Supporting Information

Quintana et al. 10.1073/pnas.1009201107

Fig. S1. AHR activation by endogenous ligands promotes the differentiation of FoxP3⁺ iT_{reg}. (A and B) Frequency of CD4⁺ Foxp3:GFP⁺ T_{reg} in the thymus (A) and the MLN (B) of naive AHR-d Foxp3^{gpf} and Foxp3^{gfp} knock-in mice. *P < 0.05 compared with WT mice. (C) CD4⁺ Foxp3:GFP⁻ T cells from naive AHR-d Foxp3^{gpf} and Foxp3^{gfp} mice were transferred into RAG-1-deficient hosts, the recipients were immunized with MOG₃₅₋₅₅ in IFA, and the frequency of CD4⁺ FoxP3:GFP⁺ T_{reg} was analyzed in the spleen 3 wk after immunization. *P < 0.01 compared with recipients of WT cells. (D) Naive CD4⁺ Foxp3:GFP⁻ T cells from AHR-d Foxp3^{gpf} and Foxp3^{gfp} knock-in mice were stimulated for 5 d with plate-bound antibodies to CD3 and CD28, or with soluble antibodies to CD3 and irradiated APCs, in the presence of IL-2 and TGF- β 1, and the frequency of CD4⁺ Foxp3:GFP⁺ T cells from naive AHR-d or WT mice were activated for 2 d with plate-bound antibodies to CD3, with or without IL-2, TGF- β 1, and the phosphorylation of Stat1 was analyzed by FACS. Representative data of one of at least three experiments that produced similar results.

Fig. 52. Suppressive activity in WT and the d allele of *ahr* (aryl hydrocarbon receptor) (AHR-d) FoxP3⁺ T_{reg}. CD4⁺ Foxp3:GFP⁻ T_{reg} were isolated from WT or AHR-d mice and their suppressive activity was analyzed in coculture experiments using naive Foxp3:GFP⁻ T cells activated with antibodies to CD3 and irradiated antigen presenting cells (APCs) as responder T cells. Representative data of one of two experiments that produced similar results.

Fig. S3. AHR activation does not limit Stat 5 signaling. Naive CD4⁺ Foxp3:GFP⁻ T cells from naive AHR-d or WT mice were activated for 2 d with plate-bound antibodies to CD3 and CD28, with or without IL-2, TGF- β 1, and IL-2 + TGF β 1, and the phosphorylation of Stat5 was analyzed by FACS. Representative data of three experiments that produced similar results.

Fig. S4. AHR activation by the nontoxic endogenous ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) does not result in general immunosupression. Proliferative response to anti-CD3 of lymph node cells from ITE- or control-treated animals 10 d after immunization with MOG₃₅₋₅₅ in complete Fruend's adjuvant (CFA). Cell proliferation is indicated as cpm + SD in triplicate wells.

Fig. S5. Frequency of FoxP3⁺ T_{reg} in SJL treated mice. Frequency of CD4⁺Foxp3:GFP⁺ T_{reg} in splenocytes from ITE or control treated SJL mice, 30 d after experimental autoimmune encephalomyelitis (EAE) induction. Representative data of one of two experiments that produced similar results.

Fig. S6. Bone marrow-dendritic cell (BM-DC) differentiated in the presence of ITE are tolerogenic DCs. (A) FACS analysis of BM-DC treated with ITE (BM-DC_{ITE}) or vehicle (BM-DC) as control. Numbers in plots indicate the percent of positive cells; the staining obtained with isotype-matched control antibodies is shown in gray. (B) Quantitative PCR analysis of cytokine expression by splenic DC isolated from ITE- or control-treated mice; results are presented relative to GAPDH mRNA. *P < 0.01 and **P < 0.001 compared with BM-DC differentiated from WT mice. (C and D) Naive 2D2⁺ CD4⁺ FoxP3:GFP⁻ T cells were stimulated with BM-DC _{ITE} or BM-DC and MOG₃₅₋₅₅, and proliferation (C) and cytokine secretion (D) was analyzed. *P < 0.01 and **P < 0.001 when compared with T cells incubated with BM-DC differentiated from WT mice. Representative data of one of three experiments that produced similar results.

Fig. 57. Increased *aldh1a2* expression by BM-DC_{ITE}. Quantitative PCR analysis of *aldh1a2* expression by splenic DCs isolated from ITE- or control-treated WT or AHR-d mice; results are presented relative to GAPDH mRNA. **, P < 0.001 when compared with BM-DC taken from control-treated WT mice or BM-DC_{ITE} from AHR-d mice. Representative data of one of two experiments that produced similar results.

Table S1. Measurement of live	r toxicity in ITE-treated mice
-------------------------------	--------------------------------

Test	Units	Control	ITE	Reference range
ALT (GPT)	U/L	16 ± 2	19 ± 4	0–54
AST (GOT)	U/L	79 ± 29	94 ± 17	9–74
Alkaline phosphatase	U/L	75 ± 8	55 ± 11	36–300
Total bilirubin	mg/dL	0 ± 0	0 ± 0	0.1–1.2
Direct bilirubin	mg/dL	0 ± 0	0 ± 0	0.0–0.8
Total protein	g/dL	6 ± 0	5 ± 0	4.4-8.0
Albumin	g/dL	2 ± 0	3 ± 0	2.9–5.4
Globulin	g/dL	3 ± 0	3 ± 0	2.0-4.0

ALT, L-alanine: 2-oxoglutarate aminotransferase; AST, aspartate aminotransferase; GOT, glutamic oxalacetic transaminase; GPT, glutamyl pyruvic transaminase.

PNAS PNAS