Supporting Information Appendix

Crystal-Structures of Proline Derived Enamines

Dominique Anna Bock, Christian W. Lehmann and Benjamin List

Table of Contents

- I. General Experimental
- II. X-Ray Crystallography
- III. Cambridge Structural Database (CSD) research for enamine bond lengths
- IV. Intramolecular carbon oxygen distances and angles
- V. NMR-Measurement
- VI. References

I. General Experimental

Synthesis of 1-(4,4,4-Trifluoro-3-oxo-1-buteny)-(S)-Proline Derivates 3a-g

To a solution of amino acids **1a-g** (1 mmol) in 1 N NaOH (1 mL) was added ketone **2** (168.177 mg, 1 mmol) and the mixture was stirred for 1-3 h at room temperature until the solution became homogeneous. The mixture was then acidified using 6 N aq HCl to pH 3.0 and extracted with Et_2O (3 x 1 mL). The ethereal layer was dried (MgSO₄) and filtered. Hexane (0.5 mL) was added and the solvent removed by evaporation. The solids are crystallized from Et_2O .

Synthesis of 1-(5-Methyl-3-oxo-1-cyclohexen-1-yl)-(*S*)-Proline and 1-(4,4-Dimethyl-3-oxo-1-cyclohexen-1-yl)-(*S*)-Proline 5a-b

To a solution of (S)-proline (5 mmol) in methanol (5 mL) was added diketone 4a or 4b (5 mmol) and the mixture was stirred for 5 h at room temperature. The solids are crystallized from methanol.

II. X-Ray Crystallography

General Procedure. Crystal were mounted on a MiTeGen loop using Perfluoropolyether PFO-XR75 and frozen immediately in a cold nitrogen gas stream at 100 K.

Data were collected on a Bruker-AXS Smart APEX-II (Bruker AXS Enraf-Nonius KappaCCD for **3b**, **3f** and **3g**) with Mo-K α radiation (λ =0.71073 Å) utilizing both Φ and Ω scans. The data were scaled with SADABS.

Collection and refinement data are given in SI Table 1. ORTEP's are shown in SI Fig. 18. Data for the hydrogen bonds in the molecules are listed in SI Table 2.

Figure 18. X-Ray crystal structures of enamines 3a-g and 5a-b.

Figure 18 (cont). X-Ray crystal structures of enamines 3a-g and 5a-b.

Table 1. Collection and refinement data 3a-f.

	3a	3b	3с	3d	Зе	3f
Empirical formula	C ₉ H ₁₀ F ₃ NO ₃	C ₁₀ H ₁₂ F ₃ NO ₃	$C_9H_{10}F_3NO_4$	C ₉ H ₉ F ₄ NO ₃	$C_9H_{11}F_4NO_4$	C ₈ H ₈ F ₃ NO ₃
<i>Mr</i> /g ⋅ mol ⁻¹	237.18	251.21	253.18	255.17	273.19	223.15
Temperature/K			100			
Wavelength/ Å			0.7173			
Crystal description	needle	block	needle	needle	needle	plate
Colour	colorless	colorless	colorless	colorless	colorless	colorless
Crystal system	monoclinic	tetragonal	orthorhombic	orthorhombic	orthorhombic	monoclinic
Space group	C2	P4 ₃	P212121	P212121	P212121	P2 ₁ /c
Unit cell dimension						
<i>a</i> /Å	29.760(9)	7.75320(10)	4.6943(5)	5.0081(9)	4.9549(9)	13.9430(9)
b/Å	5.0297(15)	7.75320(10)	12.2402(12)	9.2071(17)	8.8283(16)	6.8267(5)
<i>c</i> /Å	24.504(8)	19.5272(2)	18.8040(19)	23.483(4)	26.186(5)	10.2624(7)
α/°	90	90	90	90	90	90
β/°	122.921(9)	90	90	90	90	109.032(2)
γ/°	90	90	90	90	90	90
V∕/Å ³	3078.8(16)	1173.82(2)	1080.46(19)	1082.8(3)	1145.45	923.477
Z	12	4	4	4	4	4
$D_{calo}/g \cdot cm^3$	1.535	1.421	1.556	1.565	1.584	1.605
Absorption coefficient/mm ⁻¹	0.149	0.134	0.153	0.160	0.163	0.160
<i>F</i> (000)	1464	520	520	520	520	456
Crystal size/mm ³	0.08 x 0.02 x 0.02	0.31 x 0.30 x 0.25	0.11 x 0.04 x 0.02	0.09 x 0.02 x 0.02	0.06 x 0.03 x 0.02	0.36 x 0.23 x 0.07

θ range for data collection/°	0.99-27.68	3.36-37.88	1.99-33.24	1.73-30.50	1.56-33.28	6.17-38.57
	-38 ≤ h ≤ 38	-13 ≤ h ≤ 13	-7 ≤ h ≤ 7	-7 ≤ h ≤ 7	-7 ≤ h ≤ 7	-24 ≤ h ≤ 24
Index ranges	-6≤ k ≤ 6	-13≤ k ≤ 13	-18≤ k ≤ 18	-12≤ k ≤ 13	-13≤ k ≤ 13	-11≤ k ≤ 11
	-31≤ ≤ 31	-33≤ ≤ 33	-28≤ I ≤ 28	-33≤∣≤33	-40≤ I ≤ 40	-18≤ l ≤ 18
Reflections collected	34216	125576	36090	29945	37479	19309
Unique refelctions	7098	6298	4154	3289	4411	5181
R _{int}	0.1461	0.0404	0.0282	0.0784	0.1052	0.0448
Reflections with I> $2\sigma(I)$	4234	5836	3936	2738	3003	3603
Completeness to θ/%	99.7	99.8	100	99.9	99.4	99.5
Absorbtions correction			Gaussian			
Max/min transmission	0.99894/0.99592	1.00/0.99	1.00/0.99	1.00/0.99	0.99894/0.99592	0.99894/0.99592
Refinement method			Full-matrix least-	squares on F ²		
Data/restrains/parameters	7098/37/464	6298/1/156	4154/0/156	3289/0/155	4411/3/170	5181/0/137
Goodness of fit on F ²	1.048	1.101	0.886	1.099	1.020	0.998
F^{2} to R_{1} [$l > 2\sigma(l)$]	0.0644	0.0477	0.0279	0.0454	0.0505	0.0642
$wR_2[l > 2\sigma(l)]$	0.1588	0.1244	0.0904	0.1287	0.1304	0.1688
Absolute structutre						
parameter	0.3(12)	0.1(4)	0.3(3)	0.1(8)	-0.2(8)	
Largest diff. peak and hole/						
e · A ⁻³	0.770 and -0.605	0.531 and -0.624	0.420 and -0.223	0.493 and -0.331	0.502 and -0.312	0.623 and -0.621

Table 1 (cont). Collection and refinement data 3a-g and 5a-b.

	3g	5a	5b
Empirical formula		C40H47NO2	CuaHuoNOa
$Mr/q \cdot mol^{-1}$	308.25	223.27	237.29
Temperature/K		100	
Wavelength/ Å		0.71073	
Crystal description	plate	block	isometric
Colour	colorless	colorless	colorless
Crystal system	hexagonal	orthorhombic	orthorhombic
Space group	P_{6_5}	P212121	P212121
Unit cell dimension			
a/Å	9.35140(10)	5.0422(6)	10.1374(11)
b/Å	9.35140(10)	12.3512(15)	10.9893(12)
c/Å	27.8697(3)	18.194(2)	11.2612(12)
α/°	90	90	90
β/°	90	90	90
γ/ ^c	120	90	90
V∕/Å ³	2110.65(4)	1133.0(2)	1254.5(2)
Z	6	4	4
$D_{calo}/g \cdot cm^3$	1.455	1.309	1.256
Absorption coefficient/mm ⁻¹	0.134	0.094	0.089
<i>F</i> (000)	960	480	512
Crystal size/mm ³	0.150 x 0.121x 0.052	0.04 x 0.02 x 0.02	0.04 x 0.02 x 0.02

θ range for data collection/°	2.91-29.65	1.99-34.96	3.56-31.12
	-12 ≤ h ≤ 12	-8 ≤ h ≤ 8	-26 ≤ h ≤ 26
Index ranges	-12≤ k ≤ 12	-19≤ k ≤ 19	-17≤ k ≤ 17
	-38≤ I ≤ 38	-29≤ l ≤ 28	-27≤ ≤ 27
Reflections collected	43788	41486	113076
Unique refelctions	3941	4960	6494
R _{int}	0.0550	0.0338	0.0678
Reflections with I>2o(I)	3291	4651	4531
Completeness to 0/%	99.8	100	96.6
Absorbtions correction		Gaussian	
Max/min transmission	0.99/0.98	0.99894/0.99592	0.99894/0.99592
Refinement method		Full-matrix least-	squares on F ²
Data/restrains/parameters	3941/1/203	4960/0/161	5982/0/157
Goodness of fit on F ²	1.079	1.143	0.966
F^{2} to $R_{1} [I > 2\sigma(I)]$	0.0497	0.0369	0.0298
$wR_2[l > 2\sigma(l)]$	0.1200	0.1005	0.0971
Absolute structutre			
parameter	0.0(8)	-0.6(7)	-0.4(4)
Largest diff. peak and hole/			
e · A ⁻³	0.250 and -0.264	0.428 and -0.261	0.535 and -0.510

Compound	D-HA	d(D-H)/Å	d(HA) /Å	d(DA) /Å	Angle DHA/°	symm
32		0 820	1 820	2 631	165.24	
Ja	01C-H1C 03A	0.020	1.02.9	2.031	167.79	[x, y+1, 2]
		0.709	1.002	2.552	172.20	[x, y-1, 2]
	ОТБ-ПТБОЗБ	0.950	1.040	2.304	172.20	[-x+1/2, y-1/2, -2]
3b	O1-H1O3	0.820	1.788	2.598	169.05	[y, -x+2, z+1/4]
3c	O1-H1O4	0.820	1.995	2.810	172.43	[-x+3/2, -y+2, z-1/2]
	O2-H2O4	0.820	1.806	2.609	165.86	[x-1/2, -y+5/2, -z]
3d	O1-H1O3	0.820	1.833	2.605	156.48	[x-1/2, -y+3/2, -z-2]
3e	O2-H2AO1	0.820	1.779	2.580	164.90	
	O1-H1AO3	0.817	1.946	2.751	168.25	[x+1/2, -y+3/2, -z+2]
	O1-H1BO4	0.866	1.913	2.746	160.93	[x+3/2, -y+3/2, -z+2]
3f	O2-H2AO1	0.820	1.775	2.566	161.56	[-x+1, -y, -z+1]
3g	N1-H1O3	0.860	2.019	2.848	161.50	[y-1, -x+y, z+1/6]
	O1-H1AO4	0.820	1.828	2.641	170.48	[y, -x+y, z+1/6]
5a	O1-H1O3	0.840	1.710	2.528	164.21	[-x+5/2, -y+2, z+1/2]
5b	O1-H1O3	0.820	1.743	2.526	159.11	[-x+1/2, -y-3, z+1/2]

Table 2. Collection and refinement data **3a-g** and **5a-b**. Hydrogen bonds with H.A < r(A) + 2.000 Angstroms andAngle DHA > 110 deg.

III. Cambridge Structural Database (CSD) research for enamine bond lengths

The enamine bond lengths observed in the compounds of this study can be compared to the average values found in the Cambridge Structural Database for a substructure consisting of a saturated five-membered N-heterocycle bound to an acyclic olefin. There are 30 refcodes representing 36 entries (Table 3) in the latest version of the CSD which contain the search motif (**Search 1**). With the exception of two structures (27,28) the carbon-carbon double bond is part of a larger conjugated electron system in all other hits. The C=C bond averages 1.38(3) Å and the C—N bond averages 1.336(16) Å. In addition, the nitrogen pyramidalization derived from this search yields values in the range 0.0 to 0.1 (average 0.03(2) Å). An alternative search (**Search 2**) for conjugated keto enamines yielded 56 hits, 62 observations (Table 4). The search criteria required a planar π -system. Cyclic links for the diene were <u>not</u> excluded. Average bond lengths for C-N, C=C, C-C and C=O are 1.337(11), 1.38(3), 1.44(2) and 1.225(16) Å. Average pyramidality of N is 0.06(4).

For comparison a classical amine, consisting of the same heterocycle with an N-alkyl group results in a C—N averaged bond length of 1.464(18) Å and a pyramidalization of 0.43(6) Å.

Figure 19. Search motif for search 1 (left) and search 2 (right)

Table 3. List of the 30 refcodes for search 1				
ACUPET	AKIQAM			
DPYTMC10	FAZNOJ			
FUDYUY	GAWPAV			
HIHCIL	HOFBAG			
JALCUU	KAXLOK			
KOTNEM	NIGQOK			
NOCVEH	NURXIH			
ODOTIK	QAGLIU			
QECKUE	QECLAL			
QUSKEU	QUSKIY			
ROGFUP	SAFPEU			
SIPBIC	SIPBUO			
TITKUC	TONXOK			
UHASEB	UHASIF			
UHASUR	WAPHEB			

						~
I able 4.	List of	the 56	refcodes	tor	search	2

ACULOZ	JALCUU
AHIMIN	LUSWOL
AHIMOT	NEPTUY
AJIXEW	OBICIL
ATOYOX	OCIPEV
ATOYUD	OCIPIZ
ATOZAK	PAQWAG
BIDSEM	PEBWAU
BOSMAX	PUNXEB
BOSMAX10	PYAZPC
BPYRRM	PYRBZR
CETZAC	QAKXOQ
DOYHUU	QAKXUW
DOYJAC	QAKYAD
DPYBTX	QORQEU
DUCKUH	QORQIY
FAZNOJ	RUGFOO
FEYMOM	SAFPEU
FISJAT	SIPBUO
FIVTUZ	TADTOI
FUDYUY	UHASEB
GAHMEH	UHASIF
GAMMAI	UHASUR
GAWPAV	UNOFEI
GEFVET	WIRWEZ
GEFVIX	XEGWIP
ICOWUS	YEYTUR
IJULEE	YEYVAZ

IV. Intramolecular carbon oxygen distances and angles

The intramolecular carbon oxygen distance between the carbonyl oxygen atom of the carboxy group and the α ' carbon atom of the double bond varies between 2.829 and 3.394 Å (Table 5). In all cases, the closest distance is between the double bond and the carbonyl oxygen not the hydroxyl oxygen. The average distance for the nine *anti* conformers is 3.02(15) Å. Notably,

there is a strong correlation between the sum of two dihedral angles and the carbon-oxygen distance (Fig. 20). The first one of these dihedral angles is defined by the four atoms N1-C2-C=O, the second dihedral angle is defined by exo-cyclic sp^2 -carbon atom, N1, C2 and the carbon atom of the carboxy group.

While the intramolecular C···O distances are up to 0.4 Å shorter than the sum of the van der Waals radii (1.70 + 1.52 = 3.22 Å), there is a rather acute angle for the approaching oxygen towards the carbon atom of the double bond. This angle ε has been defined as the angle between the line connecting Ca' and O and the normal of the plane defined by N Ca' and Ca'. At the same time there is no pyramidalization of Ca' (measured for **5a** and **5b**, as the only examples with three non-hydrogen substituents). The angle ε is related to the angle of attack as introduced by Dunitz and Bürgi in 1973 (29) by adding 90°.

Compound	C=O····Cɑ'=C	$\tau_1 = O=C-C-N$	$\tau_2 = C-C\alpha-N-Csp^2$	$\tau_1 + \tau_2$	ε
3a	3.184	-22.12	-64.61	-86.73	43.4
3a	2.890	10.73	-55.11	-44.38	49.2
3a	2.829	11.32	-41.4	-30.08	56.5
3c	2.972	-12.39	-52.42	-64.81	45.9
3d	2.866	13.3	-55.13	-41.83	44.8
3e	3.127	15.13	-75.81	-60.68	45.4
3g	3.394	-43.93	-63.38	-107.31	41.7
5a	3.188	-0.52	-78.95	-79.47	39.2
5b	3.123	14.75	-78.46	-63.71	49.4

Table 5: Distance between the carbonyl oxygen and the α ' carbon atom of the double bond together with the dihedral angles and the angle ϵ .

Figure 20: Diagram of the correlation between the two dihedral angles (τ_1 and τ_2) and the carbon-oxygen distance. The x-axis represents the distance in Å between O and C, the y-axis is the sum of τ_1 and τ_2 .

Figure 21: ¹H-NMR-Measurement (in DMSO) of 1-[(1*E*)-4,4,4-trifluoro-3-oxobutenyl]-(2*S*,4*R*)-4-fluoro-pyrrolidine-2-carboxylic acid (**3d**) with or without triethylamine.

VI. References

28. Fuji K, Node M, Nagasawa H, Naniwa Y, Taga T, Machida K, Snatzke G (1989) Direct asymmetric synthesis of quaternary carbon centers by the addition-elimination process: nitroolefination of α -substituted δ -lactones. *J Am Chem Soc* 111: 7921-7925.

29. Begum NS, Venkatesan K (1992) Studies on nonlinear optical materials: structure of diphenylmethyl (Z)-1-(1-methylthio-2-nitrovinyl)tetrahydropyrrole-2-carboxylate. *Acta Cryst C* C48: 902-905.

30. Bürgi HB, Dunitz JD, Shefter E (1973) Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group. *J Am Chem Soc* 95: 5065-5067.