1	GnfM 481	
REC	AAA/Sigma54_activat HTH	
Reciever o	domain (REC)	
Caul CofM		on co
GSUI_GNIM		60 60
Kpile_Ntic		60
LCOT_NUIC	MQRGIVWVVDDD551RWVLERRLAGRGLICIIFENGAEVLERLASKIPDVLLSDIRMPGM	00
Gsul GnfM	TGLELLDKVRELKHDLLMVIMTAEASMKNAVEAMKRGAYDYITKPFDLDVIDAIIE 11	6
Kpne NtrC	DGLALLKQIKQRHPMLPVIIMTAHSDLDAAVSAYQQGAFDYLPKPFDIDEAVALVD 11	6
Ecol_NtrC	DGLALLKQIKQRHPMLPVIIMTAHSDLDAAVSAYQQGAFDYLPKPFDIDEAVALVE 11	6
Coul CofM	ντιμλ ρ ε τ πορματιρεειμεργμιεμ 142	
GSUI_GHIM	RVHRAKEIISUMIILKEELKERIHLER 145	
Kpne_NtrC	PATSHIQLQQQFKNAPISSPTA IS0	
ECOT_NULC	KAISHIQEQQQFKNVQLNGFII ISO	
AAA/Sigma!	54 activation domain	
	- Walker A	
Gsul GnfM	NIIGNSPAMREVYKTIGKVAPSDVTVLVQGESGTGKELIARAIHFNSKRIGKPFIALNCA	203
Kpne NtrC	DIIGEAPAMQDVFRIIGRLSRSSISVLINGESGTGKELVAHALHRHSPRSKAPFIALNMA	198
Ecol NtrC	DIIGEAPAMQDVFRIIGRLSRSSISVLINGESGTGKELVAHALHRHSPRAKAPFIALNMA	198
_		
	sigma54 binding Walker B	
Gsul_GnfM	AIPKDLLESELFGFEKCAFTGAVERKLGKFEQANGGTIFLDEIGDMPLDLQAKILRVLQE	263
Kpne_NtrC	AIPKDLIESELFGHEKGAFTGANTVRQGRFEQADGGTLFIDEIGDMPLDVQTRLLRVLAD	258
Ecol_NtrC	AIPKDLIESELFGHEK <mark>GAFTGA</mark> NTIRQGRFEQADGGTLFLDEIGDMPLDVQTRLLRVLAD	258
	AAA minimum consensus	
Gsul GnfM	KEVTRTGGSONIA VD<mark>VRIVAAT</mark>NONLE EL V RKKO FREDLFYRLNV VPIOLV PLRER KEDV	323
Kpne NtrC	GOFYRVGGYAPVKVDVRIIAATHONLEORVOEGKFREDLFHRLNVIRVHLPPLRERREDI	318
Ecol NtrC	GOFYRVGGYAPVKVDVRIIAATHONLEORVOEGKFREDLFHRLNVIRVHLPPLRERREDI	318
_		
Gsul_GnfM	PLLVDYFLQNACAELEVSPKKCSPEAMALLTTHSWPGNVRELENTIKRAVILSSDPLLTP	383
Kpne_NtrC	PRLARHFLQIAARELGVEAKQLHPETETALTRLAWPGNVRQLENTCRWLTVMAAGQEVL T	378
Ecol_NtrC	PRLARHFLQVAARELGVEAKLLHPETEAALTRLAWPGNVRQLENTCRWLTVMAAGQEVLI	378
Gsul GnfM	SDEPCLRAROTGSE 397	
Kone NtrC	ODIPSELFETTVPD 392	
Ecol NtrC	ODI-PGELFESTVAE 392	
1001_1010		
Gsul_GnfM	ATAADDLSLEALVDMKLRASLTNLDKMESGDI 429	
Kpne_NtrC	SPTQMQPDSWATLLGQWADRALRSGHQNL 421	
Ecol_NtrC	STSQMQPDSWATLLAQWADRALRSGHQNL 421	
DNA-bindi	ag domain (HTH)	
DIA-DIII011	Heliv-Turn-Heliv	
Gsul CnfM	YNLVILKOIERPILIREVILEKTRCNOVKGAEIICINRNTTRKKIOEICIR	
Kone NtrC	LSEAOPEMERTLLTTALRHTOGHKOEAARI.I.GWGRNTI.TRKI.KEI.GME	
Ecol NtrC	LSEAOPELERTLLTTALRHTOGHKOEAARLLGWGRNTLTRKLKELGME 469	

Α

Β

Figure S1. GnfM. (A) Domain organization of GnfM. (B) Comparison of *G. sulfurreducens* GnfM with NtrC. *G. sulfurreducens* GnfM (Gsul, GenBank accession number, AAR34331) and NtrC homologues from *Escherichia coli* (Ecol, AAC76866) and *Klebsiella pneumoniae* (Kpne, CAA26923) are aligned. The boxes contain the conserved regions found in the EBP family containing the receiver domain, including the phosphorylation site, the Walker A and B motifs, the GAFTGA sigma54 binding motif, the AAA minimum consensus, and the helix-turn-helix motif (1).

Gsul	MTTEEKKEEFLATVIDSVGDGVIVIDLDGRIALMNPAAEEISGISRRQAV
Gmet	MSPESPNEAFLATIIDSVGDGVIVIDLGGRITLMNPAAEEIIAISRRQAM
Gura	VTTEHLQEYYANIIDSVGDGVIVLDIQGVITLLNPAAEEIAGISRRQAK
Rcap	MNLPPPGIIWNSLPLPALMLDVNDRVIEINPAAELFLNLSARALK
Kpne	MATGTLPDAGQILNSLINSILLVDDDLAVHYANPAAQQLLAQSSRKLF
Ecol	MATGTQPDAGQILNSLINSILLIDDNLAIHYANPAAQQLLAQSSRKLF
Gsul	GHRFALVFHREAVLREMVGKTATSGMTISDHE-NIVIRKLKQL-TPVSATTFPLMLPHGE
Gmet	GHPFAALLGSQEILVDMVAKTAATGMTISDNE-NIVIRKAKQL-TPVAVTTFPLLRQDGE
Gura	GAHFSALFKGEDILLEMVNKTAATGMTISDHE-NIVLKMTGRL-IPISATTSPLLMANGE
Rcap	GQALGERLAISAPLEEIFARVRKNRSALFVNDVDLTTGERAPVQCNLQAAPIADDPE
Kpne	GTPLPELLSYFSLNIGLMQESLAAGQGFTDNEVTLVIDGRSHI-LSLTAQRLP
Ecol	GTPLPELLSYFSLNIELMQESLEAGQGFTDNEVTLVIDGRSHI-LSVTAQRMP
Caul	φφάφττι γι ορτφέτουτ σραγομάρια ου έφτι από αλά τι μυτικού άλλοι το στο
Gour Cmot	PICTILMI DDI TNIDELEDAVRIADDI STICTIACLAHEIKNELGGIRGAAQLIEDELE
Gura	PICTILII DDI TNIDELEEAVROADDI STICALAACLAHEIKNDI.CCIKCAAOLI.EMELD
Baan	TUILIIICDEINIKELEEAVNQADKISIIGALAGUAHEINNELGGINGAAQUHEMELE
Kono	
rpne Faol	EGIILLEMAPMUNQRALSQEQLQAAQQIAARULVKGLAALIKNPLGGLKGAAQULSKALP
FCOI	DGMI LTEMAPMDNŐKKTSŐEŐLŐHAŐŐAAAKDTAKGTAHEIKNETGERGAAŐTTSVATE
Gsul	TESELRDNVRIMLKEVERVNRIVEELLALASPRGLQLSKVNLHKVIGDILTLQKRSTEGK
Gmet	PESELRDNVR v VVR e VD R VNRI veell alss pr klQltk vnlhk ilgdivt l rkrategk
Gura	DNAELRDCTRVMLKEVQRVNRIVEELLELASPRKLDLTKVNLHKILGDIILLQKRTVDDR
Rcap	GEDLELTDLIVDETRRIVKLLEQVEQFGNVRPPEMKPVNIHDVLDRARKSAGVGFGA-
Kpne	DPA-LMEYTKVIIEQADRLRNLVDRLLGPQHP-GMHVTE-SIHKVAERVVKLVSMELPD-
Ecol	DPS-LLEYTKVIIEQADRLRNLVDRLLGPQLP-GTRVTE-SIHKVAERVVTLVSMELPD-
Gsul	NVAFQQQFDPSIPPILADEGLLTQLFLNLVKNAMEAVDDG-GCIRVASRVISDYSMTQK-
Gmet	SVTFQQQFDPSIPPILADEGLLTQLFLNLIKNAVEAVDER-GTIRVASRVLSDYSMTPK-
Gura	RVTFQQHFDPSIPPILADEALLTQLFLNLIKNAVEAVGAV-GLIKVSSRVLADYSMTQK-
Rcap	HMLIVEDY DPSVPPTLGD ADQ LTQVFLNL L KNA S EA AKGQ-GTIRLRTFYDYALRLRR
Kpne	NVKLVRDYDPSLPELPHDPDQIEQVLLNIVRNALQALGPEGGEITLRTRTAFQLTLH-
Ecol	NVRLIRDYDPSLPELAHDPDQIEQVLLNIVRNALQALGPEGGEIILRTRTAFQLTLH-
Gsul	GERRSRMVAIDVADDGPGIPPERLEQLFTPFFTTKTKGTGLGLAICQKIVTEHRGMIK
Gmet	GERRSRMVAVDVRDDGPGIPREQLEQLFTPFFTTKAKGTGLGLAICQKIVTEHRGMLK
Gura	GEGRSRMVAIEVSDDGPGILKEQLEHLFTPFYTTKAKGTGLGLAICHKIVAEHRGMIR
Rcap	PDGGGSAVPLQVEVIDDGPGIPADIASSIFEPFVSGRENGTGLGLALVSKIISEHNGWIS
Kpne	GVRYRLAARIDVEDNGPGIPSHLQDTLFYPMVSGREGGTGLGLSIARSLIDQHSGKIE
Ecol	GERYRLAARIDVEDNGPGIPPHLQDTLFYPMVSGREGGTGLGLSIARNLIDQHSGKIE
Gsul	VESYPGKGTTFTVMLPLIQ
Gmet	VESDPGTGTTFTVMLPLIQ
Gura	VDSEPTKGTTFTVMLPLIQ
Rcap	VESAPGR-TLFRISLPVAPKEL
Kpne	FTSWPGH-TEFSVYLPIRK
Ecol	FTSWPGH-TEFSVYLPIRK

Figure S2. Comparison of GnfL homologues with NtrB. GnfL homologues from *G. sulfurreducens* (Gsul, GenBank accession number, AAR34331), *G. metallireducens* (Gmet, ABB32781), and *G. uraniireducens* (Gura, ABQ25121), and NtrB homologues from *Escherichia coli* (Ecol, AAC76866), *Klebsiella pneumoniae* (Kpne, CAA26923) and *Rhodobacter capsulatus* (Rcap, CAA51074) are aligned. NtrB homologues have a PAS domain at the N-terminus. A putative autophosphorylation site is indicated by an asterisk.

Gsul	EVELLKEQVEDLKETLESRKIVEKAKGILMQNQGLTEPEAFRKMQKLAMDKRKSMRQIAEAILLTEA
Gmet	EVETLKEEVEDLKEILESRKVIEKAKGVLMRNQGLSEPEAFRRMQKLAMDKRKSMRQIAEAILLTE
Gura	EIDELKEQVEDLKETIESRKVIEKAKGVLMRTQGLSEPEAFRKMQKLAMDKRKSLRQIADAILLTES
Ppro	EVDGLKEKIDDLREVIENRKIIERAKGMLMETERLSEADAYRTLQKMAMDKRKTLRQVADSILKSAK
Paer	EMAKLKQKTEQLQDRIAGQARINQAKVLLMQRHGWDEREAHQHLSREAMKRREPILKIAQELLGNEPSA
Kpne	Elqql sgqlas Lk daleerk liekak svLm ty QG M Qelrk MAMDK N Qr M Vei Iarall tv kalw rv tp k

Figure S3. GnfR. The C-terminal ANTAR domains of GnfR homologues are compared with those of known antiterminators. GnfR homologues from *G. sulfurreducens* (Gsul, GenBank accession number, AAR36216), *G. metallireducens* (Gmet, ABB30902), *G. uraniireducens* (Gura, ABQ25350), and *P. propionicus* (Ppro, ABL01052), and AmiR from *P. aeruginosa* (Paer, CAA32023) and NasR from *K. pneumoniae* (Kpne, AAA25101) are aligned.

			-24	-12
Gsul nifH	TTGCTTGCCTGTAAAGO	CTTAGTTAATTCAG	TGTGTTGCTGGTT GG C	ATGGACGGT GC TAT
Gmet nifH	GGGGGAAGGAGCAAAGT	CAAGTAATTACAA	TGGGTTGATTTTT GG C	ACGGTCAGT GC TTT
Gura nifH	TCTGTGGAAATAAAAAG	STCCGTCATTTCAG	CTTGTTAGCAGTT GG C	ATGGTCAAT GC TAA
—	* * *	** * * **	*** ****	* * * * * * * * *
	+1			
Gsul nifH	ACCACTATCAAACATAC	CAGACGAG	AATACGCCGGAGTATI	CGCTGCTGAA
Gmet nifH	ATCTGTTTCAAAT-CAA	ATAACGAG	AATACGCCGGAGTATI	CGCTGCTGAA
Gura nifH	AGTAAAGCCATACATCA	TAGCGATGATCTG	AATACGCTGCGGTATI	CGACTATTATATGT
—	* ** *	*** *	*****	** *
Gsul nifH	CGCAGGCAAGGGCGCCA	CCATTAAACGGAA	ATGGGGCGCCTTTTT	GTTGCCCCGAACAT
Gmet nifH	CGCAGGCAAGGGCGCCA	ACCAATAT-CACCA	TTGGGGCGCCTTTTT	GTTGCCCCGCAAAC
Gura nifH	CACAGGCAAAGGCGCCA	ACCATAATTCA	ATGGGGCGCCTTTTT	GTTGCCCCGAAAAT
_	* ****	**** * *	*****	****
Gsul nifH	TCCCAGGCAGTCCACG	GATTGGTGGACGAA	AGGAGACAGGAC ATG	
Gmet_nifH	CATTAGAGGCTC	GACCCAGGGCGAA	AGGAGAAACATC ATG	
Gura nifH	TCACTTGCGGTCCACAG	GATTAGTGGACGAA	AGGAG-CAGAAC ATG	
—	* *	** ****	**** * ****	

Figure S4. Alignment of the 5' untranslated regions of *nifH*. The putative transcription termination signals are highlighted in grey. Highly conserved dinucleotides GG and GC in RpoN-dependent -24/-12 promoter elements are indicated by bold letters. The transcription initiation site for Gsul_*nifH* is indicated in bold by +1. Translation initiation codon, ATG, is underlined with bold letters. Gsul; *G. sulfurreducens*, Gmet; *G. metallireducens*, Gura; *G. uraniireducens*.

(A)

RpoD;	CTAGATTC TTGACA TAAAAGTGGTATTAAAG TACTTA TTTACTCAAAG TAAGAACTGTATTTTCACCATAATTTCATGAATAAATGAGTTTCCTAG
RpoD-TTS(WT);	CTAGATTC TTGACA TAAAAGTGGTATTAAAG TACTTA TTTACTCAAAG <u>AAGGGCGCCACCATT</u> AAACGGA <u>AATGGGGCGCCTT</u> TTTTGTTG TAAGAACTGTATTTTCACCATAATTTCATGAATAAATGAGTTTCTTCCCGCGGTGGTAATTTGCCTTTACCCCGCGGAAAAAACAACCTAG
RpoD-TTS(-up);	CTAGATTC TTGACA TAAAAGTGGTATTAAAG TACTTA TTTACTCAAAGAAACGGA <u>AATGGGGGCGCCTT</u> TTTTGTTG TAAGAACTGTATTTTCACCATAATTTCATGAATAAATGAGTTTCTTTGCCTTTACCCCGCGGAAAAAAACAACCTAG
RpoD-TTS(-down)	; CTAGATTC <mark>TTGACA</mark> TAAAAGTGGTATTAAAG <u>TACTTA</u> TTTACTCAAAG <u>AAGGGCGCCACCATT</u> AAACGGATTTTGTTG TAAGAACTGTATTTTCACCATAATTTCATGAATAAATGAGTTTCTTCCCGCGGTGGTAATTTGCCTAAAACAACCTAG
RpoD-TTS(mut);	CTAGATTC <u>TTGACA</u> TAAAAGTGGTATTAAAG <u>TACTTA</u> TTTACTCAAAG <u>AAGGGCGCCACCATT</u> AAACGGA <u>AATACATACAACA</u> TTTTGTTG TAAGAACTGTATTTTCACCATAATTTCATGAATAAATGAGTTTCTTCCCGCGGTGGTAATTTGCCTTTATGTATG

(B)

Figure S5. *lacZ* fusion assays for transcription termination signals. (A) Sequences of promoters used for *lacZ* fusion assays (Figure 10D). RpoD-dependent -35/-10 promoter elements are underlined with bold letters. The regions predicted to form the stem structure are underlined. Mutated nucleotides from the wild-type sequence are indicated in bold. (B) A picture of the strains grown on an X-gal plate (Figure 10D).

Name	Sequence	Enzyme
Primer extens	jon assavs	
NifH-PE	CCGTAGATCGCTACCTGTCTC	
GlnB-PE	ATCCAGCTTGAACGGTTTGATAATC	
GnfK-PE	TCCTTTTCTGCTATGTACTTC	
GnfR_PF	TCGTCGCATATAAGGACACTTC	
GdhA PE	TGATAGATGCCCTGAAGTTTC	
Odin I-I L	IGAINOMICECETOMICITIC	
Construction	of EBP expression vectors	
0300-Fwd	TCTCATATGGGACAGCAGTGGGTCAAC	NdeI
0300-Rev	TCTCTCGAGTGCAAGAGACGTGGAAATTAC	XhoI
0372-Fwd	TCTCATATGCCCGCAACCATACTGATC	NdeI
0372-Rev	TCTCTCGAGCGGCCCCTGGTCCCGGGTTATGCCGAA	XhoI
0598-Fwd	TCTCATATGGAAAACATTGATGTACTTGTA	NdeI
0598-Rev	TCAAGCTTGTTCGTCATCTGGTTACGTAC	HindIII
0776-Fwd	TCTCATATGCTCAAGGCGAAAATACTCA	NdeI
0776-Rev	TCTCTCGAGTTCGTCGTCGGCCGGGACGCCTC	XhoI
0811-Fwd	TCTCATATGAACGAAACGATACTCGTCGTGGAC	NdeI
0811-Rev	TCTCTCGAGTTTTTTTAGCGTCGATCCCGTAAC	XhoI
0963-Fwd	TCTCATATGCCGATCGTGTCAGATAAAAAGCGCA	Ndel
0963_Rev	TCTCTCGAGGGCGTAGTCTTCGCGGCGGATA	XhoI
1003-Fwd	TCTCATATGTTACTGAACCGCATATTGGT	Ndel
1003-Rev	TCTCTCGAGGTCTTTTCTCAGTTCGATGCCCA	XhoI
1120 Fwd		Ndel
1129-Rev		HindIII
1320_Ewd	TCTCATATGGCTGAAGAGCGGCAACCT	Ndel
1320-1 wu 1320 Rev	TCTCTCGAGTTTTTTTTTCTCTCCCGTGCAGTGATC	XhoI
1320-Rev 1495 Fwd	TCTCATATGGAAATTCATGTTCTCGTA	Ndel
1495-1 Wu 1405 Pev		Yhol
1495-KCV		Ndel
1940-1 wu 1040 Pay	TCTCTCGACCCACTTATCCCCGTCTTTTTCATCA	Vhol
2041 End		Ndal
2041-Fwu 2041 Pay		Vhol
2041-Kev		Ndal
2913-Fwu 2015 Day		
2913-Kev		ПШИШ Ndal
3303-гwu 2262 Day		
5505-Kev		пшаш
Promoter for 1	DNA-binding assays	
GnfK-Pro1	CGAGATCATGGGCCTCGAC	
GnfK-Pro2	AGAACGAAGATGTTATATA	
NifH-Pro1	TTGCCGAGGCGATTCTGCTGAC	
NifH-Pro2	AGCAACACACTGAATTAAC	
GlnB-Pro1	AAGCGTGATGCAGAACTGTC	
GlnB-Pro2	TAAACAGAGAGAAAAATCCAAC	
GdhA-Pro1	ATCCTCCCATCATCGTGGTC	
GdhA-Pro2	TGATAGATGCCCTGAAGTTTC	
3409-Pro1	TGTATGTAATTTAAATGCA	

Table S1. Primers used in this study. Recognition sequences for restriction enzymes are underlined.

Probe for footprint assays GnfK-F1 TCTCTAGACGAGATCATGGGCCTCGAC

GTGCCACAGTGGAAAAC

3409-Pro2

GnfK-F2	TCGGATCCGTTAGGCACGAGGCA
GdhA-F1	TCTCTAGACAACAACCGGTCCGTCCA
GdhA-F2	TCGGATCCCCTGATTAAAATGTAGACA

lacZ fusion assays

-243T	TCTCTAGACGAGATCATGGGCCTCGAC	
-1111 99T		
-001 120R		
-129D 106B		
+32B	AGCGCATTTGCCATGGGTCAC	
gdhA		
WT12T	CTAGAAAATTTGCCGATAAATCAGGCAATTGCCCACCTC	AACA
WT12B	CGTGATGTTGAGGTGGGCAATTGCCTGATTTATCGGCAA	ATTTT
WT34T	TCACGCCATGCACAGTTTT GG TGCAGTACGT GC ATAAAA	TGCAGGCAATCG
WT34B	GATCCGATTGCCTGCATTTTATGCACGTACTGCACCAAAA	ACTGTGCATGG
Mut34T	TCACGCCAATGTACGTTTT GG TGCAGTACGT GC ATAAAA	TTACTTATATCG
Mut34B	GATCCGATATAAGTAATTTTATGCACGTACTGCACCAAA	ACGTACATTGG
Construction of	of pCDNdeII	
NdeI-Fwd	AATTGACTGACTGAGAAGGAGAGATATACATATGCCCTCGA	GTCTAGAG
NdeI-Rev	AATTCTCTAGACTCGAGGGCATATGTATATCTCCTTCTCA	GTCAGTC
Construction of	of overexpression vectors for GnfL-K and GnfM in Geobacter	
GnfLK-Fwd	CTC <u>AGATCTGAATTC</u> CATGCTTCCTCACGGCGAAAC	BgIII, EcoRI
GnfLK-Rev	TC <u>TCTAGA</u> CTACTGAATCAGGGGGGGGGCATC	XbaI
GnfM-Fwd	TCT <u>CATATG</u> TTACTGAACCGCATATTGGT	NdeI
GnfM-Rev	TCT <u>CTCGAGAAGCTT</u> CAGTCTTTTCTCAGTTCGA	XhoI, HindIII
Construction of	of overexpression vectors for GnfL-K and GnfM in E. coli	
GnfLK-Fwd	TCT <u>CATATG</u> CTTCCTCACGGCGAAAC	NdeI
GnfLK-Rev	TC <u>AAGCTT</u> CTGAATCAGGGGGGGGGCATCAC	HindIII
GnfM-Fwd	TCT <u>CATATG</u> TTACTGAACCGCATATTGGT	NdeI
GnfM-Rev	TCT <u>CTCGAG</u> GTCTTTTCTCAGTTCGATGCCCA	XhoI
Construction of	of mutants	
GnfK-D1	TC <u>TCTAGA</u> TGATCGCCGAATGGATCCAC	XbaI
GnfK-D2	TC <u>GAATTC</u> CTTTTCTGCTATGTACTTC	EcoRI
GnfK-D3	TCT <u>AAGCTT</u> CATTCGCACCAGCCAGAAC	HindIII
GnfK-D4	TC <u>GGATCC</u> ATAACCGGTTGGTAGACC	BamHI
GnfR-D1	TC <u>GGATCC</u> TCGCGCCTGAAGAGCGCCTC	BamHI
GnfR-D2	ACGTCGGG <u>AAGCTT</u> GGCAAAC	HindIII
GnfR-D3	TC <u>GAATTC</u> ACGGAGCCCGAAGCGTTCCGCA	EcoRI
GnfR-D4	TC <u>TCTAGA</u> AGCCGACCTTGAGCACGTCC	XbaI
Km-Fwd	GCATGA <u>GAATTC</u> CTGACGGAACAGCGGGAAGTCCAGC	EcoRI
Km-Rev	GCTATG <u>AAGCTT</u> TCATAGAAGGCGGCGGTGGAATCGAA	HindIII

Primer extension assays

NifH-R1	CCTGCGTTCAGCAGCGAATAC
NifH-R2	CCGTAGATCGCTACCTGTCTC

GlnB-PE ATCCAGCTTGAACGGTTTGATAATC

Overexpression of GnfK and GnfR

GnfK-Fwd	TCT <u>CATATG</u> GCAAATGCGCTTGCGAAGTA	NdeI
GnfK-Rev	TCT <u>CTCGAG</u> CTCGGCTGCGACAAAGGTGAGCGTA	XhoI
GnfR-Fwd	TCT <u>CATATG</u> ATTTTAGTGCGAAGTGTCCTTA	NdeI
GnfR-Rev	TCT <u>CTCGAG</u> CGCTTCGGTCAGCAGAATCGCCTC	XhoI

Table S2. Alignment of the RpoN-dependent -24/-12promoter elements of the nitrogen-fixation genes. The -24/-12 promoter elements for nifH, glnB, gnfK, gnfR, and gdhA of G. sulfurreducens were assigned from the transcription initiation sites determined by the primer extension assays (Figure 1A). Other -24/-12 promoter elements were identified by comparing the promoter regions of the nitrogen-fixation genes. It is likely that the glnB operon contains glnA, the nifEN operon contains nifEN and nifX in this order, the Gsul 0938 homologue operon contains a gene encoding a hypothetical protein, glnK and amtB in this order, and the Gsul_2799 homologue operon contains genes encoding a putative radical SAM domain protein and a acetyltransferase. Highly putative conserved dinucleotides GG and GC in RpoN-dependent -24/-12 promoter elements are indicated by bold letters. Gsul; G. sulfurreducens, Gmet; G. metallireducens, Gura; G. uraniireducens.

Gene	-24	-12
Gsul_nifH	GGTT GG CATGGA	ACGGT GC TATA
Gmet_nifH	TTTT GG CACGGT	ICAGT GC TTTA
Gura_nifH	AGTT GG CATGGT	ICAAT GC TAAA
Gsul_nifEN	GATT GG CACGT(GGGGT GC AAAG
Gmet_nifEN	CCTT GG CACGT(CACCT GC TAAC
Gura_nifEN	GATT GG CACGGC	CAAAT GC TCAA
Gsul_nifV	GCCT GG CACGGC	CTCGT GC TAAT
Gmet_nifV	GCGT GG CACGCC	CTTGT GC TTTA
Gura_nifV	TACT GG CATGCO	CTATT GC TTGA
Gsul_glnB	TTTA GG CAGACT	fattt gc tttt
Gmet_glnB	TTTG GG CAAAGT	FATTT GC TTTG
Gura_glnB	TCTT GG CAGATA	ATTT GC TATA
Gsul_0938	GAGT GG CACGGC	CCTAT GC TAAA
Gmet_0693	TGAT GG CATGCO	CTTAT GC TAAT
Gura_3367	ATGT GG CACGGC	CTTGT GC TTTT
Gsul_gnfK	TTCT GG CATGCO	CTCGT GC CTAA
Gmet_gnfK	TTCT GG CACGCO	CTCGT GC CTAC
Gura_gnfK	TGTT GG CATGA(CTTAT GC CTTT
Gsul_gnfR	GATT GG AACACT	fttat gc tgaa
Gmet_gnfR	CCTT GG AACGGT	fttat gc tgaa
Gura_gnfR	GATT GG AATGGT	TTCGT GC TTTT
Gsul_2799	TTGT GG CACGCT	TTAGT G TTAAG
Gmet_0681	TTCT GG CACGCT	ftaat gc cata
Gura_1209	ATCT GG CACGCT	ftcat g ttaat
Gsul_gdhA	TTTT GG TGCAGI	facgt gc ataa
Gmet_gdhA	TTTT GG TGCACO	CCTCT GC ATAT
Gura_gdhA	TTAT GG TGCACT	fatgt gc atat

LDI 5 die maleated 0	y and the peetive	
sulfurreducens	metallireducens	uraniireducens
GSU0280 (EBP1)	-	-
GSU0300 (EBP2)	+	+
GSU0359 (EBP3)	+	-
GSU0372 (EBP4)	+	+
GSU0470 (EBP5)	-	+
GSU0598 (EBP6)	+	+
GSU0776 (EBP7)	+	+
GSU0811 (EBP8)	+	+
GSU0841 (EBP9)	-	+
GSU0963 (EBP10)	+	+
GSU1003 (EBP11)	+	+
GSU1039 (EBP12)	-	-
GSU1129 (EBP13)	+	+
GSU1250 (EBP14)	-	+
GSU1320 (EBP15)	+	+
GSU1495 (EBP16)	+	+
GSU1653 (EBP17)	-	+
GSU1940 (EBP18)	+	+
GSU1989 (EBP19)	+	-
GSU2041 (EBP20)	+	+
GSU2506 (EBP21)	-	-
GSU2524 (EBP22)	-	+
GSU2581 (EBP23)	-	-
GSU2753 (EBP24)	-	+
GSU2915 (EBP25)	+	+
GSU3217 (EBP26)	-	+
GSU3363 (EBP27)	+	+
GSU3418 (EBP28)	-	+

Table S3. Conservation of EBPs in *Geobacter* species. Presence and absence of homologues of *G. sulfurreducens* EBPs are indicated by + and -, respectively.

Table S4. Predicted GnfM-binding sites. The sequences were identifed by comparing the promoter regions of the nitrogen-fixation genes. It is likely that the glnB operon contains glnA, the *nifEN* operon contains *nifEN* and *nifX* in this order, the Gsul_0938 homologue operon contains a gene encoding a hypothetical protein, glnK and amtB in this order, and the Gsul_2799 homologue operon contains genes encoding a putative radical protein SAM domain and putative a acetyltransferase. Highly conserved dinucleotides GG and GC in RpoN-dependent -24/-12 promoter elements are indicated by bold letters. Gsul; G. sulfurreducens, Gmet; G. metallireducens, Gura; G. uraniireducens.

<u>Gene/operon</u>	sequence
Gsul_nifH	TGATTAATTGTTGTGCA
Gsul_nifH	TGCATGGGAAAGAGGCG
Gmet_nifH	TGGCTATTCCTTGAGCA
Gmet_nifH	TGAACAGGAAAGAGGCG
Gura_nifH	TGATTAAATATTGTGCA
Gura_nifH	TGCTGACCGATAAAGCG
Gsul_nifEN	TGAGCAAATCCATCCCG
Gmet_nifEN	TGCATAAAATGTGTGCA
Gura_nifEN	TGCCCAATAATTGGGCA
Gsul_nifV	TGCCCGATATTTGGGCA
Gmet_nifV	TGTTTATAAAACAGTCA
Gura_nifV	TGTGTAAAAAAGAGGCA
Gsul_glnB	TGCTCATTTGGTATGCA
Gsul_glnB	TGCCTTTATTTTGTGCT
Gmet_glnB	TGCTTCTGATTTGTGCA
Gmet_glnB	TGCCTTATTTTTGAGCT
Gura_glnB	TGCCCATCCATTGGGCA
Gura_glnB	TGCTCAATTTATAAGCT
Gsul_0938	TGATGCGCTGATGTTCA
Gsul_0938	TGCATAAATAATGGGCA
Gmet_0693	TGCTTATATAATGTGCA
Gmet_0693	TGGAGGTGGCGTAAGCG
Gura_3367	TGCCTGGAAATGAAACG
Gura_3367	TGCATAAAAAATAATCA
Gsul_gnfK	TGCTGAAATATTGGGCA
Gsul_gnfK	TGATTGAAAAAGCGGCA
Gmet_gnfK	TGCCTCAATTGTGGGCG
Gmet_gnfK	TGCCTAAATGGTGTGCA
Gura_gnfK	TGCGCTATTTGTGGGCA
Gura_gnfK	TGCATGCTTTTTCAGCA
Gsul_gnfR	TGAAGCCCAGTTCCACA
Gsul_gnfR	TGCCCGAAACCCTGACA
Gmet_gnfR	TGAAGCTCACCTCCACC
Gmet_gnfR	TGGTTCCTGAAACGGCA
Gura_gnfR	TGAAGCTCGCCTCCACG
Gura_gnfR	TGCCCGAAACATGAACG
Gsul_2799	TGCCCCAGCGATCCTCA
Gsul_2799	TGCCCAACAATTAGTCA

Gmet_0681	TGGTGGAAGGTGCTGCA
Gmet_0681	TGCCTGTTTTTTAATCC
Gura_1209	TGCCGGTAAGGGATGCA
Gura_1209	TGCCTAAATATTAATCA
Gsul_gdhA	TGCCGATAAATCAGGCA
Gsul_gdhA	TGCCCACCTCAACATCA
Gsul_gdhA	TGCACAGTTTTGGTGCA
Gsul_gdhA	TGCATAAAATGCAGGCA
Gmet_gdhA	TGCCGCAAATTCGGGCA
Gmet_gdhA	TGCCTCTTTATGCATCG
Gmet_gdhA	GCGCATTTTTTGGTGCA
Gmet_gdhA	TGCATATATAAGTGGCG
Gura_gdhA	TGACTAAATAATACGCA
Gura_gdhA	TGTGCACGTTAAGTGCT
Gura_gdhA	TGCCTATTTATGGTGCA
Gura_gdhA	TGCATATTATTTAATCG

Reference

1. Schumacher, J., Joly, N., Rappas, M., Zhang, X. and Buck, M. (2006) Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. *J. Struct. Biol.*, **156**, 190-199.