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SI Methods
In the string method (1), the system is represented by a set of
“coarse coordinates,” which can be either Cartesian coordinates
or collective variables. The number of such coarse coordinates
can be large, but is nonetheless much smaller than the dimension-
ality of the phase space of the membrane-embedded and solvated
protein. A free energy can be defined as a function of these coarse
coordinates by integrating out all other degrees of freedom. The
objective then is to identify a “minimum free energy pathway”
that connects two minima in the configuration space, such that
the mean force, or the gradient of the free energy, is everywhere
tangent to the pathway in the Cartesian space of the associated
atomic coordinates (1). In the string method, the pathway, or the
“string,” is represented by some discrete points, or “images,” in
the configuration space. An initial string is refined toward the
minimum free energy pathway through iterations of simulations
on individual images. In the following sections, we will introduce
the details of the string method and the application of the tech-
nique in this study.

The Cartesian coordinates of N selected Cα atoms are used to
describe the conformation of the protein in this study, denoted by
a vector ~x in 3N-dimensional space. The difference between two
conformations ~x1 and ~x2 (assuming proper superimposition) can
be simply quantified by their vector difference Δ ~x ¼ ~x2 − ~x1. A
conventional measure of the conformational difference is the
rmsd, which is proportional to the Euclidean distance jΔ ~xj in
the 3N-dimensional space:

rmsdð ~x1; ~x2Þ ¼ jΔ ~xj∕
ffiffiffiffi
N

p
: [S1]

Multidimensional Curve Fitting. In the string method, the pathway
(string) is represented by M þ 1 images ~x0;…; ~xM in the 3N-di-
mensional space. Because of statistical errors during the evolu-
tion of the string, the images usually do not exactly lie on a
smooth line and therefore typically require curve smoothing in
practice. As a simple method, the position of each image can
be adjusted toward the midpoint of the two neighboring images
(1). In this study we introduce a new smoothing method in which
the images are fitted into a single multidimensional curve that
then represents the string.

The multidimensional curve is expressed in the same form as in
the harmonic Fourier beads (HFB) method (2):

~xcurðtÞ ¼ ~x0 þ ð ~xM − ~x0Þtþ∑
3N

i¼1
∑
P

j¼1

wij sinðjπtÞ · êi; [S2]

where êi is the axis of the ith coordinate in the 3N-dimensional
space. As the parameter t is varied from 0 to 1, ~xcurðtÞ connects ~x0
and ~xM through a continuous curve. In addition to ~x0 and ~xM , the
analytic form of ~xcurðtÞ is determined by the linear coefficients
fwijg of P sinusoidal basis functions in each dimension. Given
the images f ~xkg, one then aims to minimize the χ2 defined as

χ2 ¼ ∑
M−1

k¼1

j ~xcurðtkÞ − ~xkj2 [S3]

by optimizing both fwijg and ftkg. Specifically, when fwijg are
given, one can perform a one-dimensional nonlinear fit on each
tk (k ¼ 1;…;M − 1) independently to find the point ~xcurðtkÞ on the
curve with the closest distance to ~xk; when ftkg are given, one can

find the set of fwijg that minimizes the χ2 by a linear least-squares
fit of P coefficients on M − 1 data in each of the 3N dimensions
independently. By alternately optimizing ftkg and fwijg, the χ2

can be iteratively minimized. Upon convergence, fwijg then de-
termine a smooth curve that best approximates f ~xkg, and the
images after the smoothing are given by f ~xcurðtkÞg. We find that
the fit results are not sensitive to the initial values assigned before
the iterations. Initialization with fwij ¼ 0g, e.g., works well for the
path fits in this study.

Similar to other smoothing techniques (1), in our method the
two end images ~x0 and ~xM remain unchanged, whereas other
images ~x1;…; ~xM−1 are adjusted by the smoothing. Furthermore,
going beyond the HFB method (2), the curve parameters ftkg
are also subject to optimization in our method, which is therefore
expected to work well even if f ~xkg are not evenly spaced. With the
analytical form of the string, we can calculate by numerical inte-
gration the arc length between ~x0 and any given ~xcurðtÞ:

sðtÞ ¼
Z

t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����d ~xcurðtÞdt

����2
s

dt: [S4]

A parameter LðtÞ ¼ sðtÞ∕sð1Þ is defined as sðtÞ normalized by
the total arc length of the string sð1Þ. This reduced path length
L ∈ ½0;1� then describes the relative position of ~xcurðtÞ along the
pathway and serves as a progression parameter for the transition.
The smoothness of the fitted curve is determined by P, as incor-
porating more basis functions will fit the data more closely, but
will likely result in a more oscillatory curve. We find that using
two sinusoidal basis functions (P ¼ 2) in each dimension can al-
ready fit the coarse-grained pathway obtained in our previous
study (3) reasonably well, with rmsds between the original and
fitted data all below 0.15 Å. This setting (P ¼ 2) is therefore used
in all path fits in this study.

Description of Symmetry. The five subunits of GLIC and ELIC are
identical in sequence and highly similar in the crystal structures
(4–6). Nevertheless, the structures along individual pathways do
not have to satisfy fivefold symmetry (but each asymmetric path
will enter the path ensemble in five symmetry-related copies).

The 3N coordinates in ~x can also be formally expressed as a
3-by-N matrix X , in which each column represents the three Car-
tesian coordinates of a single atom. The protein is composed of
five subunits, each containing n ¼ N∕5 atoms. Correspondingly,
we can write X ¼ ðX1 X2 X3 X4 X5 Þ, in which Xi is a
3-by-n matrix representing the coordinates of a single subunit.
We assume that the symmetry axis lies at the z axis and that
the five subunits are arranged in clockwise order when viewed
from the þz direction. We now define a linear permutation-rota-
tion operator G:

Gð ~xÞ ¼ GðXÞ≡ Rzð2π∕5Þ · ðX2 X3 X4 X5 X1 Þ; [S5]

where Rzð2π∕5Þ is a 3-by-3 rotation matrix for a 2π∕5 (72°)
angle with respect to the z axis. The operation corresponds to
a permutation of the five subunits followed by a 72° rotation
and, in fact, generates a symmetry-related equivalent structure,
in which each subunit assumes the conformation of a neighboring
subunit in the original structure. If coordinates ~x already exhibit
a perfect fivefold symmetry, they will remain unchanged under
theG operation. Moreover, any coordinates will be restored after
undergoing five such operations, i.e.,
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G5ð ~xÞ ¼ ~x [S6]

for any ~x. Because permutation and rotation preserve the inner
product of vectors, the G operation satisfies

Gð ~x1Þ · Gð ~x2Þ ¼ ~x1 · ~x2; [S7]

for any ~x1 and ~x2.
Based on operator G, a symmetrization operator S is defined

as

Sð ~xÞ≡ 1

5∑
5

i¼1

Gið ~xÞ: [S8]

Any ~x can then be divided into a symmetric component ~xS and an
antisymmetric component ~xA:

~xS ¼ Sð ~xÞ; [S9]

~xA ¼ ~x − ~xS: [S10]

~xS assumes a perfect fivefold symmetry, i.e.,

Gð ~xSÞ ¼ ~xS: [S11]

By repeatedly applying Eq. S7, we have

~xS · ~xA ¼ Gð ~xSÞ · Gð ~xAÞ ¼ ~xS · Gð ~xAÞ ¼ ~xS · Gið ~xAÞ: [S12]

Taking i ¼ 1;…;5, and summing up the left- and right-hand sides
of Eq. S12, we obtain the orthogonality relationship:

~xS · ~xA ¼ 0. [S13]

Eqs. S9 and S10 therefore represent an orthogonal decomposi-
tion of ~x into two subspaces. The magnitude of ~xA then quantifies
the deviation of the conformation from perfect symmetry.
Furthermore, using only the symmetric coordinates to describe
the system can effectively reduce the dimensionality, as discussed
below.

Harmonic Restraints. In our implementation of the string method,
the N selected atoms are subject to harmonic restraints in the
simulations, with reference positions denoted by a 3N-dimen-
sional vector ~r. In this study, ~r is perfectly symmetric by design,
Sð ~rÞ ¼ ~r, such that the restraints would not favor a particular con-
formation over its symmetry-related copies. During the simula-
tion, the potential for the harmonic restraints is given by

UCð ~xÞ ¼ K
2
j ~x − ~rj2; [S14]

where K is the spring constant. If we decompose ~x into the sym-
metric part ~xS and the antisymmetric part ~xA (Eqs. S9 and S10), it
is obvious that such a potential not only restrains ~xS toward ~r,
but also acts to attenuate ~xA, which is not always necessary and
desirable.

An alternative restraining potential can be defined as

UCð ~xÞ ¼ K
2
jSð ~xÞ − ~rj2: [S15]

The potential is a function of only the symmetric coordinates ~xS
and is independent of the antisymmetric component ~xA. To derive
the restraining forces ~f C arising from this potential, we note that S

is a linear operator and can be expressed as a matrix, which is
actually the transpose of the Jacobian matrix for the transforma-
tion ~y ¼ Sð ~xÞ. We also note that S2ð ~xÞ ¼ Sð ~xÞ and Sð ~rÞ ¼ ~r. There-
fore the restraining forces are given by

~f C ¼ −∇ ~xUCð ~xÞ ¼ K ½ ~r − Sð ~xÞ�: [S16]

Unlike in the former scheme (Eq. S14), ~xA in this case is not
affected by the restraints and is free to evolve during the simula-
tion. Furthermore, we can represent the protein conformation
by the symmetric coordinates ~xS only, and exclude ~xA from the
description. Because ~xS has only 3n independent dimensions,
in the new scheme the dimensionality of the configuration space
is effectively reduced by a factor of 5, which may alleviate some of
the challenges arising from very high dimensions.

Implementation of the String Method. Because the initial string is
usually only a rough guess of the minimum free energy pathway
and may need further refinement, iterations of simulations are
required to evolve the string and update the images so that they
converge toward the minimum free energy pathway. This can be
done by performing a simulation for each image k (k ¼ 0;…;M)
with harmonic restraints at ~rk, and recording the mean coordi-
nates ~xmean

k of the restrained atoms during the simulation. The
images can then be updated according to the mean forces (1).
Some new update methods have also been proposed recently,
employing swarms of short unbiased simulations (7) or confined
simulations in Voronoi cells (8). In this study, we adopt a conser-
vative update scheme, in which the new string is simply placed at
the mean coordinates f ~xmean

k g from the current iteration of simu-
lations. Compared to the reference coordinates f ~rkg, f ~xmean

k g
should lie closer to the minimum free energy pathway, and the
new string should therefore represent a better approximation
of the pathway. Over iterations the string will then evolve toward
the true pathway.

As mentioned earlier, Gið ~xÞ is an equivalent structure of ~x due
to symmetry and, therefore, should appear with the same prob-
ability as ~x. Consequently, in sufficiently long simulations, ~xmean

k is
expected to be perfectly symmetric, without an antisymmetric
component. In practice, however, due to limited simulation time,
~xmean
k is generally not symmetric. We therefore remove the anti-
symmetric component in ~xmean

k by applying the symmetrization
operator:

~xsymk ¼ Sð ~xmean
k Þ; k ¼ 0;…;M: [S17]

The symmetric component ~xsymk is then used to calculate the mean
restraining force:

~fmean
k ¼ Kð ~rk − ~xsymk Þ: [S18]

~xsymk is effectively an average over the conformations of the five
subunits in ~xmean

k , which can help reduce fluctuations in the mean
coordinates. More importantly, when the restraints are applied
only in the symmetric subspace (Eqs. S15 and S16), one must
use ~xsymk instead of ~xmean

k to calculate the mean force, because
the antisymmetric component is not subject to the restraining
force. A multidimensional curve is then fitted over f ~xsymk g using
the method described earlier, representing the new string. The
curve is evenly divided into M segments, and the resulting M þ
1 points on the curve are used as the restraints f ~rkg in the new
iteration of simulations. By construction, these new f ~rkg are also
perfectly symmetric.

According to thermodynamic theory, when a system is driven
by an external force from one state to another in a quasiequili-
brium process, the reversible work done by the external force is
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equal to the free energy difference between the two states. There-
fore, if we assume that the mean force varies smoothly along the
string, we may use the average of the mean restraining forces on
two adjacent images to calculate the free energy difference:

ΔGk→kþ1 ¼
1

2
ð ~fmean

k þ ~fmean
kþ1 Þ · ð ~xsymkþ1 − ~xsymk Þ: [S19]

The free energy of each image can then be assigned after cumu-
lating the ΔG values. We note that the free energy defined in the
string method is actually a projection onto the configuration
space formed by the chosen coarse coordinates. Although all
other degrees of freedom have been integrated out in this free
energy, the configuration space itself may still have large dimen-
sionality, and a “state” could correspond to a volume rather than
a single point in the configuration space. The free energy above is
essentially measured between individual points (the images) in
the configuration space and thus may not fully capture the differ-
ences between the corresponding states. However, because both
open and closed states are relatively compact and similar in their
overall structure, we assume here that the corrections for the
local curvature of the free energy surface in the 3N-dimensional
space are independent of the position along the pathway.

Computational Details. System preparation. Protein coordinates
were taken from the crystal structure (PDB ID code 3EHZ)
of GLIC in the open state (5). We note that in this article we
use the same residue numbers as in the PDB file 3EHZ (5), which
are shifted by one residue in the PDB file 3EAM (6) of a second
GLIC structure. Only the transmembrane domain (TMD) of
the protein (from residue 192 to the C terminal) is included in
the model, with the extracellular domain (ECD) removed. The
protein was embedded in a Palmitoyl-oleoyl-phosphatidyl-
choline lipid bilayer and solvated by water molecules. Although
it was proposed that nAChR contains internal sites with buried
cholesterols, such a feature is not expected in prokaryotic penta-
meric ligand-gated ion channels (pLGICs) (9).

The opening probability of GLIC is regulated by the extracel-
lular pH, and therefore most of the residues responsible for the
pH gating are presumably located in the ECD (5, 6, 10) and thus
not present in our model. Indeed, in the extracellular half of the
TMD, where extracellular pH changes could possibly be sensed,
there are only two residues that could become protonated at
reduced pH: His234, which is fully buried between four helices of
the TMD, and is thus assumed to remain neutral; and Glu242,
which is partly exposed to the pore lumen, but close to Lys247
of the TMD and Lys32 of the ECD, and is thus expected to re-
main charged even at a slightly acidic pH on the extracellular side.
The remaining ionizable residues are facing the intracellular side,
which should remain close to neutral pH even in activating
conditions. In our simulations, we have all Glu residues charged.
One possible concern is the protonation state of Glu271 near the
intracellular surface, as its side chain is found to rotate about the
Cβ-Cγ bond toward the surface (but without disruption of the
backbone structure). All His residues are neutral, with the proton
assigned to the ϵ and δ nitrogens in His234 and His276, respec-
tively.

Ionic strength of the solution can, in principle, be mimicked in
the simulations by adding ions in the bulk water. In this study,
however, we chose to incorporate the minimum amount of 5
chloride ions necessary to neutralize the net charge of the pro-
tein. If cations were present, they might enter the pore in some
of the images but not others, without proper equilibration on the
simulation time scale. In our simulation setup without cations,
this problem is avoided and the sampling in a limited simulation
time may be more consistent. Nevertheless, although the impact
of ion concentration on the GLIC conformation is not known

experimentally, we caution that possible effects of ions in the
simulations remain to be tested.

The simulation system (Fig. S4) thus contains the TMD of
GLIC, 280 lipid molecules, 13,493 water molecules, and 5 chlor-
ide ions, with a total of 88,324 atoms. The unit cell (Fig. S4) of the
periodic system has dimensions of ∼100 Å × 100 Å × 80 Å.

Representative atoms. We chose the Cα atoms from residues
193–276 to represent the protein conformation, corresponding
to n ¼ 84 atoms in each subunit, or N ¼ 420 atoms in the pen-
tamer. These residues include the first three helices (M1–M3) in
the TMD and the two connecting loops, and represent the “com-
mon core” (6) of the TMD. The same set of atoms was used to
construct a coarse-grained pathway in our previous study (3). It
was recently discovered that the last helix in the TMD, M4, is
critical for the glycine receptor, a eukaryotic pLGIC, to form pen-
tamers (11). In contrast, in the crystal structures of ELIC and
GLIC, M4 is peripheral and only loosely coupled to the other
helices (4–6). In this study, although M4 is not selected into
the representative Cα atoms to avoid overrestraining, it is fully
incorporated in our model and is free to adapt to the compact
conformation of M1–M3 during the simulations. Each image
on the string is then described by the 3N Cartesian coordinates,
and the harmonic restraints in this study are applied only on these
N atoms.

Initial string. The procedure to generate the initial string is sum-
marized in Fig. S5. The first coarse-grained pathway was taken
from our previous study (3), obtained by constructing a mixed
elastic network model (MENM) with identical spring constants
between every pair of the Cα atoms within a cutoff distance of
9 Å. We refer the reader to ref. 3 for details of such calculations.
Although in the development of the MENM it was assumed that
the endpoint structures correspond to local energy minima, which
is actually not the case for the isolated TMD in this study, we note
that the MENM pathway is independent of the model parameters
(3), even for strong driving forces under which the barrier has
disappeared. Furthermore, such coarse-grained pathways do
not need to be highly accurate as they merely provide an initial
guess of the string and will be extensively refined.

The system was first minimized and equilibrated for 1 ns with
the protein fixed. Another nanosecond of equilibration was
followed in which the protein was allowed to move with harmonic
restraints applied on the selected Cα atoms. Then a “pulling”
simulation was initiated in which the system was driven to the
closed state following the coarse-grained pathway (3). Specifi-
cally, 100 frames were retrieved from the coarse-grained pathway,
and the selected Cα atoms were restrained sequentially at each of
the frames for 0.2 ns. This 20-ns simulation then provided a tra-
jectory from the open to the closed conformation. The trajectory
was evenly divided into M ¼ 10 segments, generating 11 images
(including the starting and end frames). The first and last images
represent the open and closed states, respectively. Each image
was further equilibrated for 2 ns with corresponding harmonic
restraints from the coarse-grained pathway.

In our initial coarse-grained pathway (3), the closed-state con-
formation was taken from the ELIC crystal structure (4). More
equilibration was therefore needed to relax GLIC in this state.
We thus removed the harmonic restraints on the last image
and performed a 10-ns unrestrained simulation to fully relax
the protein. Then the selected Cα coordinates were averaged over
the last 5 ns of this simulation after proper alignment. Taking
these average coordinates (after symmetrization) as an improved
model for the closed conformation, along with the open confor-
mation from the crystal structure (5), we constructed another
pathway between the two conformations using the mixed elastic
network models (3) as described earlier. The corresponding
frames from this new pathway then served as new restraints
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for the images. This initial string was subsequently refined ac-
cording to an iterative procedure, as described below.

String refinement. In the first stage, the string was refined with
restraints in the 3N-dimensional space, using the update scheme
described earlier. In each iteration, we obtained the mean coor-
dinates ~xmean

k (k ¼ 0;…;10) from individual simulations and cal-
culated the symmetrized coordinates ~xsymk (Eq. S17). Each ~xsymk
was then aligned to the symmetrized crystal structure ~rcry to re-
move any overall rotation that might occur during the simula-
tions. A 3N-dimensional curve was then fitted over the aligned
f ~xsymk g, representing the new string. The curve was evenly divided
into 10 segments, yielding 11 coordinates f ~rkg to be used as the
references of the restraints in the next iteration of simulations. As
discussed in the main text, the open conformation of the TMD
alone did not appear to be metastable and would drift away from
the crystal structure ~rcry over the iterations. We therefore made a
projection of ~rcry to the line connecting ~r0 and ~r1 and used the
projected point ~r0cry to replace ~r0 as the reference for the first im-
age, thus eliminating the drift of the image along the string while
allowing it to evolve in the directions perpendicular to the string.
We performed 26 iterations of 1-ns simulations, followed by 13
iterations of longer simulations of 2 ns each (Table S1). A spring
constant of K ¼ 1 kcal∕mol∕Å2 was used for the harmonic re-
straints (Eq. S14) in these simulations.

In the second stage, we applied the harmonic restraints only in
the 3n symmetric dimensions, with no restraint in the antisym-
metric subspace. This was done in practice by using Eq. S15 in-
stead of Eq. S14 as the restraining energy and Eq. S16 as the
restraining force during the simulations. Unlike in the first stage,
the symmetric restraints here cannot prevent the overall transla-
tion or tilting of the entire protein. We thus applied additional
restraints in the x and y directions on the center of the N selected
Cα atoms to eliminate the overall translation. We also applied five
restraints in the z direction on the centers of the n atoms in each
individual subunit to eliminate tilting. The same method as in the
first stage was used to update the string after the simulations in
each iteration. We performed 15 iterations of 1-ns simulations
followed by 16 iterations of 2-ns runs (Table S1). Then a last
round of simulations, each 40 ns, was performed to obtain the
final string and to calculate the free energy.

During the iterative string refinement, we monitored the free
energy profile for channel closure. Fig. S3 compares the free
energies obtained from short (1–2 ns) runs at the end of each
refinement stage to the final profile from long (40 ns) simula-
tions. Within the statistical uncertainties expected for the short
runs, the free energy profile appears to be converged. The spatial
evolution of the string is quantified in Fig. S6. Over a small num-
ber of iterations the string evolves in a diffusion-like manner in
the high-dimensional conformation space, whereas over many
iterations the distance to an initial string appears stabilized,
and the string appears to be converged overall.

Unrestrained simulations. To validate the minimum free energy
pathway obtained from the string method, we also performed
three free simulations without restraints (Table S2). Starting from
the first image (open state) in the initial string, two simulations,
each 100 ns, were initiated with different random seeds. We also
extended the 10-ns equilibration of the closed state, as mentioned
earlier, to 100 ns.

Simulation protocol. All simulations were performed using the
CHARMM (c35b1) force field (12–14), the TIP3P water model
(15), and the NAMD2 program (16), under the periodic bound-
ary conditions with constant temperature (300 K) and pressure
(1 atm). Full electrostatics was calculated using the particle mesh

Ewald method (17). For simulations involved in the string meth-
od, the mean coordinates ~xmean

k were calculated by averaging over
the corresponding coordinates in every time step after discarding
the first 0.5 ns of the simulation. All molecular images in this
article were rendered in VMD (18).

Umbrella Sampling of Naþ Ion Conduction. Umbrella sampling has
been previously applied to characterize ion conduction in narrow
channels (19, 20), and a similar protocol was adopted here. The
GLIC simulation system above was slightly modified by adding a
Naþ ion and a Cl− ion. The Naþ was originally placed in the in-
tracellular side of the bulk water and was pulled in the þz direc-
tion across the pore to the extracellular side in a ∼7.5-ns
simulation, thus generating the initial coordinates for the subse-
quent umbrella-sampling simulations. We employed a total of 153
umbrella windows with a uniform spacing of 0.5 Å, thus covering
a total distance of 76 Å in the z direction. In each window a si-
mulation of 1 ns was performed, with data from the last 0.9 ns
used for analysis. Similarly, we also pulled a Naþ ion in the −z
direction, from the extra- to the intracellular side across the pore,
followed by umbrella sampling as described above. We thus have
two simulations with different initial coordinates for each umbrel-
la window. When applying the weighted histogram analysis meth-
od (WHAM) (21), we combined the data in the two simulations
to obtain a unified histogram for each window. In the two simula-
tion setups corresponding to open and closed states, the overall
protein conformation was maintained by applying the same re-
straints as in the string method calculations described earlier.
For the ion, the harmonic restraint with a spring constant of
10 kcal∕mol∕Å2 was applied in the z direction. In the xy dimen-
sions, in contrast, the ion is not subject to the restraint if it lies
within 6 Å of the symmetry axis, and the restraint only acts to pull
the ion toward the symmetry axis when the deviation is larger
than 6 Å.

The one-dimensional free energy was calculated usingWHAM
(21). The local diffusion coefficient of the ion in each umbrella
window was obtained by integrating the autocorrelation function
of the z coordinate, as described in ref. 22. The diffusion coeffi-
cients from different windows were then subject to smoothing and
interpolation, resulting in a smooth and continuous curve. The
free energy and the position-dependent diffusion coefficients
for the open state are plotted in Fig. S1.

Based on the Nernst–Planck theory, the maximum ion conduc-
tance can be calculated from the umbrella-sampling results for
narrow pores (19, 20). In contrast, here we aim to estimate
ion conductance under a low ion concentration, such that ion–
ion interaction can be ignored and the conductance is linearly
dependent on the concentration. Moreover, we only focus on
the scenario in which a small voltage V is applied on the pore
with identical 1D bulk density p0 on the two sides. Within the
linear-response range, the voltage-driven flux is equal to the
diffusional flux under a concentration difference of

Δp ¼ p0
qV
kBT

; [S20]

where q is the charge of the ion. According to the Smoluchowski
equation, the stationary-state flux is given by

j ¼ Δp expðU0∕kBTÞR
z2
z1
dz exp½UðzÞ∕kBT�∕DðzÞ ; [S21]

where UðzÞ is the free energy, U0 ≡ Uðz1Þ ¼ Uðz2Þ is the free en-
ergy in the bulk region, and DðzÞ is the diffusion coefficient. With
the electric current given by I ¼ qj, we obtain the conductance:
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γ ¼ I∕V ¼ q2p0 expðU0∕kBTÞ
kBT

R
z2
z1
dz exp½UðzÞ∕kBT�∕DðzÞ

: [S22]

In the bulk region, the lateral restraint uðx;yÞ described earlier
confines the ion in a cylindrical space with effective cross-section
area of S ¼ RR

exp½−uðx;yÞ∕kBT�dxdy, which determines the offset
constant between the 3D and 1D potentials of mean force (20).
For a given volume density ρ of ions in the bulk, the equivalent 1D
density is then given by p0 ¼ ρS. We have S ≈ 125 Å2 for the lat-
eral restraint used in our simulations. At a Naþ concentration of
140 mM, or ρ ¼ 8.43 × 10−5∕Å3, the corresponding 1D bulk den-
sity p0 is then ∼0.01∕Å. Using this value along with the obtained
UðzÞ and DðzÞ, the conductance of the open GLIC pore is esti-
mated to be ∼0.8–1.8 pS. We note that the histograms in some of
our umbrella windows did not appear to be fully converged, and
therefore our calculated free energy and ion conductance may

bear some uncertainty and remain to be further improved. More-
over, this simplified model only accounts for a single-ion mechan-
ism and ignores ion–ion interactions and thus cannot describe the
possibly nonlinear dependence of the conductance on the ion
concentration when the latter is not sufficiently low.

For the GLIC pore in the closed conformation, similar simula-
tions were performed as described above, except that the pulling
simulation along the −z direction and the subsequent umbrella
sampling were not carried out. Therefore only one simulation
of 1 ns was done in each umbrella window. Although suffering
a poorer convergence compared to the open-state calculations
due to insufficient sampling, the obtained free energy has a bar-
rier of clearly more than 10 kcal∕mol in the pore region. This
translates into a conductance at least 2,000 times lower than
the open-state conformation.
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Fig. S1. Free energy of the Naþ ion as a function of the z coordinate. The protein is in the open conformation. The side-chain positions of some pore-lining
residues are indicated (as shown in Fig. 2). (Inset) The position-dependent diffusion coefficients (dots: the diffusion coefficients calculated in each umbrella
window; black line: the smoothed curve).
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Fig. S2. rmsds of the two unrestrained simulations starting from the open conformation with respect to the GLIC (5) and ELIC (4) crystal structures, respec-
tively. In each frame, the coordinates of the 420 selected Cα atoms were symmetrized and then used to calculate the rmsd. The figure shows that the protein
conformation moves away from the GLIC crystal structure and evolves toward ELIC during both simulations. At the end of the simulations the protein adopts
conformations with rmsds slightly closer to ELIC than GLIC crystal structures, fully consistent with the evolution of the reduced path length toward L ≈ 0.6 in
Fig. 5C, and the free energy plateau about halfway through the transition in Fig. 5A.

Fig. S3. Free energy calculated from some short (1-ns or 2-ns) restrained simulations during the iterative string refinement. The lines (1a, 1b, 2a, and 2b)
represent the last simulations in the corresponding stages as summarized in Table S1. The free energy obtained from the final 40-ns simulation is also plotted
(black).

Fig. S4. The unit cell of the simulation system, with the extracellular side up. The five subunits of GLIC are rendered in different colors.
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Fig. S5. Flow chart of the procedure used to generate the initial string.

Fig. S6. Deviation of the string from the initial coarse-grained pathway (see SI Methods) over the iterations. The average rmsd between two pathways,
represented by the fitted curves ~xcurðtÞ and ~xcur0ðtÞ (Eq. S2), respectively, is defined as rmsd ¼ ½∫ 1

0j ~xcurðtÞ − ~xcur0ðtÞj2dt∕N�1∕2.

Table S1. Simulation time for each image during the iterative string
refinement and the final sampling

String refinement Sampling

Stage 1a Stage 1b Stage 2a Stage 2b

Simulation time 26 × 1 ns 13 × 2 ns 15 × 1 ns 16 × 2 ns 40 ns
Total/image 52 ns 47 ns 40 ns
Total time 572 ns 517 ns 440 ns

During stage 1 (a and b), harmonic restraints were applied on all the 3N coordinates,
whereas during stage 2 (a and b) and the final sampling, only the symmetric degrees of
freedom were restrained, as explained inMethods. The entire simulation time for each
image is 139 ns, amounting to a total of 1.529 μs for the 11 images.
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Table S2. Summary of the three unrestrained simulations

1 2 3

Initial coordinates Open conf. Open conf. Closed conf.
Simulation time 100 ns 100 ns 100 ns
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