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Supplementary Figure 1 
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GPS refines the read distribution  

A generic read distribution (from CTCF data) was initially used to predict GABP binding 
events. GPS then used the predicted positions to iteratively re-estimate the read 
distribution specific for GABP.
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Supplementary Figure 2 
 
a 
 

-100 0 100
0

1000

2000

C
ou

nt

GPS

-100 0 100

SISSRs

-100 0 100

MACS

-100 0 100

cisGenome

Offset from CTCF motif
-100 0 100

QuEST

-100 0 100

FindPeaks

-100 0 100

spp-wtd

-100 0 100

spp-mtc

 
 
b 

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

2

4

6

8

10

12

14

16

18

20

Number of CTCF binding events

S
pa

tia
l r

es
ol

ut
io

n 
(b

p)

 

 

GPS
SISSRs
MACS
cisGenome
QuEST
FindPeaks
spp-wtd
spp-mtc

 

 
 
 
 
 
 
 



  

4 
 

c 
 

-100 0 100
0

20

40

60

80

100

120

Co
un

t

GPS

-100 0 100

SISSRs

-100 0 100

MACS

Offset from GABP motif
-100 0 100

cisGenome

-100 0 100

QuEST

 

GPS has high spatial resolution 

a. The distribution of offset of event predictions from the CTCF binding motif in a set of 
7,653 binding events that are called by all methods shown. 

b. The spatial resolution of CTCF event calls is shown averaged over increasing 
numbers of the strongest ranked events identified by different methods.  

c. The distribution of offset of event predictions from the GABP binding motif by GPS 
and other 4 methods using the GABP binding dataset.  GPS has an average spatial 
resolution of 22.34±18.02bp, compared to 26.22±21.13bp for SISSRs, 26.43±21.34bp 
for MACS, 29.65±22.31bp for cisGenome, and 24.86±19.77bp for QuEST. 
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Supplementary Figure 3 
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Motif occurrence in GPS events 

a. GPS, MACS and FindPeaks predicted more events that have a CTCF motif 
occurrence than the same number of ranked events predicted by other methods.  b. 
GPS achieved a high motif occurrence for the highest-ranking predictions.   The 
percentage of identified events that have a CTCF motif within 100bp is shown averaged 
over increasing numbers of the strongest ranked events identified by different methods. 
cisGenome’s high ranking events have a low motif occurrence because cisGenome 
reported a large number of duplicate read artifacts as high scoring events. 
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Supplementary Figure 4 
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GPS has high sensitivity  

a. The number of CTCF motifs that are covered (within 100bp) by increasing numbers 
of the strongest ranked events identified by GPS, SISSRs, MACS, cisGenome, QuEST, 
spp and FindPeaks.    A method with higher sensitivity will cover more CTCF motifs.   b. 
More CTCF motifs were covered by the highest- ranking GPS events than were covered 
by other methods. 



  

7 
 

Supplementary Figure 5   

 

 

An example of GABP joint events  
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Supplementary Figure 6 
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GPS in alignment mode successfully aligns events in regions where there is only 
a unique strong motif presence.  
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Supplementary Figure 7 

 

Replicate consistency in alignment mode 

Three technical replicates of Mouse ES CTCF ChIP-Seq data were analyzed 
simultaneously in GPS alignment mode. The scatter plots show the pair-wise 
comparison of event strength (IP read counts) of each aligned event. The data points 
are colored by the number of replicates that the event is significant (brown: in all 3 
replicates, green: in 2 replicates, blue: in only 1 replicate).
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Supplementary Figure 8 

 

GPS derived position-specific prior for motif discovery 
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Supplementary Table 1: 

Overlaps(%) GPS SISSRS MACS cisGenome QuEST FindPeaks spp_wtd spp_mtc 
GPS 100 96 78 91 88 93 81 80 

SISSRS 77 100 63 81 77 83 71 71 
MACS 97 98 100 92 95 97 87 85 

cisGenome 77 86 64 100 77 84 75 73 
QuEST 81 88 70 82 100 86 77 77 

FindPeaks 79 88 67 84 80 100 74 73 
spp_wtd 80 88 69 87 84 86 100 90 
spp_mtc 80 88 69 86 84 86 91 100 

Total  41023 34019 50465 34811 37300 34720 40478 40940 

The number of CTCF event calls and overlaps from different methods 

The pair-wise comparison of events called by different methods is presented as the 
percentage of events that are discovered by one method (column) that are within 200bp 
of events called by another method (row).
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Supplementary Table 2: 
 
Dataset Number of  events to search 

for joint binding calls 
Number of clustered 
motif sites 

Number of joint 
events 

CTCF 34019 174 20 

GABP 6442 581 122 

The GABP dataset contains more joint binding events 
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Supplementary Table 3: 

Region Motifs GPS SISSRs MACS cisGenome QuEST CSDeconv 
19:60209122-
60209517 

3 2 1 1 1 1 3 

19:60355126-
60355571 

10 2 1 1 1 1 2 

19:60382365-
60382636 

2 0 0 0 1 1 0 

19:60419681-
60420363 

2 0 0 1 1 0 0 

19:60803307-
60803837 

2 1 0 0 0 1 0 

19:60808666-
60808927 

2 2 2 1 1 1 1 

19:60858417-
60858832 

3 1 1 0 1 1 0 

19:61323575-
61324038 

4 0 0 0 1 1 0 

19:61324381-
61324814 

3 2 3 1 1 2 0 

Total of 
events 

 10 8 5 8 9 6 

Total of joint 
events 

 4 2 0 0 1 2 

GPS is more sensitive in discovering joint events in GABP ChIP-seq data at the 
genomic region 19:60,000,000-62,000,000 

The table shows the number of event calls in the regions with clustered motifs. Four 
regions that are identified by at least two methods as containing joint events are shaded 
in green.  GPS calls joint events in all 4 of them, SISSRs and CSDeconv calls 2 regions, 
QuEST calls 1 region, MACS and cisGenome does not call joint events in these regions. 
The analysis is based on the top 36 events within region 19:60,000,000-62,000,000 
from each method (with exception that CSDeconv has only 23 events). 
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Supplementary Note 1: 

Supplementary information and methods 

Setting the sparseness parameter α 
 
The value of the sparseness parameter α will influence the sensitivity and specificity of 
event detection and it should scale with the read count of the events in the region that 
GPS is analyzing.   From our experience in analyzing mouse CTCF and human GABP 
datasets, the α value is set empirically to 

),_max( minmax alphafactoralphaRC=α  
where RCmax is the maximum read count in a 500bp sliding window across the region 
that GPS is evaluating, alphamin is the minimum number of read count for a valid binding 
event.  In the CTCF data analysis, we choose the default setting alpha_factor = 3.0, 
alphamin=6.0. These values can also be set at the command line by the user using 
options (“--a” for alphamin  and “--af” for alpha_factor) . 
 

PCR amplification artifact filtering 

PCR amplification artifacts typically manifest as the observation of many reads mapping 
to the exact same base positions. Some of the published analysis techniques deal with 
these artifacts by excluding potential artifact regions, or ignoring all but a small number 
(often 1) of the reads that map to a given base. From our experience, PCR amplification 
artifacts are quite variable and dataset-specific. Therefore, a generic approach to 
exclude those regions might result in the loss of true events. 
 
GPS implements an artifact filtering method by comparing the read distribution of the 
predicted event to the expected event read distribution. A shape deviation score is 
computed using Kullback–Leibler divergence (see method section 2.6). A higher score 
means the event is more divergent from the expected read distribution, hence more 
likely to be artifact or noise. A cutoff score can be specified by user to filter out spurious 
events. GPS also excludes events with less than 3 fold enrichment (IP/Control). GPS 
reports the filtered events, hence allows the user to verify and adjust cutoff threshold for 
a particular dataset. The shape deviation filter is on by default, but can be turned off 
using option (--nf). 
 
In addition, GPS also has an option (--bf) for the user to set a cutoff value for the 
maximum read count per base position. The cutoff value can be estimated automatically 
using a Poisson model, or can be set manually by the user (--mrc). 

Normalization for multiple condition alignment mode 

For multiple conditions the reads need to be properly normalized for comparison. We 
have implemented a linear regression method to calculate the ratio between two 
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conditions as in (Rozowsky, et al., 2009). The scaling factors are weighted so that the 
total read count of the whole dataset remains the same.  
 
For C conditions, each with read count as Ni, i=1,…,C. We use the first data set as 
reference and calculate the linear regression ratio λi of each other dataset i vs first 
dataset, i=2,…,C. And we have λ1=1. The scaling factor for each dataset will be  
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We normalize the IP and Control data separately. 

Datasets used: 

Dataset 1: CTCF binding 
 
To evaluate the performance of GPS, we analyzed a ChIP-Seq dataset of insulator 
binding factor CTCF (CCCTC-binding factor)  in mouse ES cells, with a control using 
antibody against GFP (Green Fluorescence Protein) to control for non-specific binding 
(Chen, et al., 2008).   We chose CTCF data for our evaluation because the strong 
CTCF consensus motif allows us to reliably measure spatial resolution.  The ChIP-Seq 
data comprised 4.2 million CTCF reads and 7.9 million GFP reads that uniquely map to 
the mm8 mouse genome.    
 
Dataset 2: GABP binding 
 
To evaluate the performance of joint event discovery, we analyzed a ChIP-Seq dataset 
of GABP in human Jurkat cells, with a control using input DNA (Valouev, et al., 2008).   
GABP binding dataset was reported previously to contain multiple binding motifs in a 
short region (Lun, et al., 2009; Valouev, et al., 2008). The ChIP-Seq data was 
downloaded from QuEST website (http://mendel.stanford.edu/SidowLab/downloads/quest/). 
It comprised 7.9 million GABP reads and 17.4 million input DNA reads that uniquely 
map to the hg18 human genome.  
 
Dataset 3: CTCF binding in multiple conditions 
 
To evaluate the performance of GPS in alignment mode, we analyzed a ChIP-Seq 
dataset of insulator binding factor CTCF (CCCTC-binding factor) in human GM12878 
(lymphoblastoid cell line produced from the blood of a female donor with northern and 
western European ancestry by EBV transformation) and HUVEC (Human Umbilical Vein 
Endothelial Cells) cells. We performed our analysis only in chromosome 1. We used 
also a control for each of the two conditions to control for non-specific binding. The 
ChIP-Seq data for GM12878 condition comprised of 1.6 million IP reads, 1.1 million 
control reads, and for HUVEC condition 1.5 million IP reads and 2 million control reads 
for chromosome 1. The ChIP-Seq experimental work was done by the laboratory of 

http://mendel.stanford.edu/SidowLab/downloads/quest/�
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Brad Bernstein (Broad Institute) as part of the ENCODE project (funded by the NHGRI) 
(Birney, et al., 2007). 
 
 
ChIP-Seq analysis methods: 
 
We compared the performance of GPS against eight published ChIP-Seq analysis 
methods: MACS (version 1.3.7.1)(Zhang, et al., 2008), SISSRs (version 1.4)(Jothi, et al., 
2008), cisGenome (version 1.2)(Ji, et al., 2008), QuEST (version 2.4)(Valouev, et al., 
2008), FindPeaks (version 4) (Fejes, et al., 2008), spp-wtd and spp-mtc (version 1.8) 
(Kharchenko, et al., 2008), and CSDeconv (version 1.0)(Lun, et al., 2009). All the 
methods were run using default parameters except what is described in the following.  
 
For MACS, we used the summit location as the predicted binding site position. The 
binding events are sorted by p-value. 
 
For SISSRs, “-t” option was used to obtain binding site predictions.  
 
For cisGenome, we analyzed the data with the option of boundary refinement,  and 
used the center of the predicted region as the binding site position. In our tests, these 
options gave the best result in spatial resolution. 

For FindPeaks, we run with options “-dist_type 1 -duplicatefilter “ to filter artifact reads. 
We used the max_coord position as the predicted binding site. The binding events are 
sorted by height. 

For spp-wtd and spp-mtc, the binding events are sorted by FDR and then by score. 
 
Motifs used in this study: 
 
CTCF motif 
GPS was used to call binding events in mouse ES cell CTCF ChIP-seq data (Chen, et 
al., 2008), and the events were ranked by peak strength. We extracted 200bp 
sequences around the top-most 500 peaks, and ran SOMBRERO (Mahony, et al., 2005) 
with default parameters. The most significant motif discovered by SOMBRERO, which is 
very similar to the CTCF motif reported in Chen, et al. 2008, was used for subsequent 
CTCF motif analysis.  The matrix of the discovered motif is included as supplementary 
information. 

         (this study) 

(Chen, 2008) 
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To find an appropriate scoring threshold for this motif, we simulated 500,000 200bp 
sequences using a 3rd-order Markov model of the mm8 genome. A scoring threshold 
which yields ‘false positive’ motif matches in 1% of these simulated sequences was 
recorded. In practice this threshold was a log-likelihood score of 11.52, given a 
background model of GC-content equal to 41.74%.  
 
GABP motif 
GABP motif was retrieved from TRANSFAC database (M00341) (Matys, et al., 2003). A 
motif score threshold of 9.9 (half of the maximum motif score) is used in the joint event 
analysis. 
 
Method comparison on spatial resolution, specificity and sensitivity: 
 
We evaluated the effective spatial resolution of GPS against other methods. We define 
effective spatial resolution as the absolute value of the distance between genome 
coordinates of predicted CTCF binding events and the middle of corresponding high-
scoring CTCF binding motif hit.  The sign of the offset was adjusted according to the 
strand on which the motif hit occurred. Because the center of the motif hit may not 
represent a true center of binding event, the offsets to the motif were centered by 
subtracting the mean offsets (Kharchenko, et al., 2008).  Because different methods 
predict different sets of binding events, we compare spatial resolution on the “matched” 
set of predictions that correspond to the same high-scoring CTCF binding motif. Only 
those events within 100bp of a CTCF motif match are included in the calculation.  

For the CTCF dataset, the numbers of events called by each method and the pair-wise 
overlap percentages are shown in Supplementary table 1. We evaluate spatial 
resolution from the same number of top ranking events by each method. From the top 
34019 predictions of each method, we select the 7,653 events that were predicted by all 
eight methods. The results are given in Figure 3a. An alternative representation as a 
distance histogram is given in Supplementary Fig. 3a. 

We also evaluate spatial resolution with the increasing number of top ranking events 
identified by each method (Supplementary Fig. 3b). Note that this analysis does not 
have a “matched” set of predictions. We simply average the spatial resolution of the top 
ranking events that have a motif at a distance less than 100bp. 

For specificity of the predicted events, we calculate the motif occurrence within 100bp of 
the predicted event location for increasing number of the strongest ranked events 
identified by different methods as in Zhang et. al (Zhang, et al., 2008). The percentage 
of motif occurrence is calculated as number of predicted events covering a CTCF motif 
within 100bp divided by the number of events. The result is given in Supplementary Fig.  
3. 

For sensitivity comparison, we search for high scoring CTCF motif matches within 
100bp of any of the events predicted by any of the eight methods. We then calculate the 
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total number of these motif matches that are discovered by increasing number of the 
strongest ranked events identified by different methods. The result is given in 
Supplementary Fig. 4. 
 
We repeated the above analysis with 50bp window size and the results are similar to 
the results with 100bp window size. 
 
 
Evaluating performance in deconvolving joint events using synthetic data: 
 
In order to test the performance of joint event detection we constructed realistic 
synthetic datasets using CTCF binding data.  These synthetic datasets allow us to more 
accurately evaluate the performance of different methods, as we know the true location 
of the constituent parts of joint binding events. To construct the datasets, we first collect 
the set of CTCF events that have the following properties: i) they are predicted by five 
evaluated methods (GPS, SISSRs, MACS, cisGenome, QuEST), ii) none of the five 
methods predicts more than two events in the region, iii) they contain a match to the 
CTCF motif, iv) the average distance from the motif match to the event prediction 
across all five methods is less than 10bp, v) the enrichment of CTCF ChIP-seq reads 
under the event is significantly greater than the level of  GFP reads with a P-value of 
less than 0.001 (as calculated by a binomial test).    A total of 3,233 CTCF binding 
events meet these criteria.  

 
Synthetic ChIP-Seq data were constructed by randomly choosing one of the real CTCF 
events and translating the coordinates of its reads in the surrounding 1Kbp onto a fake 
genome. This is repeated to simulate 20,000 synthetic single events, each placed 
100Kbp apart on the fake genome. We similarly create 1,000 joint (binary) binding 
events by randomly choosing two real CTCF events and placing them on the fake 
genome a fixed distance apart. Note that this method of constructing synthetic joint 
events assumes that the ChIP-seq reads generated by closely neighboring events will 
be an independent mixture of the reads generated by each component event. A 
synthetic control channel is simulated by taking GFP reads in the regions around CTCF 
events and translating their coordinates in the same way as the matched IP reads. 
Further control reads are randomly spread across the fake genome until the read counts 
in the synthetic IP and control channels match. Datasets are constructed for the 
following distances between joint binding events: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 
110, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 350, 400, 450, 500, 550, 600, 
650, 700, and 750. The datasets can be downloaded from the GPS website. 
 
Note that we generated the synthetic data with the number of single events and joint 
events on the same order as real data. However, the read counts and fake genome size 
are different from the real experiment, and this may throw off some methods that are 
tuned to make certain assumptions about the distribution of the data. 
 
GPS, SISSRs, MACS and QuEST were run with default settings on the synthetic 
datasets. cisGenome, FindPeaks and spp are not evaluated because we cannot script 
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them to run on command line for the repeated tests on multiple synthetic datasets. Note 
that MACS should not be unduly affected by joint binding events when estimating the 
correct (CTCF) binding distribution, as a large set of single events exist in the synthetic 
experiment. 
 
 An algorithm is said to have correctly recovered joint binding events when it makes two 
event predictions in the relevant area and these predictions are each within 100bp of 
the position at which the event was simulated. Sensitivity in recovering joint binding 
events is given in Figure 3b.  
 
 
Evaluating performance in deconvolving joint binding events using GABP ChIP-
Seq data: 
 
To evaluate the genome-wide performance of joint event discovery in real ChIP-Seq 
data, we analyzed a human GABP ChIP-Seq dataset, which was reported previously to 
contain multiple binding motifs in a short region (Lun, et al., 2009; Valouev, et al., 2008).   
 
For the GABP dataset, we compared GPS against other 4 methods  (SISSRs, MACS, 
cisGenome and Quest) genome wide. FindPeaks only reported 615 events (991 events 
with the –subpeaks option), much fewer than the other methods. Therefore it is not 
included in the subsequent joint event discovery analysis. We did not run spp on GABP 
data because the data format we downloaded from QuEST website can not be used for 
spp, which reads BOWTIE or ELAND format.  
 
The number of events predicted by all five methods are: GPS (17,179), SISSRs 
(16,567), MACS (14,527), cisGenome (21,101), QuEST (6,442). The result from QuEST 
are downloaded from the QuEST web site 
(http://mendel.stanford.edu/SidowLab/downloads/quest/). The same number of top 
6,442 events from each of the methods were used in our comparison.  
 
We define a set of candidate sites that all have at least one event detected by all five 
methods, and that contain two or more GABP motifs separated by less than 500bp. We 
discovered 581 such sites. Thus nearly 9% of the GABP bound regions potentially 
contain joint binding events. For each of these sites, we count the number of events 
discovered by different methods.  The result is given in Figure 3d. 
 
CSDeconv can’t be applied genome-wide to a mammalian genome because of its 
computation time (Lun, et al., 2009). For a 2Mbp region (19:60,000,000-62,000,000) on 
the GABP dataset that CSDeconv can process(Lun, et al., 2009), we compare its result 
with the results from GPS and other methods. CSDeconv identified 23 events in this 
region. Close inspection on the data indicates that some high-confidence events are 
missed by CSDeconv. Therefore, we performed the joint event discovery (as described 
above) with the top 36 events (36 is the minimum total number of events in this region 
called by methods other than CSDeconv) from each method. The result is given in 
Supplementary Table 3. An example of joint events is given in Supplementary Fig. 5. 

http://mendel.stanford.edu/SidowLab/downloads/quest/�
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Evaluating the alignment mode of GPS: 
 
We performed GPS in multi-condition alignment mode using human CTCF ChIP-Seq 
data from two different cell types (GM12878, HUVEC) and determined the distribution of 
the distances between events across conditions in two cases. For comparison, we 
performed GPS on each condition separately.  The result is given in Fig. 4. A 
representative example is given in Supplementary Fig. 6. 
 
 
Position-specific prior for motif discovery: 
 
The high spatial resolution of GPS makes it possible to direct motif searches to narrow 
windows around GPS events and to further improve motif discovery using a position-
specific prior derived from GPS output. We computed distributions of motif occurrences 
proximal to GPS event calls for three TFs with strong motifs: CTCF, Oct4, and Sox2 
(Chen, et al., 2008).  We searched within a 1000bp window centered on each event and 
included the distance to the closest motif match in the distribution.  For all factors the 
variance in the distribution decreased sharply as the minimum size of the events 
examined was increased.  
 
Examining the 100 strongest events (most reads) with a motif, we observed that for 
each factor more than 90% of the motif occurrences were within 50bp of the GPS event. 
We then combined the data for all three TFs for the 100 largest events with a motif 
within 50bp and smoothed with a Gaussian kernel to create a 101bp wide position-
specific prior (Supplementary Fig. 8) suitable for use with Priority (Narlikar, et al., 2006) 
and other motif discovery tools. 
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