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ABSTRACT The analysis of gene frequencies for a nested
structure of genes within individuals, individuals within sub-
populations, and subpopulations within populations is consid-
ered. Alternative parameterizations are provided by measures
of correlation and of identity by descent, but the latter param-
eters provide more flexibility. The effects of population size,
mating System, mutation, and migration can bé incorporated
into transition equations for identity measures and the struc-
ture of equilibrium populations can be determined; the proce-
dures are illustrated for a finite island model. With parame-
ters defined before estimation procedures are developed, prob-
lems of estimates depending on the riumbers of sampled sub-
populations are avoided, while the descent measures also avoid
the approximations found in other treatinents.

In the analysis of gene frequencies in natural populations, it
is important to have a parametric model elucidating the kinds
of variation to be encountered. In this way, various assump-
tions about the model are clarified and estimation can be
guided by the model. Without any information, just cor-
relations and variances often must suffice. Even so, these
should also be accurately parameterized as a guide to the
appropriate analysis (1, 2).

In some cases, the correlations bear the interpretation of
identity by descent parameters. These parameters are very
useful in studies of the consequences of mating system, fi-
nite population size, migration, and even mutation in certain
circumstances.

The purpose of this note is to relate correlation and identi-
ty by descent parameters and to provide an illustration of the
versatility of identity by descent parameters for a finite is-
land model at equilibrium with respect to migration and mu-
tation.

Genic Structure

Since individual genes are identified, the genic hierarchical
structure to be considered is genes within individuals, indi-
viduals within subpopulations, and subpopulations within
populations. This means that distinct pairs of genes fall into
the following categories: genes within individuals, genes in
different individuals in theé same subpopulation, genes in dif-
ferent subpopulations in the same population, and genes in
different independent replicate populations.

Variance and Correlation Parameters

This development is the same as that of Cockerham (1, 2).
Essential details will be reviewed for completeness with
some extensions. We utilize a measure x; = 1 if the gene is
Ay, the [th allele, where i identifies the location of the gene in
the hierarchy, and x; = 0 if the gene is another allele, Ay, k #
1. Then, for a random gene éx; = p;, where € denotes expec-
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tation and p, is the parametric gene frequency. The variance
among random independent geries is x5 — (8x;)* = p;(1 —
p.

We next consider the expectations for random pairs of
genes in the different categories, €xyx;y; = (€xy)(@xpy) +
@xuxq = pt+ 6;p;(1 — p;), where € denotes covariance and
6 denotes correlation since x; and x;;, have the same expecta-
tion and variance. We let 6; = 6;;;, where i and i’ are k steps
apart in the hierarchy. For k = 0, 6, = 1 is the correlation of
genes with themselves. The other correlations are 6, for
genes within individuals, 6, for genes in different individuals
in the same subpopulation, 6 for genes in different subpop-
ulations in the same population, and 6, = 0 for genes in dif-
ferent independent populations.

If one assumes that the correlations are the same for all
alleles, then the expectations can be summed

O = Z‘t‘éxuxm =q+ 61 —-q) =6+1A- 6)g,

where g = 3, pf. If the correlations differ, one can replace 6;
with 6, = 3, 0y p;(1 — p))/A — q) for a more complex situa-
tion, or else treat each allele separately. In practice, and in
the context of identity by descent parameters to be consid-
ered later, Oy can be interpreted as the frequency with which
genes are alike.

The case was developed by Cockerham (1, 2) that linear
functions of the Qs could be interpreted as components of
variance appropriate for the analysis of variance model.
These components are

os=1- 0, =1 - 6)1 — g) within individuals,

ol =0 — 0, = (6, — 8)(1 — g) individuals within subpop-
ulations,

0% = 0, — 03 = (6 — 6;)(1 — q) subpopulations within popu-
lations, and

o3 = 03 — Q4 = 651 — q) among populations,

which sum to the total variance, 0> = 1 — Q; = 1 — q. This
of course extends the procedures for estimation to include
small sample analysis of variance techniques.

Frequency and Identity by Descent Parameters

When certain forces are acting on populations, identity by
descent parameters can be utilized to provide a more infor-
mative genetic interpretation than do correlations. Mating
system, finite population size, and migration are forces that
operate on all genes equally, and transitional and equilibrium
results can be formulated in terms of descent measures. One
can further include some mutation models (3).

The interpretation of Q is straightforward in this case.
With probability 6, genes are identical by descent and are
alike. They dre not identical by descent with probability 1 —
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6, but are identical in state with frequency 3, p? = q. Thus,
O =6+10-6)g=q+ 6(0-¢q)

has the same form as for the correlation model.

As a descriptor for analysis at any time, the two param-
eterizations are the same, but it is the descent measures that
allow us to elaborate the effects of mating system, popula-
tion size, migration, and mutation.

Variations in Population Structure

Considerable explanation was given (2) about adjusting the
parametric model to the situation at hand, limitations in esti-
mable functions, ignoring an existing hierarchy, and so on. A
few examples will suffice. If we consider only independent
subpopulations with no hierarchy of populations, then 6; = 0
and 6, = F;r and 6, = Fsr, where the Fs are Wright’s (4) F
statistics. With the addition of the hierarchy of populations,
the list of F statistics has to be extended to include 6;.

With only a single subpopulation, the only estimable com-
ponents of varianceare 1 — @, = (1 — 6,)(1 —g)and O; — 0>
= (6, — )1 — q) withatotalof 1 — @, = (1 — &)(1 — g) and
the only estimable correlation is F;s = (6, — 6)/(1 — &) for
genes within individuals within subpopulations, as is well
known [Wright’s F;s (4)].

With monoecious populations and random union of ga-
metes, genes within individuals and between individuals in
the same subpopulation have the same correlation—i.e., 6;
= 6 and Q; = Q,. In addition, suppose we restrict our con-
sideration to a single population of subpopulations. We still
have to consider a parametric framework of independent
populations. Otherwise, we have no basis for taking expecta-
tions. Since 6; = 6,, we have only two components of vari-
ance: 1 -0, =(1-6)1—-g)and Q; — @5 = (6 — 6;)(1 -
g) with a total of 1 — Q3 = (1 — 6)(1 — g). The only estima-
ble correlation is B = (6, — 63)/(1 — 63) = (@ — 03)/(1 =
05), which is the correlation of genes in subpopulations with-
in populations and is similar in concept to Fys. It is this situa-
tion that will be considered in the following example.

Finite Island Model with Migration and Mutation

Crow and Aoki (5) considered a finite island model with mu-
tation and migration, and they worked with equilibrium val-
ues for the Qs. The procedure is complex and requires ap-
proximations during the development.

Recently, in a study of quantitative genetic variation with-
in and between finite populations for an additive genetic
model with mutation and migration, it was found that the
equilibrium values could be written as simple functions of an
equilibrium descent measure and the variance in an infinite
equilibrium population (3). The transitional value of the de-
scent measure was also useful in expressing the transitional
values of the variance within populations. The situation is
even simpler for the genic model x;, which of course is en-
tirely additive.

We consider here only equilibrium conditions. For the mu-
tation model, a random gene mutates at rate v, to the allele
A,, including no change in state of the gene. Let the total
mutation rate be u = 3, v;,, [ = 1,2, . . ., k for k alleles. At
equilibrium, regardless of the founder population, p; = v;/u
and ¢ = 3, pf = (1 + c?/k, where c is the coefficient of
variation of the equilibrium frequencies (6).

We now proceed to formulate the descent measures ¢, and
6; with mutation and migration. We consider n subpopula-
tions, each with N individuals in each generation. Migration
is gametic at rate m at the time of reproduction and the mi-
grant gamete has an equal chance of coming from each of the
other n — 1 subpopulations.
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A notation by Nagylaki (7) and Crow and Aoki (5) is use-
ful. After migration, the frequency of pairs of genes from the
same subpopulation in the previous generation is a = (1 —
m)? + m*/(n — 1) for genes in one subpopulation and 5 = (1
— a)/(n — 1) for genes between subpopulations. When genes
are from the same subpopulation, they are identical by de-
scent with probability 1/2N + (1 — 1/2N)#,, and when from
different subpopulations they are identical by descent with
probability 6; provided neither gene has mutated with proba-
bilit%/ p=(1—u)’ Lettingy=1—-1/2Nand (a — b) = (1 —
ma)* = d, where a = n/(n — 1)

6241 = pla(l — y + y62,) + (1 — a)bs,]
63,41 = plb(1 — y + v6,,) + (1 — b)6s,]
&1 — G341 = Pd[‘)'(oz,: -—6)+0-y)QA- 63.0)].

Note that identity by descent requires that neither gene has
mutated. At equilibrium, the 6s do not change. To solve for 8
directly, we find & — 6; = (1 — &)pd(1 — y)/(1 — pdy).
Consequently,

B = (6 — 63)/(1 = 65) = pd/[2N(1 — pd) + pd]

=1/ + 4Nu + 4Nma) = B.

The latter approximation is for small # and m. If n is infinite,
6 =0and B= 6 =1/(1 + 4Nu + 4Nm), as found by Cock-
erham and Tachida (3). Equilibrium values for 6 and 6; are
& =pla — pd)/2NWand 6; = pb/2NW, where W=1—p +
pb — pay + p*vd, which are solutions obtained by Nagylaki
@.

__ Crow and Aoki (5) utilize Nei's (8) Gsr = (Q; — 0)/(1 —
Q), where Q = [Q, + (n — 1)Q3]/n. There is, of course, a
direct relationship between Ggr and B, based on the para-
metric relationship Q; = 6, + (1 — 6)q,

(n - 1B nGsr
G = —, = =
ST - B B GST +n-1

If we substitute B into Gsr, we obtain Gsr = 1/(1 + 4Nua +
4Nma?), which agrees with their result except for the term
4Nua. They assumed 4 << m, so that 4Nua is negligible
compared to 4Nma?. Takahata and Nei (9) review several
approximate formulas for Gsr.

Discussion

Since there is not a great deal of difference between B and
G5, then why bother to distinguish between them? Actual-
ly, n is a parameter in the model and is generally unknown.
With a sample of r subpopulations, » = 2, an unbiased esti-
mate of B can be obtained in the sense that the numerator
and denominator of the estimator are unbiased. What does
one do for Gsy? Weight the estimates of Qs with r in the
same manner as »n is used parametrically? If so, the estimate
of Ggris directly affected by the number of subpopulations
sampled, a very undesirable property, particularly for small
r.

There is a more compelling reason for preferring 8. Each
step in the hierarchy represents a potential degree of differ-
entiation. Each degree of differentiation should be utilized in
arriving at the total differentiation instead of averaging over
some steps. Also, B makes sense from the standpoint of par-
titioning variation and the role that intraclass correlations
play in this partitioning. Considerable statistical literature is
available on the theory and methodology for intraclass corre-
lations. It is the correlations that measure the degrees of dif-
ferentiation in the population.

A parametric model is essential for understanding the situ-
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ation and as a guide to estimation. Crow and Aoki’s (5) de-
velopment of the parametric Qs is a valid approach and the
only one available in certain circumstances. It just so hap-
pens in this situation that identity by descent coefficients, 6
and 6, simplify the development of the results considerably
and they are the relevant correlations. However, in terms of
a single population of subpopulations, they are not estimable
and the parameters are reduced to 8 = (6, — 63)/(1 — &), the
only correlation that is estimable. The more complete model
clarifies the estimable function for the restricted model.

The identity by descent coefficents provide an additional
advantage of accommodating a fairly general mutation model
for any number of alleles with unequal mutation rates.

All estimates must be of the Qs or linear functions of them
such as 1 — Q; and Q, — Q3. Small sample estimation proce-
dures have been considered in some detail (1, 2, 10, 11). All
procedures give the same results when the number of indi-
viduals in each subpopulation sampled is equal but different
results when the numbers vary. It should be noted that the
method of symmetrical products in ref. 12 when applied to
the x;s defined earlier provides direct estimates of the Qs.

We have treated only a single locus. As mentioned previ-
ously, drift and migration affect all loci in the same manner.
Different loci may well have different numbers of alleles,
equilibrium frequencies, and overall mutation rates. Also, in
practice other forces such as selection will lead to differ-
ences among loci. Crow and Aoki (5) point out that there are
now many molecular variants that are believed to be neutral
or nearly neutral and that these are appropriate candidates
for the study of differentiation among subpopulations. Also,
if mutation rates are much less than migration rates, the dif-
ferences in B due to mutation will be minor. Unfortunately,
there are no good tests of significance for heterogeneity of
the Bs. An average 3 can be obtained by summing the numer-
ators and denominators of the individual Bs,

2@ﬁg»

- 6 -
B= =22

LIRS

’

2 1= 03

where 6, = 3; 6,;(1 — ¢g)/2; (1 — g;). (i now indexes loci.)
Crow and Aoki (5) suggested that the finite island model is
not the most realistic and that migrants are more likely to
come from nearby groups. They did numerical calculations
for a stepping-stone model in the form of an abstract torus in
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a study of the effects of mutation rates, total population size,
and shape of the habitat. Gs; was affected little by mutation
rate, increased with n, and increased as the habitat became
long and narrow. Their results for Ggr also apply to B be-
cause of the functional relationship between the two. Nagy-
laki (7) considered several migration models and concluded
that gametic migration gave a good approximation to diploid
migration, particularly with small mutation and migration
rates and large colonies.

The primary emphasis in this note, however, has been on
adopting a model appropriate for the situation at hand. Con-
siderable theory in population genetics has been based on
the infinite allele model. As in our example, the correlations
are insensitive to the number of alleles, but with the infinite
allele model Q; = 6, and the use of this assumption in the
model for estimation can lead to considerable error. The
variation available is dependent to a considerable extent on
the measuring device whether it be gel or other electrophore-
sis, cutter locations for endonucleases, sequence data, or
other. As pointed out in ref. 6, silent variation—i.e., varia-
tion not recognized by the measuring device—is appropri-
ately ignored. Of course, the greater the number of alleles,
the more information there is on the correlations and popula-
tion differentiation, but in practice one must deal with a fi-
nite, often small, number of alleles.
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