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Supplementary methods (Text S1) for "Evaluating the predictive power of 

genetic variants under a variance explained framework" 

 

Hon-Cheong So and Pak C. Sham  

 

1. Approximation of TPR, FPR and AUC by the binormal ROC curve  

 

 Denote the measurable liability in affected and unaffected individuals by AM  and 
A

M  

respectively. Suppose  

2~ ( , )A A AM N µ σ     and    
2~ ( , )

A A A
M N µ σ  

The AUC for the binormal ROC curve can be expressed in a simple form [1] : 
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The mean measurable liability in cases, or Aµ  , has been derived previously to be aσ
2
, 

where ( ) / [1 ( )]a T Tφ= −Φ  and σ
2
 is the variance explained. Since the overall liability is 0,  
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Hence  
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We may assume that the variances in the affected and unaffected groups are approximately 

equal, especially for more common diseases. AUC can then be approximated by the following 

formula: 
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where Aσ  is the standard deviation in cases which equals 
2 2[1 (1 ) ]bσ σ− −  with 

21b a aT= − + . This method of estimating AUC does not involve any numerical integration 

or simulations and can be easily implemented in a spreadsheet.  

 

Alternatively, to improve the accuracy of AUC estimate, we may calculate /A A
σ σ  using 

the actual standard deviations of liability (derived using the PA formula) in affected and 
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unaffected groups.  
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with b and d as defined before in main text.  

 

 

2.  Probability density function of predicted risks 

Let z denote the quantile of the measurable liability derived from the set of known genes, i.e. 
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hence dp/dR , or the pdf of the absolute risk, can readily be obtained by taking the reciprocal.  

 

Note also the formula to convert R to p is  

1 2(1 ) 1T R
p

σ
σ

− −Φ − −
 = Φ
  

 

 

Risk distribution in affected and unaffected individuals  

Assume that again we wish to predict disease risks given a set of known susceptibility genes. 

However, in this case we would like to now how the predicted risks (not the actual risks, the 

actual risk can only be 0 or 1 if we know the affection status) will be distributed in affected 

and unaffected individuals. 

 

R is defined in the same way as above. Again we have  
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where 
2σ  is the variance explained by the known genes, but the distribution of z is different. 

In affected subjects, z may be written as  

1( ) A Az p σ µ−= Φ +  

where 
2
Aσ  and Aµ  are the variance and mean of the measurable liability for affected 

individuals.
 Aµ = aσ

2
 and 

2
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2
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2
] from previous results. dz/dp is given by  
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dp/dR or the pdf of absolute risk can then be enumerated. For unaffected individuals, the 

calculation is very similar, only that the mean and variance equals cσ
2
 and σ

2
[1-(1-d)σ

2
] 

respectively.  

 

3.  Expression for AUC and Area under the curve when proportion of 

cases explained is plotted against population at the highest risk  

 

  We have previously derived the Pr(true positive) for a given percentile cut-off c. Test is 

defined as positive if the liability score exceeds this cut-off. The sensitivity of the test when 

the cut-off point is set at c is given by 
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Similarly, 1-specificity (or the false positive rate, FPR) is given by 
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The AUC is the area under the curve when sensitivity is plotted against 1-specificity. 

This area is given by  

1

0
( ) (1 ( ))AUC sens c d spec c= −∫  
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Note that

1
1

0 2

( )
[1 ( )]

1

T p
dp

σ

σ

−− Φ
−Φ

−
∫ is independent of c, and hence the derivative of this 

expression is 0.  

 

Now we can express  AUC  as  
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Note that when c=1, 1-specificity=0 and when c=0, 1-specificty=1, hence the change of 

integration limits on the 2
nd
 line.  

 

 

References: 

  1. Pepe MS (2003) The statistical evaluation of medical tests for classification and 

prediction. Oxford: Oxford University Press. 

 


