stretched exponential expð−6DαtαÞ
with an exponent α and diffusion constant Dα fitted to the RCF up to 1 ns (empty triangles). Diffusion constants Dα calculated independently from a fit of the
MSDðtÞ of γn by using MSDðtÞ ≅4Dαtα up to 50 ps (filled squares) nearly perfectly overlap the parameters obtained from a fit of the RCF up to 50 ps by a
stretched exponential (filled diamonds) for most of the residues (see SI Text). Data are from trajectory 1 of VA3 and are representative of data obtained for all
trajectories. The RCFs P̄2 computed fromMDwere also fitted up to 1 ns by using the model-free approach with a nonexponential function Eqs. S69 and S75 and
a parameter S2 computed from the FEP (Eq. S67). The parameters Dα ≡ Að1 − S2Þ Eq. S77 are shown (empty circles). (c) Exponents α along the primary sequence
of VA3 computed by fitting RCF P̄2 of ðN-HÞn bonds up to 50 ps by using a stretched exponential expð−6DαtαÞ with an exponent α and diffusion constant Dα

fitted on the RCF up to 50 ps (filled diamonds) and by using a stretched exponential expð−6DαtαÞwith an exponent α and diffusion constantDα fitted on the RCF
up to 1 ns (empty triangles). Exponents α calculated independently from a fit of the MSDðtÞ of ðN-HÞn bonds by using MSDðtÞ ≅4Dαtα up to 50 ps (filled squares)
overlap nearly perfectly the parameters obtained from a fit of the RCF up to 50 ps by a stretched exponential (filled diamonds) for most of the residues (see SI
Text). Data are from trajectory 1 of VA3 and are representative of data obtained for all trajectories. The RCFs P̄2 computed fromMD were also fitted up to 1 ns
by using the model-free approach with a nonexponential function Eqs. S69 and S75 and a parameter S2 computed from the FEP Eq. S67. The parameters α are
shown (empty circles).
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Fig. S7. Exponent αn (a) and diffusion constantDα (b) of amide ðN-HÞn bonds (Fig. S1) along primary sequence of VA3 computed by fitting RCF P̄2 up to 50 ps by
using a stretched exponential, namely, expð−6DαtαÞ (black diamonds). Data are presented for run 1. For comparison, the exponents αn (a) and the diffusion
constant Dα (b) of the coarse-grained dihedral angles γn along the primary sequence of VA3 computed from run 1 by fitting RCF T̄2 up to 50 ps by using a
stretched exponential, namely, expð−4DαtαÞ are shown (blue diamonds). β1∕β2 and α1∕α2 are the locations of the two β-sheets and the two α-helices of VA3,
respectively.
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Fig. S8. (a–c) PDF FðΔγn; tÞ of VA3 at t ¼ 50 ps computed for the whole MD trajectory (run 1) (black line) and evaluated from Eq. S17 (red line) and from
Eq. S30with the sole term k ¼ 0 (Gaussian PDF, blue line) with the parameters α andDα of a stretched exponential fitted on T̄2 up to 50 ps. Results are presented
for γ11 (a) with a typical harmonic FEP and for γ35 (b) and γ39 (c) with a typical multiple-minima FEP (see Fig. S3). (d–f) PDF FðΔξn; tÞ of VA3 computed for the
whole MD trajectory (run 1) (full lines) and evaluated from Eqs. S24 and S26 (dashed lines) with the parameters α and Dα of a stretched exponential fitted to P̄2

over a duration of 50 ps for t ≤ 100 ps and over a duration of 1 ns for t > 100 ps. Results are presented for ðN-HÞ11 (d), for ðN-HÞ35 (e), and for ðN-HÞ39 (f) for
t ¼ 1 ps (black lines), 10 ps (brown lines), 100 ps (blue lines), 300 ps (purple lines), 500 ps (green lines), and for t ¼ 1 ns (red lines). Note that some deviations at
large times between the PDF computed in MD and Eqs. S24 and S26 were observed for residues with multiple-minima free-energy profiles as illustrated for
ðN-HÞ39 (f). (g–j) Typical results for the time evolution of the PDF ofΔγn computed from the fluctuations of γn extracted fromMD trajectories of VA3. Results are
presented for γ11 (g and i) with a typical harmonic FEP (g, Inset, and i, Inset), γ35 (h and j) with typical multiple-minima FEP (h, Inset, and j, Inset). In all panels, the
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superposed curves are the PDFs computed from MD and rescaled by using Eq. S34 at times t ¼ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 300, 500, 600, 800, and
1,000 ps (the maximum value of the PDF increases with time). (g and h) PDFs are rescaled by choosing h ¼ 1 (Eq. S34) at t ¼ 100 ps and an exponent α calculated
from a fit to a stretched exponential of T̄2 up to 50 ps. (i and j) The PDFs are rescaled by choosing h ¼ 1 (Eq. S34) at t ¼ 1 ns and an exponent α calculated from a
fit of T̄2 up to 1 ns. (i and j) The PDFs cannot be distinguished at the scale of the figure. (h, Inset, and j, Inset) Δγ1� (Δγ2

�) represents the distance between the
deepest minimum (a local minima) of the FEP and the nearest activation barrier; the distances Δγ1� (Δγ2

�) are shown as arrows on the corresponding Δγ axis.

Table S1. Parameters of the model-free approach (11, 12) fitted on the RCF P̄2 computed from MD up to 1 ns

Model-free approach of the RCF (11, 12): C2ðtÞ ¼ S2 þ ð1 − S2Þf2ðtÞ
f2ðtÞ ¼ expð−t∕τf Þ f2ðtÞ ¼ af expð−t∕τf Þ þ ð1 − af Þ expð−t∕τsÞ

DMF (deg2 ∕ps)Residue S2 τf (ps) S2 af τf (ps) τs (ps)

2 0.85 34.48 0.84 0.78 0.79 342.50 2.38 (86.49)
3 0.91 11.17 4.41
4 0.93 12.28 3.12
6 0.86 6.30 12.16
7 0.89 11.17 5.39
8 0.88 8.39 7.83
9 0.74 14.36 9.91
10 0.90 6.30 8.68
11 0.90 7.63 7.17
12 0.87 6.93 10.26
13 0.91 6.93 7.11
14 0.90 10.15 5.39
15 0.90 12.28 4.46
16 0.87 21.76 3.27
17 0.87 26.33 2.70
18 0.87 23.94 2.97
19 0.76 21.76 6.03
20 0.75 19.78 6.92
21 0.73 22.00 6.71
23 0.85 39.81 2.06
25 0.81 29.39 3.54
26 0.79 85.24 0.77 0.67 0.85 380.05 1.35 (99.30)
27 0.85 19.78 4.15
28 0.86 28.97 2.64
29 0.80 19.84 5.52
30 0.64 22.81 8.64
31 0.87 10.15 7.01
32 0.86 6.30 12.16
33 0.88 11.17 5.88
34 0.87 21.76 3.27
35 0.84 32.41 2.70
36 0.80 47.23 2.32
37 0.49 522.09 0.44 0.48 2.82 313.37 0.53 (52.66)
38 0.56 89.92 0.54 0.75 4.76 170.42 2.68 (40.02)
39 0.63 164.44 0.59 0.65 3.90 363.77 1.23 (37.60)
40 0.63 229.60 0.60 0.64 7.22 300.03 0.88 (19.66)
42 0.82 26.50 3.72
43 0.81 17.99 5.78
44 0.85 52.29 1.57
46 0.85 7.6 10.80
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