Supporting Information

The Bis(µ–oxo) Dicopper(III) Species of the Simplest Peralkylated Diamine: Enhanced Reactivity towards Exogenous Substrates

Peng Kang,^[a] Elena Bobyr,^[a] John Dustman,^[a] Keith O. Hodgson,^[a,b]* Britt Hedman,^[b]*

Edward I. Solomon,^[a]* and T. Daniel. P. Stack^[a]*

[a] Department of Chemistry, Stanford University, Stanford, California 94305

[b] Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, California

94025

I. Full Gaussian 03 Reference

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;
Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.;
Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.;, *Gaussian 03, Revision C.02*. Gaussian, Inc.:
Wallingford, CT, 2004.

II. Titration of the O species with FcCOOH

Figure S1. Titration of the TMED **O** species with ferrocene monocarboxylic acid (FcCOOH). Two equivalents of FcCOOH would correspond to the full formation of the **O** species. The feature at ca. 650 nm is due to the ferrocenium carboxylate zwitterion that is formed.

Figure S2. (a) Cu K-edge k^3 -weighted EXAFS data for $O(CF_3SO_3)_2$ (top) with offset fit residual (bottom) and (b) corresponding nonphase shift corrected Fourier transforms. Data (....); fit (-).

Sample		<i>R</i> (Å)	σ^2 (Å ²)	$\Delta E_0 (\mathrm{eV})$	F^b
$O(SbF_6)_2$	2 O	1.80	0.0038	-10.6	0.250
	2 N	1.96	0.0041		
	1 Cu	2.74	0.0026		
	6 C	2.77	0.0207		
$O(CF_3SO_3)_2$	2 O	1.80	0.0032	-11.2	0.358
	2 N	1.96	0.0030		

Table S1. EXAFS Fit Results for $O(SbF_6)_2$ and $O(CF_3SO_3)_2$.^{*a*}

1 Cu	2.75	0.0025
6 C	2.76	0.0217

^{*a*} All fits were performed over the *k* range of 2-13 Å⁻¹. The estimated uncertainty in *R* is ± 0.02 Å; the uncertainty in *N* is ~25%. ^{*b*} The goodness of the fit is defined as $F = [\Sigma(k^6(\chi_{exptl} - \chi_{calcd})^2)/(\Sigma k^6 \chi_{exptl}^2)]^{\frac{1}{2}}$.

IV. Thermal Decomposition Kinetics

Figure S3. Eyring plot of the decomposition kinetics of the TMED O species (acetone, [Cu] = 1mM,

 $CF_3SO_3^-$).

V. DFT

Table S2. Mulliken population analysis of selected MOs of the TMED O species

МО	Energy (eV)	%Cu	%O	%N	%Rest
LUMO+1	-9.74	36	35	23	6
LUMO	-9.88	35	44	16	6
HOMO-1	-13.95	7	40	36	17
HOMO-5	-14.99	11	24	27	38

Table S3. Cartesian coordinates of DFT-optimized D_2 conformation of the **O** species (B3LYP/6-31g(d), gas phase)

Cu	-1.36137400	0.00000000	0.00000000
Cu	1.36137400	0.00000000	0.00000000

0	0.00000000	1.15530200	0.00000000
0	0.00000000	-1.15530200	0.00000000
Ν	-2.74659700	-1.37297700	0.05291100
Ν	-2.74659700	1.37297700	-0.05291100
Ν	2.74659700	1.37297700	0.05291100
Ν	2.74659700	-1.37297700	-0.05291100
С	-4.04685700	0.70306800	0.28886200
С	-2.46719300	-2.49110600	-0.89356300
С	-2.46719300	2.49110600	0.89356300
С	4.04685700	0.70306800	-0.28886200
С	4.04685700	-0.70306800	0.28886200
С	2.46719300	2.49110600	-0.89356300
С	-2.73953700	-1.89706100	1.45255200
С	-2.73953700	1.89706100	-1.45255200
С	2.46719300	-2.49110600	0.89356300
С	2.73953700	1.89706100	1.45255200
С	2.73953700	-1.89706100	-1.45255200
С	-4.04685700	-0.70306800	-0.28886200
Н	-4.13136100	0.68153200	1.37833400
Н	-4.88798900	1.29219100	-0.09406300
Н	4.88798900	1.29219100	0.09406300
Н	4.13136100	0.68153200	-1.37833400
Н	4.13136100	-0.68153200	1.37833400
Н	4.88798900	-1.29219100	-0.09406300
Н	3.48679600	2.69116900	1.55820200
Н	1.74704200	2.29430000	1.66878400
Н	2.96801900	1.09887500	2.16230900
Н	3.48679600	-2.69116900	-1.55820200
Н	2.96801900	-1.09887500	-2.16230900
Н	1.74704200	-2.29430000	-1.66878400
Н	-1.74704200	-2.29430000	1.66878400
Н	-3.48679600	-2.69116900	1.55820200
Н	-2.96801900	-1.09887500	2.16230900
Н	-1.74704200	2.29430000	-1.66878400
Н	-2.96801900	1.09887500	-2.16230900
Н	-3.48679600	2.69116900	-1.55820200
Н	2.44559200	-2.11062200	1.91717700
Н	3.25033000	-3.25250700	0.80669900
Н	1.49734500	-2.92416900	0.65072000
Н	2.44559200	2.11062200	-1.91717700
Н	1.49734500	2.92416900	-0.65072000
Н	3.25033000	3.25250700	-0.80669900
Н	-2.44559200	2.11062200	1.91717700
Н	-3.25033000	3.25250700	0.80669900
Н	-1.49734500	2.92416900	0.65072000
H	-2.44559200	-2.11062200	-1.91717700
H	-3.25033000	-3.25250700	-0.80669900
Н	-1.49734500	-2.92416900	-0.65072000
Н	-4.88798900	-1.29219100	0.09406300
Н	-4.13136100	-0.68153200	-1.37833400