Tertiary Aminourea-Catalyzed Enantioselective Iodolactonization

Gemma E. Veitch and Eric N. Jacobsen* Department of Chemistry and Chemical Biology, Harvard University; Cambridge, MA 02138

Contents

A. General information	S1
B. Experimental procedures and characterization data	S2
C. ¹ H and ¹³ C NMR spectra	S11
D. Chiral HPLC and GC traces of enantioenriched iodolactone products	
E. Optimization of catalyst and iodinating agent	S73
F. Determination of the absolute configuration of iodolactone products	
G. Experimental support for the intermediacy of 7	

A. General Information

All reactions were carried out under a nitrogen atmosphere. Optimization reactions were performed in flame-dried 2-dram vials; other reactions were performed in flame-dried 20 mL scintillation vials. Stainless steel syringes were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed using silica gel 60 (230-400mesh) from EM Science. Commercial reagents were purchased from Sigma Aldrich, Alfa Aesar, Lancaster, Otava or TCI, and used as received with the following exceptions: dichloromethane, tetrahydrofuran, and methanol were dried by passing through columns of activated alumina, *N*-iodosuccinimide was recrystallized from a mixture of dioxane and carbon tetrachloride

Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on Inova-500 (500 MHz) and Inova-600 (600 MHz) spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl3 = δ 7.27). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl3 = δ 77.0). Data are represented as follows: chemical shift, multiplicity (br. s = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), integration. Infrared (IR) spectra were obtained using a Bruker Optics Tensor 27 FTIR spectrometer. Optical rotations were measured using a 1 mL cell with a 0.5 dm path length on a Jasco DIP 370 digital polarimeter. The mass spectral data were obtained on an Agilent Technologies 6120 quadrupole LC/MS spectrometer. Gas chromatography (GC) analysis was performed on an Agilent Technologies 7890A gas chromatograph using a HP-5 (30 m x 0.32 mm x 0.25 µm) column, chiral HPLC analysis was performed using a Shimadzu VP-series instrument.

B. Experimental Procedures and Characterisation

Preparation of Catalyst 1

N-((1R, 2R)-2-aminocyclohexyl)acetamide

N-((1R, 2R)-2-aminocyclohexyl)acetamide was prepared according to the procedure of Mitchell.^[1]

(1R, 2R)- N^{l} , N^{l} -dipentylcyclohexane-1,2-diamine

Prepared from N-((1R, 2R)-2-aminocyclohexyl)acetamide via reductive amination with valeraldehyde and subsequent acetamide hydrolysis according to the procedure of Fuerst.^[2]

1-(3,5-bis(trifluoromethyl)phenyl)-3-((1R, 2R)-20(dipentylamino)cyclohexyl)urea 1

To a solution of (1R, 2R)- N^l , N^l -dipentylcyclohexane-1,2-diamine (2.00 g, 7.87 mmol) in CH₂Cl₂ (20 mL) was added bistrifluoromethylphenyl isocyanate (1.27 mL, 7.50 mmol) over 5 min. After 4 h the reaction mixture was concentrated in vacuo and purified via column chromatography on silica gel (0-20% MeOH in CH₂Cl₂) to afford **1** as a white solid (2.65 g, 69%); $[\alpha]_p^{23} = -46.6$ (c = 1.0, CHCl₃); IR (Film) 2980, 2932, 1681, 1665, 1574, 1491, 1474, 1387, 1277, 1130, 879, 681 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.89 (s, 2 H), 7.50 (s, 1 H), 6.79 (s, 1 H), 5.75 (s, 1 H), 3.33 (t, J = 9.0 Hz, 1 H), 2.60 (d, J = 12 Hz, 1 H), 2.53-2.47 (m, 2 H), 2.34-2.27 (m, 3 H), 1.90-1.83 (m, 2 H), 1.71 (d, J = 13 Hz, 1 H), 1.47-1.43 (m, 2 H), 1.37-1.20 (m, 13 H), 1.11 (q, J = 13.5 Hz, 1 H), 0.87 (t, J = 6.5 Hz, 6 H); ¹³C NMR (CDCl₃, 52.3, 50.0, 33.5, 30.0, 29.0, 25.9, 24.7, 23.5, 22.8, 14.3; MS (ESI-APCI) exact mass calculated for [M+H] (C₂₅H₃₇F₆N₃O) requires m/z 510.3, found m/z 510.3.

Phenyliodine(III) Bis(4-fluorophthalimidate)^[3]

To potassium 4-fluorophthalimide^[4] (3.88 g, 19.11 mmol) in MeCN (105 mL) was added bis-(trifluoroacetoxy)-iodobenzene (4.10 g, 9.56 mmol). The reaction mixture was stirred at ambient temperature for 24 h and then filtered, washing with MeCN and dried *in vacuo* to afford an off-white solid (4.47 g, 88%). This product was used immediately in the subsequent step.

4-Fluoro-N-iodophthalimide 5

To phenyliodine(III) bis(4-fluorophthalimidate) (4.47 g, 8.42 mmol) in CCl₄ (170 mL) was added iodine (2.14 g, 8.42 mmol). The reaction mixture was stirred for 24 h and then filtered, washing with CCl₄, to afford the desired product as an off-white solid (3.20 g, 65%). The reagent was stored under an inert atmosphere at 0 °C for > 6 months without observable decomposition: IR (Film) 3070, 1690, 1610, 1477, 1355, 1295, 1075, 915, 836, 730 cm⁻¹; ¹H NMR (*d*6 benzene, 500 MHz): 6.98 (dd, J = 8.5 Hz, 4.0 Hz, 1 H), 6.82 (dd, J = 7.0, 2.0 Hz, 1 H), 6.28 (td, J = 9.0, 2.0 Hz, 1 H); ¹³C NMR (*d*6 benzene, 125 MHz): 167.0, 166.9 (d, J = 123.9 Hz), 164.4, 135.3 (d, J = 9.1 Hz), 128.7 (d obs.), 125.4 (d, J = 9.1 Hz), 119.7 (d, J = 23.6 Hz), 110.9 (d, J = 26.9 Hz).

5-Phenylhex-5-enoic acid 2a

Prepared *via* Wittig reaction from the commercially available keto-acid according to the procedure of Hartwig.^[5] IR (film) 2956, 1707, 1419, 1406, 1282, 1197, 887 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.43 (d, J = 7.5 Hz, 2 H), 7.36 (t, J = 7.5 Hz, 2 H), 7.30 (t, J = 7.5 Hz, 1 H), 5.34 (s, 1 H), 5.11 (s, 1 H), 2.60 (t, J = 7 Hz, 2 H), 2.41 (t, J = 7.5 Hz, 2 H), 1.85-1.81 (m, 2 H); ¹³C NMR (CDCl₃, 125 MHz): 180.1, 147.6, 141.0, 128.6, 127.8, 126.4, 113.3, 34.7, 33.5, 23.3. MS (ESI-APCI) exact mass calculated for [M+H] (C₁₂H₁₄O₂) requires *m/z* 191.1, found *m/z* 191.1.

5-p-tolylhex-5-enoic acid 2b

Prepared *via* Wittig reaction from the commercial keto-acid according to the procedure of Hartwig.^[5] IR (Film) 1699, 1626, 1511, 1415, 1248, 953 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.33 (d, J = 8 Hz, 2 H), 7.16 (d, J = 8 Hz, 2 H), 5.31 (s, 1H), 5.06 (s, 1 H), 2.59 (t, J = 7.5 Hz, 2 H), 2.40 (t, J = 7.5 Hz, 2 H), 2.37 (s, 3 H), 1.82 (quin., J = 7.5 Hz); ¹³C NMR (CDCl₃, 125 MHz): 180.2, 147.3, 138.0, 137.5, 129.3, 126.2, 112.6, 34.7, 33.5, 23.3, 21.3; MS (ESI-APCI) exact mass calculated for [M-H] (C₁₃H₁₅O₂) requires *m/z* 203.1, found *m/z* 203.1.

5-(naphthalen-2-yl)hex-5-enoic acid 2c

Prepared *via* Wittig reaction from the known keto-acid^[6] according to the procedure of Hartwig.^[5] IR (Film) 2973, 1693, 1412, 1300, 1198, 1152, 931, 754 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.86-7.82 (m, 3 H), 7.60 (d, J = 5.5 Hz, 1 H), 7.51-7.46 (m, 2 H), 5.50 (s, 1 H), 5.22 (s, 1 H), 2.73 (t, J = 8.0 Hz, 2 H), 2.45 (t, J = 7.5 Hz, 2 H), 1.89 (quin., J = 7.5 Hz, 2 H); ¹³C NMR (CDCl₃, 125 MHz): 180.1, 147.4, 138.2, 133.6, 133.1, 128.4, 128.2, 127.8, 126.4, 126.1, 125.0, 124.8, 113.9, 34.7, 33.5, 23.4; MS (ESI-APCI) exact mass calculated for [M-H] (C₁₆H₁₅O₂) requires *m/z* 239.1, found *m/z* 239.1.

5-(4-methoxyphenyl)hex-5-enoic acid 2d

Prepared *via* Wittig reaction from the known keto-acid^[7] according to the procedure of Hartwig.^[5] IR (Film) 1704, 1602, 1516, 1439, 1307, 1261, 1031, 889 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.37 (d, J = 8.5 Hz, 2 H), 6.89 (d, J = 8.5 Hz, 2 H), 5.26 (s, 1 H), 5.02 (s, 1 H), 3.84 (s, 3 H), 2.57 (t, J = 7.5 Hz, 2 H), 2.40 (t, J = 7.5 Hz, 2 H), 1.82 (quin., J = 7.5 Hz, 2 H); ¹³C NMR (CDCl₃, 125 MHz): 180.0, 159.4, 146.8, 133.3, 127.4, 114.0, 111.8, 55.5, 34.7, 33.5, 23.3; MS (ESI-APCI) exact mass calculated for [M-H] (C₁₃H₁₅O₃) requires *m/z* 219.1, found *m/z* 219.1.

6-methyl-5-oxoheptanoic acid

To a solution of glutaric anhydride (5 g, 43.9 mmol) in THF (20 mL) at 0 C was added isopropylmagnesium bromide (2.0 M in THF, 43.9 mmol, 21.9 mL) dropwise. The reaction mixture was then heated to relux for 4 h and allowed to cool in ice before quenching with saturated aqueous NH₄Cl solution (10 mL). Following removal of THF *in vacuo* the reaction mixture was partitioned between CH₂Cl₂ (50 mL) and 1 M HCl (50 mL). The organic layer was then separated, dried (MgSO₄) and concentrated to afford a yellow oil. Purification by column chromatography on silica gel (10-50% ethyl acetate in hexanes) afforded 6-methyl-5-oxoheptanoic acid (2.90 g, 42%) as a colourless oil; IR (film) 2971, 1703, 1457, 1408, 1385, 1239; ¹H NMR (CDCl₃, 500 MHz): 2.57 (sept., *J* = 7 Hz, 1 H), 2.53 (t, *J* = 7.5 Hz, 2 H), 2.36 (t, *J* = 7 Hz, 2 H), 1.88 (quin., *J* = 7.5 Hz, 2 H), 1.07 (d, *J* = 7 Hz, 6 H); ¹³C NMR (CDCl₃, 125 MHz): 214.5, 179.5, 41.1, 39.1, 33.3, 18.8, 18.4.

6-methyl-5-methyleneheptanoic acid 2e^[8]

Prepared *via* Wittig reaction from the 6-methyl-5-oxoheptanoic acid according to the procedure of Hartwig.^[5] Data consistent with literature values.^[8]

3,3-dimethyl-5-phenylhex-5-enoic acid 2f

Prepared *via* Wittig reaction from the known keto-acid^[9] according to the procedure of Hartwig.^[5] IR (Film) 2967, 1700, 1405, 1264, 1237, 896, 779 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.42 (d, J = 7.5 Hz, 2 H), 7.35 (t, J = 7.5 Hz, 2 H), 5.35 (s, 1 H), 5.15 (s, 1 H), 2.71 (s, 3 H), 2.24 (s, 3 H); ¹³C NMR (CDCl₃, 125 MHz): 179.4, 146.8, 143.6, 128.5, 127.5, 126.8, 117.9, 47.1, 46.1, 34.4, 28.1; MS (ESI-APCI) exact mass calculated for [M-H] (C₁₄H₁₇O₂) requires *m/z* 217.1, found *m/z* 217.1.

5-(4-bromophenyl)hex-5-enoic acid 2g

Prepared *via* Wittig reaction from the commercial keto-acid according to the procedure of Hartwig.^[5] IR (film) 3080, 2957, 2917, 1703, 1488, 1438, 1250, 1168, 902, 836 cm ⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.47 (d, J = 7 Hz, 2 H), 7.29 (d, J = 7 Hz, 2 H), 5.33 (s, 1 H), 5.12 (s, 1 H), 2.56 (t, J = 7.5 Hz, 2 H), 2.40 (t, J = 7.5 Hz, 2 H), 1.80 (t, J = 7.5 Hz, 2 H); ¹³C NMR (CDCl₃, 125 MHz): 179.9, 146.5, 139.9, 131.7, 128.0, 121.7, 113.9, 34.5, 33.4, 23.2. MS (ESI-APCI) exact mass calculated for [M-H] (C₁₂H₁₂BrO₂) requires *m/z* 267.0, found *m/z* 267.0.

5-(4-fluorophenyl)hex-5-enoic acid 2h

Prepared *via* Wittig reaction from the commercial keto-acid according to the procedure of Hartwig.^[5] IR (Film) 1704, 1601, 1509, 1405, 1298, 1204 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.38 (dd, J = 9, 5.5 Hz, 2 H), 7.03 (t, J = 8.5 Hz, 2 H), 5.28 (s, 1 H), 5.09 (s, 1 H), 2.56 (t, J = 8.0 Hz, 2 H), 2.40 (t, J = 7.5 Hz, 2 H), 1.80 (quin., J = 7 Hz, 2 H); ¹³C NMR (CDCl₃, 125 MHz): 180.0, 163.6, 161.6, 146.6, 137.0, 128.0, 127.9, 115.5, 115.3, 113.3, 34.8, 33.5, 23.2; MS (ESI-APCI) exact mass calculated for [M-H] (C₁₂H₁₂FO₂) requires *m/z* 207.1, found *m/z* 207.1.

5-(4-chlorophenyl)hex-5-enoic acid 2i

Prepared *via* Wittig reaction from the commercial keto-acid according to the procedure of Hartwig.^[5] IR (Film) 1702, 1297, 1206, 922, 891, 832 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.36-7.30 (m, 5 H), 5.32 (s, 1 H), 5.11 (s, 1 H), 2.56 (t J = 8 Hz, 2 H), 2.40 (t J = 7.5 Hz, 2 H), 1.80 (quin. J = 7.5 Hz, 2 H); ¹³C NMR (CDCl₃, 125 MHz): 180.0, 146.5, 139.4, 133.6, 128.8, 127.7, 113.9, 34.6, 33.5, 23.2; MS (ESI-APCI) exact mass calculated for [M-H] (C₁₂H₁₂ClO₂) requires *m/z* 223.0, found *m/z* 222.9.

4-Phenylpent-4-enoic acid 9a

Prepared according to the procedure of Hartwig; data consistent with literature values.^[5]

6-(iodomethyl)-6-phenyltetrahydro-2H-one 3a

The reaction was run on 0.20 mmol scale. The crude material was purified by silica gel chromatography (5-40% ethyl acetate in hexanes) to give **3a** as a colorless oil (54.5 mg, 87%). The enantiomeric excess was determined to be 94% by chiral HPLC analysis (CHIRALPAK AD-H, 1 mL/min, 2% IPA in Hexanes, $\lambda = 254$ nm): $t_R(major) = 27.5$ min, $t_R(minor) = 30.7$ min; $[\alpha]_D^{24} = +29.1$ (c = 1.2, CHCl₃); IR (film) 2956, 2933, 2863, 1734, 1682, 1575, 1388, 1276, 1130, 879 cm; ¹H NMR (CDCl₃, 500 MHz): 7.41-7.36 (m, 5 H), 3.59 (m, 2 H), 2.56-2.37 (m, 4 H), 2.85-2.81 (m, 1H), 1.62-1.58 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): 170.7, 140.5, 129.3, 128.7, 125.5, 84.7, 32.3, 29.2, 17.9, 16.8; MS (ESI-APCI) exact mass calculated for [M+Na] (C₁₂H₁₃INaO₂) requires m/z 339.0, found m/z 339.0.

6-(iodomethyl)-6-p-tolyltetrahydro-2H-pyran-2-one 3b

The reaction was run on 0.20 mmol scale. The crude material was purified by silica gel chromatography (5-40% ethyl acetate in hexanes) to give **3b** as a colorless oil (63.5 mg, 96%). The enantiomeric excess was determined to be 88% by chiral HPLC analysis (CHIRALPAK AD-H, 1 mL/min, 2% IPA in Hexanes, $\lambda = 254$ nm): $t_R(major) = 26.7$ min, $t_R(minor) = 34.7$ min; $[\alpha]_{D}^{24} = + 34.1$ (c = 1.1, CHCl₃); IR (film) 1724, 1510, 1443, 1259, 1231, 1038, 937, 812, 634 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.26 (d, J = 8 Hz, 2 H), 7.21 (d, J = 8.5 Hz, 2 H), 3.57 (d, J = 12.5 Hz, 1 H), 3.55 (d, J = 12.5 Hz, 1 H), 2.50-2.32 (m, 7 H), 1.85-1.83 (m, 1 H), 1.62-1.58 (m, 1 H); ¹³C NMR (CDCl₃, 125 MHz): 170.8, 138.5, 137.4, 129.9, 125.4, 84.7, 32.2, 29.2, 21.3, 18.2, 16.8; MS (ESI-APCI) exact mass calculated for [M+Na] (C₁₃H₁₅INaO₂) requires m/z 353.0, found m/z 353.0.

6-(iodomethyl)-6-(naphthalen-2-yl)tetrahydro-2H-pyran-2-one 3c

The reaction was run on 0.20 mmol scale. The crude material was purified by silica gel chromatography (5-40% ethyl acetate in hexanes) to give **3c** as a colorless oil (67.5 mg, 92%). The enantiomeric excess was determined to be 94% by chiral HPLC analysis (CHIRALPAK OD-H, 1 mL/min, 10% IPA in Hexanes, $\lambda = 254$ nm): t_R (major) = 25.6 min, t_R (minor) = 31.8 min; $[\alpha]_{D}^{24} = +25.8$ (c = 2.0, CHCl₃); IR (film) 3018, 1736, 1263, 1215, 1180, 1037, 817, 745 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.91-7.86 (m, 4 H), 7.56-7.54 (m, 2 H), 7.42 (d, J = 8 Hz, 1 H), 3.70 (d, J = 11 Hz, 1 H), 3.67 (d, J = 11 Hz, 1 H), 2.56-2.42 (m, 4 H), 1.88-1.85 (m, 1

H), 1.64-1.61 (m, 1 H); ¹³C NMR (CDCl₃, 125 MHz): 170.7, 137.7, 133.3, 133.1, 129.3, 128.6, 127.8, 127.1, 125.3, 122.6, 84.8, 32.3, 29.3, 17.6, 16.9; MS (ESI-APCI) exact mass calculated for [M+Na] ($C_{16}H_{16}IO_2$) requires *m/z* 367.0, found *m/z* 367.0.

6-(iodomethyl)-6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-one 3d

The reaction was run on 0.20 mmol scale. The crude material was purified by silica gel chromatography (5-40% ethyl acetate in hexanes) to give **3d** as a colorless oil (62.7 mg, 91%). The enantiomeric excess was determined to be 48% by chiral HPLC analysis (CHIRALPAK AD-H, 1 mL/min, 2% IPA in Hexanes, $\lambda = 254$ nm): $t_R(major) = 41.8$ min, $t_R(minor) = 52.4$ min; $[\alpha]_{D}^{24} = +11.8$ (c = 1.0, CHCl₃); IR (film) 3031, 1722, 1508, 1443, 1231, 1038, 812 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.29 (d, J = 9 Hz, 2 H), 6.93 (d, J = 9 Hz, 2 H), 3.84 (s, 3 H), 3.58 (d, J = 11 Hz, 1 H), 3.54 (d, J = 11 Hz, 1 H), 2.49-2.35 (m, 4 H), 1.84-1.81 (m, 1 H), 1.64-1.61 (m, 1 H); ¹³C NMR (CDCl₃, 125 MHz): 170.8, 159.7, 132.2, 126.8, 114.5, 84.5, 55.6, 32.0, 29.2, 18.3, 16.8; MS (ESI-APCI) exact mass calculated for [M+H] (C₁₃H₁₆IO₃) requires m/z 347.0, found m/z 347.1.

6-(iodomethyl)-6-isopropyltetrahydro-2H-pyran-2-one 3e

The reaction was run on 0.20 mmol scale. The crude material was purified by silica gel chromatography (5-40% ethyl acetate in hexanes) to give **3e** as a colorless oil (48 mg, 85%). The enantiomeric excess was determined to be 94% by chiral GC analysis (γ -TA, 150 °C isothermal, $t_R(major) = 30.7 \text{ min}$, $t_R(minor) = 50.7 \text{ min}$; $[\alpha]_D^{24} = +8.6 \ (c = 2.0, \text{ CHCl}_3)$; IR (film) 2956, 2882, 1733, 1472, 1457, 1207, 1228, 1029 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 3.46 (s, 2 H), 2.55 (dt, J = 18.5, 6.5 Hz, 1 H), 2.44 (dt, J = 18, 7 Hz, 1 H), 2.23 (sept., J = 7 Hz, 1 H), 2.08-2.04 (m, 1 H), 1.96-1.89 (m, 3 H), 1.02 (d, J = 7 Hz, 6 H), ¹³C NMR (CDCl₃, 125 MHz): 170.8, 85.2, 35.6, 29.9, 27.2, 17.1, 16.8, 13.1; MS (ESI-APCI) exact mass calculated for [M+Na] (C₉H₁₅NaIO₂) requires *m/z* 305.0, found *m/z* 305.0.

6-(iodomethyl)-4,4-dimethyl-6-phenyltetrahydro-2H-pyran-2-one 3f

The reaction was run on 0.20 mmol scale. The crude material was purified by silica gel chromatography (5-40% ethyl acetate in hexanes) to give **3f** as a colorless oil (62 mg, 90%). The enantiomeric excess was determined to be 87% by chiral HPLC analysis (CHIRALPAK AD-H, 1 mL/min, 2% IPA in Hexanes, $\lambda = 254$ nm): $t_R(major) = 16.6$ min, $t_R(minor) = 19.5$ min; $[\alpha]_D^{24} = +26.7$ (c = 1.1, CHCl₃); IR (film) 2962, 1732, 1444, 1259, 1187, 1037, 812, 702 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.46 (d, J = 8 Hz, 2 H), 7.40 (t, J = 8 Hz, 2 H), 7.34 (t, J = 8 Hz, 1 H), 3.55 (d, J = 11 Hz, 1 H), 3.49 (d, J = 11 Hz, 1 H), 2.49 (d, J = 14.5 Hz, 1 H), 2.33 (d, J = 14.5 Hz, 1 H), 2.30 (d, J = 16 Hz, 1 H), 2.21 (d, J = 16 Hz, 1 H), 1.12 (s, 3 H), 0.77 (s, 3 H); ¹³C NMR (CDCl₃, 125 MHz): 171.1, 141.3, 129.1, 128.5, 125.3, 83.5, 44.6, 43.8, 32.0, 30.8, 28.8, 20.7; MS (ESI-APCI) exact mass calculated for [M+Na] (C₁₄H₁₇INaO₂) requires m/z 367.0, found m/z 367.0.

6-(4-bromophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one 3g

The reaction was run on 0.20 mmol scale. The crude material was purified by silica gel chromatography (5-40% ethyl acetate in hexanes) to give **3g** as a crystalline solid (56 mg, 71%). The enantiomeric excess was determined to be 96% by chiral HPLC analysis (CHIRALPAK AD-H, 1 mL/min, 2% IPA in Hexanes, $\lambda = 254$ nm): $t_R(major) = 35.6$ min, $t_R(minor) = 49.6$ min; $[\alpha]_p^{24} = +28.7$ (c = 1.4, CHCl₃); IR (film) 2957, 2929, 1740, 1489, 1238, 1180, 1132, 1039 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.55 (d, J = 8 Hz, 2 H), 7.27 (d, J = 8 Hz, 2 H), 3.55 (s, 2 H), 2.55-2.31 (m, 4 H), 1.84 (m, 1 H), 1.59 (m, 1 H); ¹³C NMR (CDCl₃, 125 MHz): 170.2, 139.7, 132.4, 127.3, 122.9, 84.3, 32.2, 29.2, 17.1, 16.8; MS (ESI-APCI) exact mass calculated for [M+H] (C₁₂H₁₃⁷⁹BrIO₂) requires *m/z* 394.9, found *m/z* 394.9.

6-(4-fluorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one 3h

The reaction was run on 0.20 mmol scale. The crude material was purified by silica gel chromatography (5-40% ethyl acetate in hexanes) to give **3h** as a colorless oil (61 mg, 91%). The enantiomeric excess was determined to be 96% by chiral HPLC analysis (CHIRALPAK AD-H, 1 mL/min, 2% IPA in Hexanes, $\lambda = 254$ nm): $t_R(major) = 32.8$ min, $t_R(minor) = 38.5$ min; $[\alpha]_D^{24} = +22.7$ (c = 1.3, CHCl₃); IR (film) 2962.2, 2872, 1733, 1603, 1509, 1443, 1411, 1231, 1186, 1038, 936, 841 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.29 (dd, J = 8, 5.5 Hz, 2 H), 7.02 (t, J = 8 Hz, 2 H), 3.47 (m, 2 H), 2.46-2.25 (m, 4 H), 1.79 (m, 1 H), 1.52 (m, 1 H); ¹³C NMR (CDCl₃, 125 MHz): 170.4, 163.7, 161.8, 136.3, 127.5, 127.4, 116.3, 116.1, 84.3, 32.2, 29.2, 17.7, 16.8; MS (ESI-APCI) exact mass calculated for [M+Na] (C₁₂H₁₂FINaO₂) requires *m/z* 357.0, found *m/z* 357.0.

6-(4-chlorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one 3i

The reaction was run on 0.20 mmol scale. The crude material was purified by silica gel chromatography (5-40% ethyl acetate in hexanes) to give **3i** as a colorless oil (56 mg, 80%). The enantiomeric excess was determined to be 96% by chiral HPLC analysis (CHIRALPAK AD-H, 1 mL/min, 2% IPA in Hexanes, $\lambda = 254$ nm): $t_R(major) = 32.9$ min, $t_R(minor) = 44.3$ min; $[\alpha]_{D}^{24} = +27.8$ (c = 1.0, CHCl₃); IR (film) 2957, 1738, 1492, 1278, 1179, 1094, 1039, 822, 752 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.31 (d, J = 8.5 Hz, 2 H), 7.22 (d, J = 8.5 Hz, 2 H), 3.47 (s, 2 H), 2.43-2.26 (m, 4 H), 1.78 (m, 1 H), 1.50 (m, 1 H), ¹³C NMR (CDCl₃, 125 MHz): 170.3, 139.1, 134.8, 129.4, 127.0, 84.3, 32.2, 29.2, 17.3, 16.8; MS (ESI-APCI) exact mass calculated for [M+Na] (C₁₂H₁₂³⁵CIINaO₂) requires *m/z* 372.9, found *m/z* 372.9.

5-(iodomethyl)-5-phenyldihydrofuran-2(3H)-one 10a

The reaction was run on 0.20 mmol scale. The crude material was purified by silica gel chromatography (5-40% ethyl acetate in hexanes) to give **10a** as a colorless oil (52.5 mg, 87%). The enantiomeric excess was determined to be 89% by chiral HPLC analysis (CHIRALPAK AD-H, 1 mL/min, 2% IPA in Hexanes, $\lambda = 254$ nm): $t_R(major) = 24.1$ min, $t_R(mior) = 27.8$ min; $[\alpha]_p^{24}$ +14.2 (c = 1.3, CHCl₃); IR (film) 3030, 2958, 1779, 1541, 1449, 1154, 1025, 929, 766 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): 7.43-7.27 (m, 5 H), 3.66 (d, J = 11 Hz, 1 H), 3.64 (d, J = 11 Hz, 1 H), 2.77-2.50 (m, 4 H); ¹³C NMR (CDCl₃, 125 MHz): 175.5, 140.9, 129.1, 128.8, 125.1, 86.3, 34.2, 29.4, 16.5; MS (ESI-APCI) exact mass calculated for [M+H] (C₁₁H₁₂IO₂) requires *m/z* 303.1, found *m/z* 303.1; Data consistent with literature values.^[10]

All of the iodolactone products were treated as light-sensitive and were stored at -30 °C under argon. These products should not be subjected to high-vacuum for >10 min.

5-phenylhex-5-enoic acid

Pulse Sequence: s2pul Solvent: CDC13 Temp. 24.0 C / 297.1 K INOVA-500 "inova500c"

Relax. delay 10.000 sec Pulse 54.0 degrees Acq. time 2.184 sec Width 7501.2 Hz 16 repetitions OBSERVE H1, 499.8716820 MHz DATA PROCESSING Line broadening 1.1 Hz FT size 32768 Total time 6 min, 54 sec

2naphthy1

Pulse Sequence: s2pul Solvent: CDCl3 Temp. 24.0 C / 297.1 K INOVA-500 "inova500c"

Relax. delay 10.000 sec Pulse 54.0 degrees Acq. time 2.184 sec Width 7501.2 Hz 4 repetitions OBSERVE H1, 499.8716820 MHz DATA PROCESSING Line broadening 1.1 Hz FT size 32768 Total time 1 min, 13 sec

S21

isopropyl ketone

Pulse Sequence: s2pul

Solvent: CDC13 Temp. 24.0 C / 297.1 K INOVA-500 "inova500c"

Pulse 54.0 degrees Acq. time 2.184 sec Width 7501.2 Hz 4 repetitions OBSERVE H1, 499.8716820 MHz DATA PROCESSING Line broadening 1.1 Hz FT size 32768 Total time 0 min, 13 sec

7

O Ο ОH

5

6

4

isopropyl ketone

Pulse Sequence: s2pul Solvent: CDC13 Temp. 24.0 C / 297.1 K User: 1-14-87 INOVA-500 "inova500c"

Pulse 30.0 degrees Acq. time 1.092 sec Width 29996.3 Hz 128 repetitions OBSERVE C13, 125.6928044 MHz DECOUPLE H1, 499.8741814 MHz Power 48 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz Line broadening 1.0 Hz FT size 65536 Total time 37 min, 37 sec

S24

S26

S27

1.00

2.20

fluoro

Pulse Sequence: s2pul Solvent: CDC13 Temp. 24.0 C / 297.1 K INOVA-500 "inova500c"

Relax. delay 10.000 sec Pulse 54.0 degrees Acq. time 2.184 sec Width 7501.2 Hz 4 repetitions OBSERVE H1, 499.8716820 MHZ DATA PROCESSING Line broadening 1.1 Hz FT size 32768 Total time 1 min, 13 sec

F

Ö

OH

chloro

Pulse Sequence: s2pul Solvent: CDCl3 Temp. 24.0 C / 297.1 K INOVA-500 "inova500c"

Relax. delay 10.000 sec Pulse 54.0 degrees Acquares Widtm7501.2 Hz 4 repetitions OBSERVE H1, 499.8716820 MHz DATA PROCESSING Line proadening 1.1 Hz FT size 32768 Total time 1 min, 13 sec

chloro

S32

methy]

--7.251 -7.219

7.202

7

لېلې 2.02 1.85

-7.267

7.279

Data Collected on: nmrsun2-inova500 Archive directory: /export/home/ds2/vnmrsys/data Sample directory:

File: Gev398-2protonmethylproduct

Pulse Sequence: s2pul Solvent: CDC13

Temp. 24.0 C / 297.1 K

Pulse 54.0 degrees Acq. time 2.184 sec Width 7501.2 Hz 32 repetitions OBSERVE H1, 499.8716820 MHz DATA PROCESSING Line broadening 1.1 Hz FT size 32768 Total time 1 min

7.54

0.67

S35

naphthyl

Data Collected on: nmrsun2-inova500 Archive directory: /export/home/ds2/vnmrsys/data Sample directory:

File: Gev388-2proton

Pulse Sequence: s2pul Solvent: CDC13

Temp. 25.0 C / 298.1 K

Pulse 54.0 degrees Acq. time 2.184 sec Width 7501.2 Hz 32 repetitions OBSERVE H1, 499.8716820 MHz DATA PROCESSING Line broadening 1.1 Hz FT size 32768 Total time 1 min

STANDARD PROTON PARAMETERS

exp1 PROTON

T

Data Collected on: nmrsun2-inova500 Archive directory: /export/home/ds2/vnmrsys/data Sample directory:

File: Gev392-4proton

Pulse Sequence: s2pul Solvent: CDC13

Temp. 24.0 C / 297.1 K

Pulse 54.0 degrees Acq. time 2.184 sec Width 7501.2 Hz 32 repetitions OBSERVE H1, 499.8716820 MHz DATA PROCESSING Line broadening 1.1 Hz FT size 32768 Total time 1 min

111. O. Ō

Solvent: CDC13 Temp. 24.0 C / 297.1 K User: 1-14-87 INOVA-500 "inova500c" Pulse 30.0 degrees Acq. time 1.092 sec Width 29996.3 Hz 1344 repetitions OBSERVE C13, 125.6928044 MHz DECOUPLE H1, 499.8741814 MHz Power 48 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz 111. Ο 77.517 77.262 77.007 Line broadening 1.0 Hz FT size 65536 Total time 1 hr, 15 min, 13 sec 29.872 .184 6.806 077 083 27 35.603 n ~ 170.789 .215 85. 100 120 140 80 60 40 ppm 160

Pulse Sequence: s2pul

S42

gemdimethyl

Pulse Sequence: s2pul Solvent: CDC13 Temp. 24.0 C / 297.1 K INOVA-500 "inova500c"

Pulse 54.0 degrees Acq. time 2.184 sec Width 7501.2 Hz 32 repetitions OBSERVE H1, 499.8716820 MHz DATA PROCESSING Line broadening 1.1 Hz FT size 32768 Total time 1 min, 14 sec

5

bromo

S47

S48

Filename: _

chloro

Pulse Sequence: s2pul

Solvent: CDCl3 Temp. 25.0 C / 298.1 K INOVA-500 "inova500c"

Pulse 54.0 degrees Acq. time 2.184 sec Width 7501.2 Hz 32 repetitions DBSERVE H1, 499.8716820 MHz DATA PROCESSING Line broadening 1.1 Hz FT size 32768 Total time 1 min, 14 sec

Filename: _ STANDARD CARBON PARAMETERS Pulse Sequence: s2pul Solvent: CDC13 Temp. 25.0 C / 298.1 K User: 1-14-87 INOVA-500 "inova500c" 111, 0 Pulse 30.0 degrees Acq. time 1.092 sec Width 29996.3 Hz 640 repetitions DBSERVE C13, 125.6928044 MHz DECOUPLE H1, 499.8741814 MHz Power 48 dB C .517 .262 .007 continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz FT size 65536 Total time 1 hr, 15 min, 13 sec 127.012 129.430 29.224 .272 32.231 17 .326 139.109 134.753 170.265 84 100 فأنباه الأواما أدابه . (فالا المألكين بالأردية بأر .10til 1 1 1 1 1 1 1 200 180 160 140 120 S50¹⁰⁰ 80 60 20 40 ppm

Filename: _

pheny15ring

Pulse Sequence: s2pul Solvent: CDC13 Temp. 25.0 C / 298.1 K INOVA-500 "inova500c"

Pulse 54.0 degrees Acq. time 2.184 sec Width 7501.2 Hz 32 repetitions OBSERVE H1, 499.8716820 MHz DATA PROCESSING CTMC broadening 1.1 Hz F1 size 32768 TOLAI time 1 min, 14 sec 7.424

Filename: _

D. Chiral HPLC and GC traces for enantioenriched iodolactone products

Racemic 3a

==== Shimadzu LCsolution Analysis Report ====

C:\LabSolutions\Data\Data\gev\Gev345rac6ringadh.lcd

	o. (Eaboolationo (Bata (Bata (gov (Covo for a configuration)
Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev345rac6ringadh.lcd
Method File Name	: Col2_60min_02%C_1ml_min.lcm
Batch File Name	: Gev345rac6ringo.lcb
Data Acquired	: 3/14/2010 7:11:22 PM

C:\LabSolutions\Data\Data\gev\Gev345rac6ringadh.lcd

1 PDA Multi 1/254nm 4nm

Peal	kТ	'ał	ole

F	PDA Ch1 254nm 4nm					
Γ	Peak#	Ret. Time	Area	Height	Area %	Height %
Γ	1	26.894	1261766	28995	50.067	50.144
	2	30.103	1258402	28829	49.933	49.856
Γ	Total		2520168	57823	100.000	100.000

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev397-1R.lcd

Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev39
Method File Name	: Col2_6
Batch File Name	: gev39
Data Acquired	: 5/26/20

: Gev397-1R.lcd Col2_60min_02%C_1ml_min.lcm gev397and398.lcb 5/26/2010 1:20:01 PM

C:\LabSolutions\Data\Data\gev\Gev397-1R.lcd

1 PDA Multi 1/254nm 4nm

Peal	kТа	able

PDA Ch1 254nm 4nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	27.454	1879152	42279	96.925	96.869
	2	30.710	59621	1367	3.075	3.131
	Total		1938774	43646	100.000	100.000

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev376-2.lcd

Acquired by Sample Name	: Admin : run
Sample ID	:
Data File Name	: Gev376-2.lcd
Method File Name	: Col2_60min_02%C_1ml_min.lcm
Batch File Name	: Gev376.lcb
Data Acquired	: 4/27/2010 4:48:50 PM

C:\LabSolutions\Data\Data\gev\Gev376-2.lcd

1 PDA Multi 1/254nm 4nm

Peal	ĿТ	'aŀ	le
rea.	ΚI	aı	ле

PDA Ch1 254nm 4nm						
ſ	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	26.504	1556689	38123	49.882	55.442
ſ	2	34.457	1564069	30639	50.118	44.558
ſ	Total		3120757	68762	100.000	100.000

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev398-2.lcd

Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev398-2.lcd
Method File Name	: Col2_60min_02%C_1ml_min.lcm
Batch File Name	: gev397and398.lcb
Data Acquired	: 5/26/2010 11:15:51 AM
•	

C:\LabSolutions\Data\Data\gev\Gev398-2.lcd

1 PDA Multi 1/254nm 4nm

PeakTable

PDA Ch1 254nm 4nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	26.708	3412016	83011	94.067	94.799
	2	34.663	215198	4554	5.933	5.201
	Total		3627214	87565	100.000	100.000

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev388-2odh.lcd

	0. (Edbooldtion bala (Bala (gov (C
Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev388-2odh.lcd
Method File Name	: Col3_60min_10%C_1ml_min.lcm
Batch File Name	: Gev388odh.lcb
Data Acquired	: 5/9/2010 11:06:20 PM

C:\LabSolutions\Data\Data\gev\Gev388-2odh.lcd

1 PDA Multi 1/254nm 4nm

PDA Ch1 254nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	26.182	4504583	89417	49.804	57.167
2	32.141	4539989	66997	50.196	42.833
Total		9044572	156414	100.000	100.000

PDA Ch2

PeakTable

C:\LabSolutions\Data\Data\gev\Gev404-1odh.lcd

Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev404-1odh.lcd
Method File Name	: Col3_60min_10%C_1ml_min.lcm
Batch File Name	: Gev404-1odh.lcb
Data Acquired	: 6/2/2010 12:20:16 PM
-	

C:\LabSolutions\Data\Data\gev\Gev404-1odh.lcd

1 PDA Multi 1/254nm 4nm

PDA Ch1 254nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	25.620	4720418	94946	96.800	97.375
2	31.841	156034	2559	3.200	2.625
Total		4876452	97505	100.000	100.000

PDA Ch2

PeakTable

C:\LabSolutions\Data\Data\gev\Gev388-3adh.lcd

Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev38
Method File Name	: Col2_6
Batch File Name	: Gev38
Data Acquired	: 5/9/201
-	

run Gev388-3adh.lcd Col2_60min_02%C_1ml_min.lcm Gev388adh.lcb 5/9/2010 8:01:43 PM

C:\LabSolutions\Data\Data\gev\Gev388-3adh.lcd

1 PDA Multi 1/254nm 4nm

Peal	kТ	at	ole

	1 cult 1 uble				
PDA Ch1 2	54nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	42.915	5820207	92013	50.017	54.743
2	53.745	5816203	76070	49.983	45.257
Total		11636410	168084	100.000	100.000

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev400-2.lcd

Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev400-2.lcd
Method File Name	: Col2_60min_02%C_1ml_min.lcm
Batch File Name	: Gev400.lcb
Data Acquired	: 6/1/2010 3:12:33 PM
-	

C:\LabSolutions\Data\Data\gev\Gev400-2.lcd

1 PDA Multi 1/254nm 4nm

Peal	kТ	ał	ole
- ou		uu	10

PDA Ch1 2	54nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	41.792	2590411	41736	74.033	77.528
2	52.389	908567	12097	25.967	22.472
Total		3498979	53834	100.000	100.000

PDA Ch2

Racemic 3e

Data File C:\CHEM32\2\DATA\GEV\GEV401-2.D Sample Name: Gev401-2

Enantioenriched 3e

C:\LabSolutions\Data\Data\gev\Gev376-3.lcd

	e. Easeriation bata b
Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev376-3.lcd
Method File Name	: Col2_60min_02%C_1ml_min.lcm
Batch File Name	: Gev376.lcb
Data Acquired	: 4/27/2010 5:51:14 PM
•	

C:\LabSolutions\Data\Data\gev\Gev376-3.lcd

1 PDA Multi 1/254nm 4nm

Peal	kТ	'ał	ole

				_		
PDA Ch1 254nm 4nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	16.544	1060626	41261	50.082	52.833
	2	19.476	1057150	36836	49.918	47.167
	Total		2117776	78097	100.000	100.000

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev398-1.lcd

Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev398-1.lcd
Method File Name	: Col2_60min_02%C_1ml_min.lcm
Batch File Name	: gev397and398.lcb
Data Acquired	: 5/26/2010 12:17:37 PM
-	

C:\LabSolutions\Data\Data\gev\Gev398-1.lcd

1 PDA Multi 1/254nm 4nm

Peal	ĿТ	'aŀ	le
rea.	ΚI	aı	ле

				_		
PDA Ch1 254nm 4nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	16.555	1227882	46575	93.354	93.590
	2	19.476	87416	3190	6.646	6.410
	Total		1315297	49765	100.000	100.000

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev388-1adh.lcd

Acquired by
Sample Name
Sample ID
Data File Name
Method File Name
Batch File Name
Data Acquired

: Admin

: run
:
: Gev388-1adh.lcd
: Col2_60min_02%C_1ml_min.lcm
: Gev388adh.lcb
: 5/9/2010 5:58:14 PM

C:\LabSolutions\Data\Data\gev\Gev388-1adh.lcd

1 PDA Multi 1/254nm 4nm

Peal	kΤ	abl	e
			~

			_		
PDA Ch1 2	54nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	34.445	873115	16113	50.182	57.389
2	47.973	866770	11964	49.818	42.611
Total		1739886	28076	100.000	100.000

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev404-3.lcd

Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev404-3.lcd
Method File Name	: Col2 60min 02%C 1ml min.lcm
Batch File Name	: Gev407efa.lcb
Data Acquired	: 6/9/2010 7:44:33 AM

C:\LabSolutions\Data\Data\gev\Gev404-3.lcd

1 PDA Multi 1/254nm 4nm

		PeakTable				
PDA Ch1 2	PDA Ch1 254nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	35.282	1014957	18023	97.917	97.642	
2	49.245	21596	435	2.083	2.358	
Total		1036553	18458	100.000	100.000	

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev392-1fluoroadh.lcd

Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev392-1fluoroadh.lcd
Method File Name	: Col2_60min_02%C_1ml_min.lcm
Batch File Name	: Gev390.lcb
Data Acquired	: 5/12/2010 11:51:21 PM
•	

C:\LabSolutions\Data\Data\gev\Gev392-1fluoroadh.lcd

1 PDA Multi 1/254nm 4nm

PeakTable

PeakTable

PDA (Ch1 2	254nm	4nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	33.573	449295	8802	49.947	52.850
2	39.242	450245	7852	50.053	47.150
Total		899539	16654	100.000	100.000

PDA Ch2

PDA Ch3

C:\LabSolutions\Data\Data\gev\Gev404-2.lcd

Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev404-2.lcd
Method File Name	: Col2_60min_02%C_1ml_min.lcm
Batch File Name	: 4041and2.lcb
Data Acquired	: 6/2/2010 2:10:09 AM

C:\LabSolutions\Data\Data\gev\Gev404-2.lcd

1 PDA Multi 1/254nm 4nm

kΤε	able
	kТа

PDA Ch1 254nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	32.757	857451	15955	98.212	98.290
2	38.479	15611	278	1.788	1.710
Total		873063	16232	100.000	100.000

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev376-1.lcd

Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev376-1.lcd
Method File Name	: Col2_60min_02%C_1ml_min.lcm
Batch File Name	: Gev376.lcb
Data Acquired	: 4/27/2010 3:47:05 PM

C:\LabSolutions\Data\Data\gev\Gev376-1.lcd

1 PDA Multi 1/254nm 4nm

PDA Ch1 254nm 4nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	33.582	504543	9694	50.178	56.821
	2	45.169	500957	7367	49.822	43.179
	Total		1005500	17061	100.000	100.000

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev404-4.lcd

Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev404-4.lcd
Method File Name	: Col2_60min_02%C_1ml_min.lcm
Batch File Name	: 4044.lcb
Data Acquired	: 6/2/2010 10:57:44 AM
•	

C:\LabSolutions\Data\Data\gev\Gev404-4.lcd

1 PDA Multi 1/254nm 4nm

			PeakTable			
PDA Ch1 2	PDA Ch1 254nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	32.893	1770259	32818	98.104	98.175	
2	44.302	34221	610	1.896	1.825	
Total		1804480	33428	100.000	100.000	

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev159-1racemicsample.lcd

Acquired by
Sample Name
Sample ID
Data File Name
Method File Name
Batch File Name
Data Acquired

: Admin : run : : Gev159-1racemicsample.lcd : Col2_60min_02%C_1ml_min.lcm : Gev159-1racemic.lcb : 8/7/2009 5:06:05 PM

C:\LabSolutions\Data\Data\gev\Gev159-1racemicsample.lcd

1 PDA Multi 1/254nm 4nm

Peal	kТа	able
		~~~~

PDA Ch1 2:	54nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.325	837126	24311	49.922	53.519
2	27.153	839743	21114	50.078	46.481
Total		1676870	45425	100.000	100.000

PDA Ch2

C:\LabSolutions\Data\Data\gev\Gev401-2.lcd

Acquired by	: Admin
Sample Name	: run
Sample ID	:
Data File Name	: Gev401-2.lcd
Method File Name	: Col2_60min_02%C_1ml_min.lcm
Batch File Name	: Gev407efg.lcb
Data Acquired	: 6/9/2010 6:42:48 AM

C:\LabSolutions\Data\Data\gev\Gev401-2.lcd



1 PDA Multi 1/254nm 4nm

PDA Ch1 254nm 4nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	23.467	2030980	57942	94.886	95.079			
2	27.151	109456	2999	5.114	4.921			
Total		2140436	60941	100.000	100.000			

PDA Ch2
# E. Optimization of Catalyst and Iodinating Agent

## **Optimization of the Iodinating Agent**

All substituted phthalimides were prepared according to the procedure used for 5 (*N*-iodo-4-fluorophthalimide) from the corresponding substituted anhydride.



## **Catalyst Optimization**





#### F. Determination of the Absolute Configuration of the Iodolactone Products

(**3a**)



Radical-mediated deiodination^[11] of **3a** (90% ee) provided the known methyl lactone^[12]:  $[\alpha]_D^{24}$ = -34 (*c* = 1.6), literature reports the (*R*) enantiomer with 90% ee to have  $[\alpha]_D^{12}$  = +39.8 (*c* = 1.0, CHCl₃); **3a** is therefore (*S*).

### (**3g**)

X-ray crystallographic analysis confirmed the (S) stereochemistry for 3g.

(10a)



Radical-mediated deiodination^[11] of **10a** (85% ee) provided the known methyl lactone^[13]:  $[\alpha]_D^{24} = +51$  (c = 1.6, CHCl₃), literature reports the (R) enantiomer to have  $[\alpha]_D^{15} = +72.4$  (c = 1.0, CHCl₃); **10a** is therefore (R).

#### G. Experimental Support for the Intermediacy of 7

Premixing of 4-fluoro-*N*-iodophthalimide (0.1 mmol) with  $I_2$  (0.1 mol%) and catalyst 1 (15 mol%) in toluene afforded immediate changes in the ¹H NMR spectrum of the catalyst 1. Most notably, the bis-trifluoromethylphenyl protons were shifted significantly downfield. The direct quenching of this reaction with saturated aqueous sodium thiosulfate solution afforded peaks in the mass spectrum consistent with the starting catalyst 1 and also the secondary amine (which is not seen as a fragmentation product from 1). The dealkylation of 1 is consistent with the *N*-iodo species 7 which could undergo elimination of HI to form an iminium ion, followed by hydrolysis, upon aqueous quenching.



#### References

- [1] J. M. Mitchell, N. S. Finney, *Tetrahedron Lett.* 2000, 41, 8431.
- [2] D. E. Fuerst, E. N. Jacobsen, J. Am. Chem. Soc., 2005, 127, 8964.
- [3] For the preparation of *N*-iodophthalimide from potassium phthalimide, see:, L. Hadjiarapoglou, S. Spyroudis, A. Varvoglis, *Synthesis* **1983**, 207.
- [4] For the preparation of potassium 4-fluorophthalimide see:, T. J. Watson, T. A. Ayers, N. Shah, D. Wenstrup, M. Webster, D. Freund, S. Horgan, J. P. Carey, *Org. Proc. Res. Dev.* **2003**, *7*, 521.
- [5] A. Takemiya, J. F. Hartwig, J. Am. Chem. Soc., 2006, 128, 6042.
- [6] M. Uyanil, T. Yasui, K. Ishihara, Bioorg. Med. Chem. Lett. 2009, 19, 3848.
- W. F. McCalmont, J. R. Patterson, M. A. Lindenmuth, T. N. Heady, D. M. Haverstick, L. S. Gray, T. L. MacDonald, *Bioorg. Med. Chem.* 2005, 13, 3821.
- [8] E. E. Lee, T. Rovis, Org. Lett. 2008, 10, 1231.
- [9] A. Ali, R. D. Desai, R. F. Hunter, S. M. Makhdhum Muhammad, *J. Chem. Soc.* **1937**, 1013.
- [10] J. Haas, S. Piguel, T. Wirth, Org. Lett. 2002, 4, 297.
- [11] For the procedure used for deiodination see: D. C Whitehead, R. Yousefi, A. Jaganathan, B. Borhan, J. Am. Chem. Soc., **2010**, 132, 3298.
- [12] M. Date, Y. Tamai, T. Hattori, H. Takayama, Y. Kamikubo, S. Miyano, J. Chem. Soc., Perkin Trans. 1 2001, 2001, 645.
- [13] A. Albinati, P. Bravo, F. Ganazzoli, G. Resnati, F. Viani, *J. Chem. Soc., Perkin Trans. 1* **1986**, 1405.