Supporting Information

Synthesis, Structural and Spectroscopic Characterization, and Reactivities of Mononuclear Cobalt(III)-Peroxo Complexes

Jaeheung Cho,¹ Ritimukta Sarangi,² Hye Yeon Kang,¹ Jung Yoon Lee,¹ Minoru Kubo,³ Takashi Ogura,³ Edward I. Solomon,^{2,4} and Wonwoo Nam^{*,1}

¹Department of Bioinspired Science, Department of Chemistry and Nano Science, Center for Biomimetic Systems, Ewha Womans University, Seoul 120-750, Korea

²Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

³Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297,

Japan

⁴Department of Chemistry, Stanford University, Stanford, California 94305, USA

E-mail: wwnam@ewha.ac.kr

	1- (ClO ₄) ₂	3- (ClO ₄) ₂
Col-N1	1.982(4)	2.068(4)
Col-N2	1.994(4)	2.015(8)
Co1-N3	2.036(6)	
N1-Co1-N2	88.16(16)	102.06(14)
N1-Co1-N3	101.27(17)	
N1-Co1-N4	101.61(17)	

Table S1. Selected Bond Distances (Å) and Angles (°) for $1-(ClO_4)_2$ and $3-(ClO_4)_2$

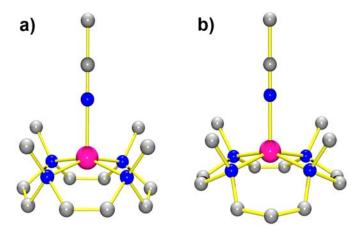

Complex	Coordination/Path	$R(Å)^a$	$\sigma^2(\text{\AA}^2)^b$	E ₀ (eV)	F^{c}
2	2 Co-O	1.85	323		
	4 Co-N	1.99	317	1.81	0.16
	8 Co- C^d	2.84	393		
	24 Co-C-N^d	3.14 382			
4	2 Co-O	D-O 1.86 341			
	4 Co-N	2.01	530	1.50	0.17
	$8 \operatorname{Co-C}^d$	2.86	549	1.50	0.17
	24 Co-C-N^d	3.16	473		

Table S2. EXAFS Least Squares Fitting Results

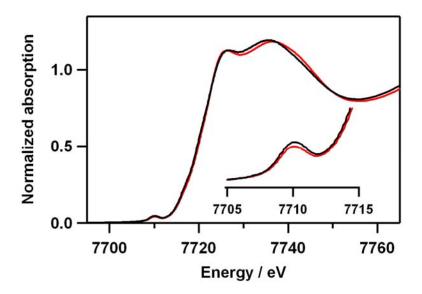
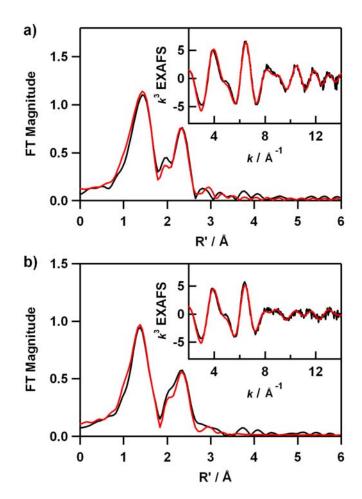
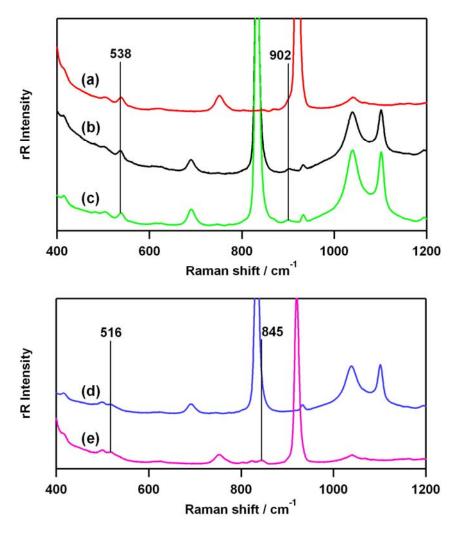
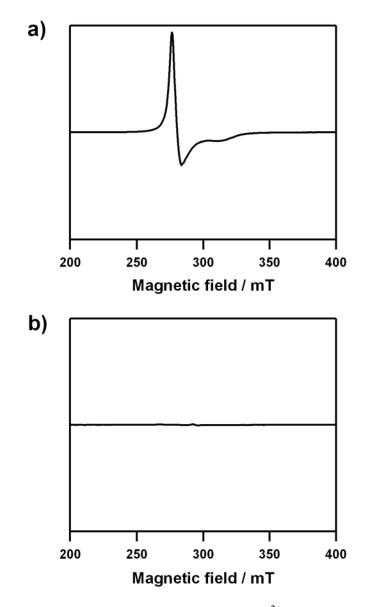
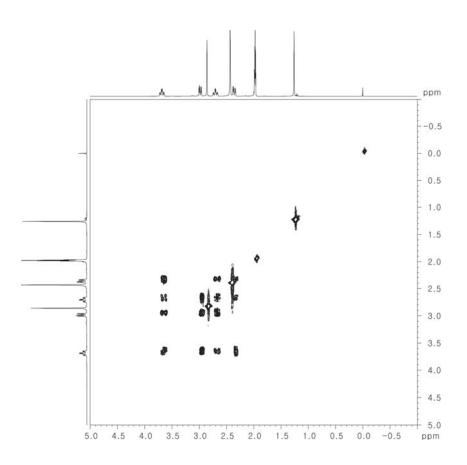

^{*a*}The estimated standard deviations for the distances are in the order of ± 0.02 Å. ^{*b*}The σ^2 values are multiplied by 10⁵. ^{*c*}Error is given by $\Sigma[(\chi_{obsd} - \chi_{calcd})^2 k^6]/\Sigma[(\chi_{obsd})^2 k^6]$. ^{*d*}The single scattering contribution from the 4 methyl groups were not included while the multiple scattering contributions were required to obtain a good fit. The S₀² factor was set at 0.8.

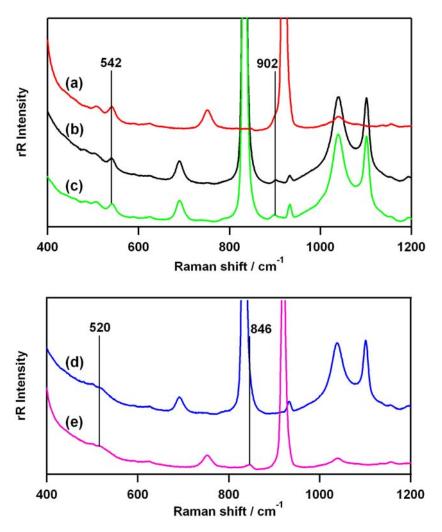
Table S3. Selected DFT Parameters

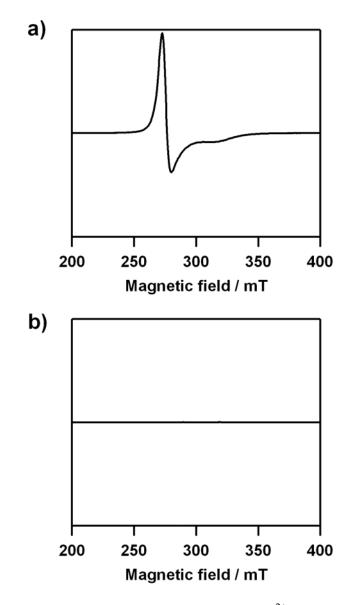

Model	Structural Parameters			Mayer Bond Order		Mulliken Charge		
	$Co-O_1(O_2)$	O ₁ -O ₂	$\text{Co-N}_1(\text{N}_2)^a$	CoO ₁ O ₂	Co-O	0-0	Co, O_1, O_2	
2	1.88	1.44	2.02	67.5	0.89	0.77	0.35, -0.31, -0.31	
2	(1.88)		(2.05)		(0.89)			
1	1.89	1.42	2.05	67.5	0.88	0.82	0.39, -0.29, -0.28	
4	(1.91)	1.42	(2.10)	07.5	(0.85)			
^{<i>a</i>} The average of the trans Co-N ₁ (N ₃) and Co-N ₂ (N ₄) bond distances are represented by Co-N ₁								
and Co-N ₂ , respectively.								

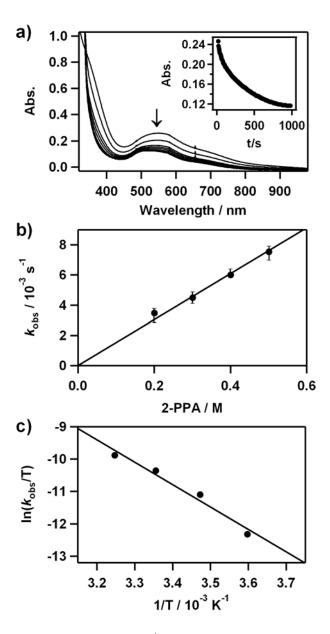

Figure S1. X-ray crystal structures of (a) $[Co(12-TMC)(CH_3CN)]^{2+}$ (1) and (b) $[Co(13-TMC)(CH_3CN)]^{2+}$ (3) (gray C, blue N, pink Co).

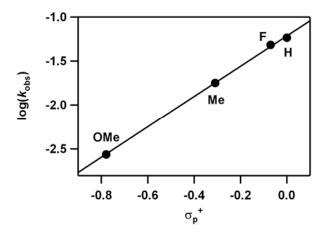

Figure S2. The normalized Co K-edge x-ray absorption spectra for **2** (—) and **4** (—). Inset shows the expanded pre-edge region.


Figure S3. The k^3 weighted Co K-edge EXAFS (inset) and their corresponding non-phase shift corrected Fourier transforms for **2** (a) and **4** (b); data (—) and fit (—).


Figure S4. Resonance Raman spectra of $2^{-16}O_2$ (32 mM) and $2^{-18}O_2$ (32 mM) taken in CD₃CN and CH₃CN, respectively. (a) In situ-generated $2^{-16}O_2$ prepared with H₂¹⁶O₂ in CH₃CN, (b) isolated $2^{-16}O_2$ in CD₃CN, (c) in situ-generated $2^{-16}O_2$ prepared with H₂¹⁶O₂ in CD₃CN, (d) in situ-generated $2^{-18}O_2$ prepared with H₂¹⁸O₂ in CD₃CN, and (e) in situ-generated $2^{-18}O_2$ prepared with H₂¹⁸O₂ in CH₃CN. Since the ¹⁶O⁻¹⁶O stretching band at 902 cm⁻¹ and the ¹⁸O⁻¹⁸O stretching band at 845 cm⁻¹ were severely overlapped with the strong CH₃CN and CD₃CN solvent peaks, respectively, the resonance Raman spectra of $2^{-16}O_2$ and $2^{-18}O_2$ were taken in different solvents such as CD₃CN for $2^{-16}O_2$ and CH₃CN for $2^{-18}O_2$.


Figure S5. X-band EPR spectra of a) $[Co(12-TMC)(CH_3CN)]^{2+}$ (1) (*g* values = 2.31, 2.07) and b) $[Co(12-TMC)(O_2)]^+$ (2) in frozen CH₃CN at 4.3 K. Instrumental parameters: microwave power = 0.998 mW, frequency = 9.10 GHz, sweep width = 0.5 T, modulation amplitude = 0.2 mT.


Figure S6. COSY spectrum of $[Co(12-TMC)(O_2)]^+$ (**2**) in acetonitrile- d_3 at -40 °C.


Figure S7. Resonance Raman spectra of $4^{-16}O_2$ (32 mM) and $4^{-18}O_2$ (32 mM) taken in CD₃CN and CH₃CN, respectively. (a) In situ-generated $4^{-16}O_2$ prepared with H₂¹⁶O₂ in CH₃CN, (b) isolated $4^{-16}O_2$ in CD₃CN, (c) in situ-generated $4^{-16}O_2$ prepared with H₂¹⁶O₂ in CD₃CN, (d) in situ-generated $4^{-18}O_2$ prepared with H₂¹⁸O₂ prepared with H₂¹⁸O₂ prepared with H₂¹⁸O₂ in CH₃CN. Since the ¹⁶O⁻¹⁶O stretching band at 902 cm⁻¹ and the ¹⁸O⁻¹⁸O stretching band at 846 cm⁻¹ were severely overlapped with the strong CH₃CN and CD₃CN solvent peaks, respectively, the resonance Raman spectra of $4^{-16}O_2$ and $4^{-18}O_2$ were taken in different solvents such as CD₃CN for $4^{-16}O_2$ and CH₃CN for $4^{-18}O_2$.

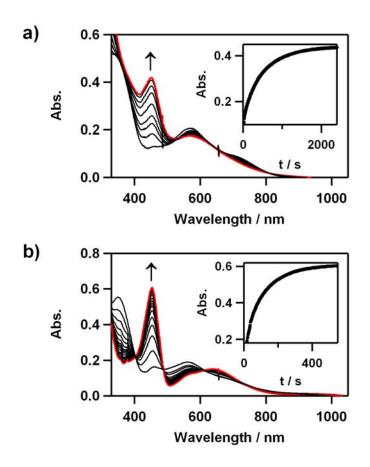

Figure S8. X-band EPR spectra of (a) $[Co(13-TMC)(CH_3CN)]^{2+}$ (3) (g values = 2.35, 2.05) and (b) $[Co(13-TMC)(O_2)]^+$ (4) in frozen CH₃CN at 4.3 K. Instrumental parameters: microwave power = 0.998 mW, frequency = 9.10 GHz, sweep width = 0.5 T, modulation amplitude = 0.5 mT.

Figure S9. Reactions of $[Co(13-TMC)(O_2)]^+$ (4) with 2-phenylpropionaldehyde (2-PPA) in CH₃CN at 25 °C. a) UV-vis spectral changes of 4 (2 mM) upon addition of 100 equiv of 2-PPA. Inset shows the time course of the absorbance at 562 nm. b) Plot of k_{obs} against 2-PPA concentration to determine a second-order rate constant. c) Plot of first-order rate constants against 1/T to determine activation parameters for the reaction of 4 (2 mM) and 100 equiv of 2-PPA. PPA.

Figure S10. Hammett plot for the oxidation of *para*-substituted benzaldehydes, *para*-X-Ph-CHO (X = OMe, Me, F, H), by $[Co(13-TMC)(O_2)]^+$ (4) in CH₃CN at 25 °C

Figure S11. a) UV-vis spectral changes of $[Co(12-TMC)(O_2)]^+$ (2) (1 mM) upon addition of 15 equiv $[Mn(14-TMC)]^{2+}$ in acetone at 0 °C. Inset shows the time course of the absorbance at 453 nm. b) UV-vis spectral changes of $[Co(13-TMC)(O_2)]^+$ (4) (1 mM) upon addition of 10 equiv $[Mn(14-TMC)]^{2+}$ in acetone at -30 °C. Inset shows the time course of the absorbance at 453 nm.