
 

 

Integrative analysis of copy-number and expression data 
Genomic DNAs from 18 DLBCL (SUDHL4, SUDHL6, SUDHL7, SUDHL8, SUDHL10, 
OCILy1, OCILy3, OCILy8, OCILy10, OCILy18, OCILy19, DB, FARAGE, Pfeiffer, Toledo, 
HT, KARPAS-422, WSUNHL), 1 MLBCL (KARPAS11106P) and 6 HL (L428, KMH2, L540, 
L1236, SUPHD1, HDLM2) cell lines and 21 peripheral blood lymphocyte samples from normal 
donors were extracted as previously described and profiled using Affymetrix SNP6.0 
microarrays.1 The above-mentioned high density (HD) SNP array includes over 900,000 SNP 
probes and ≈ 950,000 additional probes for copy number variation resulting in substantially 
improved whole genome coverage. 
 
The inference of DNA copy number from ‘.cel’ files was performed using a GenePattern 
pipeline that runs the following modules: SNPFileCreator, CopyNumberInference, 
RemoveCopyNumberOutliers, DivideByNormals, and Quality Control.2 Normalized log2-ratios 
were segmented using the Circular Binary Segmentation (CBS) algorithm (v1.12.0) using 10,000 
permutations, α=0.01, and undo splits (undo.sd=1).3,4 Significance of copy number alterations 
across samples was assessed by the GISTIC algorithm5, applied using the GenePattern platform 
and thresholds corresponding to tamp=2.178 for amplifications and tdel=1.820 for deletions. These 
thresholds were determined based on an empirical analysis of the distribution of copy numbers 
(CNs) in known regions of amplification (and deletion), and by selecting the mid-point between 
the modes corresponding to two and three CNs (and two and one CNs). The chromosome-wide 
amplification in chromosome 7 and the chromosome arm-wide deletion in chromosome 6 were 
used for this purpose. 
 
GISTIC defines peaks of interest with associated FDR q-values determined by multiple 
hypothesis testing (MHT) correction, with regions obtaining q-values below 0.25 being 
considered significant. Within each region a smaller peak (or peaks) is identified as the set of 
contiguous markers with the highest q-values. Naturally occurring copy number variants (CNVs) 
were removed before running GISTIC. These CNVs were compiled from SNP6.0 analysis of 
HapMap normals6 the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation)7 
and an automated search of profiled normals. 
 
Transcriptional profiling was performed for all cell lines using Affymetrix U133 A&B 
microarrays as previously described.8 Integrative analysis, combining DNA copy number and 
gene transcript data, was performed in order to assess relationships between DNA copy number 
change and alteration in gene transcript abundance so as to refine the list of candidate genes 
within alteration regions. Genes within the peak (region) of GISTIC-identified alterations were 
tested for difference in expression between samples with or without each lesion by a two-group 
t-statistic, and significance was assessed both by a permutation test procedure and by 
asymptotically derived p-values (using a Student’s t distribution). The permutation-based p-
values were “smoothed” by the Laplace rule of succession, i.e., by adding 1 to the numerator and 
2 to the denominator of the ratio used to compute the empirical p-value.9 Q-values were derived 
by MHT correction of nominal p-values using the FDR method applied to the union of all genes 
within all the peaks (regions). Genes were considered positive by integrative analysis if 



 

 

differences in transcript abundance attained an FDR≤0.25 by at least one of the two procedures 
(permutation-based or asymptotic). 
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Table S1. Integrative analysis of DNA copy number and transcript abundance of genes 
within the 9p24 amplification peak 
 
Gene Symbol Score P-value FDR Fold Change 
C9ORF46 −3.39 0.0014 0.0324 2.44 
CD274 −2.37 0.015 0.12 2.73 
PDCD1LG2 −2.04 0.032 0.182 1.67 
KIAA1432 −1.23 0.14 0.375 1.1 
RLN1 −1.19 0.16 0.402 1.39 
RLN2 −0.76 0.22 0.488 1.12 
INSL4 −0.65 0.3 0.579 1.07 

 
C90RF46, CD274 (PD-L1) and PDCD1LG2 (PD-L2) have most significant association between 
DNA copy number and transcript abundance. 
 



 

 

Figure S1. PD-L2 expression in HL and MLBCL cell lines – comparison of cell surface 
immunostaining by flow cytometry (as in Fig. 2, main manuscript) (top panel) and 
quantitative immunohistochemistry (bottom panel) 
PD-L2 levels measured by quantitative immunohistochemistry are in line with those determined 
by flow cytometry. After confirming that PD-L2 quantitative IHC and flow cytometry gave 
comparable results in the above-mentioned cell lines, we evaluated PD-L2 expression in primary 
MLBCLs by quantitative IHC (Fig. S2). 
 
Figure S2. Quantitative immunohistochemistry of PD-L2 in representative primary 
MLBCLs with known 9p24.1 copy numbers 
(Top panel) qPCR analysis of PD-1 ligand (PD-L1)/9p24.1 copy numbers in a series of 41 
primary MLBCLs (as in Fig. 4A, main manuscript). (Bottom panel) PD-L2 quantitative 
immunohistochemistry in representative primary MLBCLs from this series. (Left) PD-L2 
quantitative immunohistochemistry. (Right) Quantitative analysis of PD-L2 immunostaining in 
10 tumor-involved non-sclerotic regions of each tumor. 
 
Figure S3. Chemical inhibition and siRNA-mediated knockdown of JAK2 decrease PD-1 
ligand transcription 
(A) Western analysis of phosphoJAK2 in HL cell lines (L428 and SUPHD1) treated with the 
increasing doses (2.5–10 µm) of the specific JAK2 inhibitor, SD-1029, or control or siRNA 
JAK2. siRNA-mediated knockdown of JAK2 was obtained by transfecting cells with 75 mol of 
JAK2 ON-TARGETplus SMARTpool siRNA (Dharmacon) or corresponding scrambled 
oligonucleotides. Transfections were performed as described for luciferase constructs (main 
manuscript). (B) RT-qPCR analysis of PD-L1 transcript abundance in the cell lines treated with 
SD-1029, or control or siRNA JAK2 in A. Data are means (+⁄− SD) of triplicate RT-qPCR 
reactions from a representative experiment (experiment performed 3 times). Although siRNA-
mediated JAK2 knockdown was less effective at decreasing JAK2 activity (phosphoJAK2) than 
chemical inhibition, JAK2 depletion also decreased PD-L1 expression in the HL cell lines. 
Similar to JAK2 chemical inhibition, JAK2 knockdown was more effective at inhibiting PD-L1 
expression in SUPHD1 (which has high-level 9p24.1 amplification). 
 
Figure S4. Chemical inhibition of JAK2 decreases PD-L2 ligand transcription 
(A) RT-qPCR analysis of PD-L2 transcript abundance in HL cell lines treated with increasing 
doses (2.5–10 µM) of the JAK2 inhibitor, SD-1029 (as in Fig. 6A, main manuscript or Fig. S3). 
Data are means (+⁄− SD) of triplicate RT-qPCR reactions from a representative experiment. (B) 
The PD-L2 promoter regulatory module including a predicted ISRE/IRF module and other 
degenerate STAT-binding sites. The spacing of the ISRE and IRF1 elements in the predicted PD-
L2 module was larger than that in other known ISRE/IRF1 modules (<100bp) and the PD-L1 
module (63bp, Fig. 6C, main manuscript). The ISRE/IRF1 spacing and lower numbers of 
degenerate STAT-binding sites in the PD-L2 5′ regulatory region likely explain the more 
moderate effect of chemical JAK2 inhibition on PD-L2 transcript abundance (compared with 
PD-L1). (C) Analysis of pGL3-PD-L2p luciferase activity in L428 and SUHD1 HL cells treated 
with SD-1029 or vehicle. To assess the effect of JAK2 on transcription mediated by the 5′ PD-L2 
regulatory element, this sequence was cloned into the pGL3 luciferase vector and transfected into 



 

 

HL cell lines with low (L428) or high (SUPHD1) 9p24.1 copy numbers. PD-L2 promoter-driven 
luciferase activity was increased in both L428 and SUPHD1 (empty vector [control] vs pGL3-
PD-L2 [control]). Of note, SUPHD1 exhibited much higher PD-L2 promoter-driven luciferase 
expression than L428 (SUPHD1 vs. L428 pGL-3PD-L1p [control], compare y-axes). In addition, 
treatment with the specific chemical JAK2 inhibitor, SD-1029, resulted in a marked decrease in 
PD-L2 driven luciferase expression in SUPHD1 and a more modest decrease in L428 (compare 
pGL3-PD-L2p [control] vs pGL3-PD-L2 [SD-1029]). Data are means (+⁄− SD) of triplicate 
measurements from a representative experiment. The experiments in A and B were performed 3 
times. 
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