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1 Preparation, Parametrization and Molecular Dynamics Sim-

ulation Protocol of the All-Atom DNA System

We started from the canonical B-form of a 16-base-pair DNA oligomer [d(CGAGGTTTAAACCTCG)]2 (1),

which was built with the nucleic acid generator (’nucgen’), a part of the of the AMBER 10.0

suit of programs (2). The refined Amber Parmbsc0 force field for nucleic acids (3) was used to

parametrize our DNA segment. The initial DNA structure was first neutralized by 15 Na+ ions.

An extra ∼ 0.12 M of NaCl buffer (14 additional Na+ ions and 14 Cl− ions), corresponding to

the physiological salt concentration, was then added to the system. We used a recently developed

force-field for alkali and halide monovalent ions to parametrize inter-ionic and ion-water inter-

actions, as well as the interactions between ions and the DNA (4). It is important to note that

the earlier default force-field for monovalent ions in AMBER led to some overestimation of ionic

pairing, as discussed in our recent works (5–7) as well as the works of others (8–10). The ini-

tial positions of the ions were determined from the computed electrostatic potential using LEaP

module of the AMBER 10.0 (2). The system was further solvated in more than 6500 TIP3P (11)

water molecules in a cubic box, having dimensions of 60 × 60 × 60 Å. As a result, two DNA

segments from neighboring periodic images were at least 35 Å apart. The overall number of atoms

in the system was ∼ 20000 in the periodic box. To equilibrate this starting structure we used a

multistage equilibration process, reported by Orozco and coworkers (12). The subsequent produc-

tion run was carried out at constant temperature (300 K) and pressure (1 bar) using the Langevin

temperature equilibration scheme (see AMBER 10.0 manual), the “weak-coupling” pressure equi-

libration scheme (13), and periodic boundary conditions. The translational center-of-mass motion

was removed every 2 ps. We used the SHAKE algorithm (14) to constrain all bonds involving

hydrogens, which allows all MD simulations to use an increased time step of 2 fs without any

instability. Particle Mesh Ewald method (15) was used to treat long-range interactions with a 9 Å

nonbonded cutoff. The production run was carried out for 60 ns to ensure the equilibration of ions.
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It was shown in prior works (16, 17) that 50 ns MD was enough to equilibrate the Na+ atmosphere

around DNA in a smaller system comprised of ∼ 16000 atoms. Given a slightly larger size of our

systems (∼ 20000 atoms), we used extra 10 ns of MD to ensure equilibration.

2 Preparation and Molecular Dynamics Simulation Protocol

for the Coarse-Grained Systems

We used the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (18) to carry

out MD simulations of various coarse-grained (CG) systems. We simulated two linear DNA chains

of different number of base-pairs and also one torsionally stressed circular DNA chain. The macro-

molecule used for the derivation of the CG Hamiltonian parameter set with the MRG-CG technique

was the linear DNA segment of the same size as the all-atom system and comprised of 32 beads (16

base-pairs), whose initial coordinates were the geometric centers of the corresponding all-atomistic

base-pair nucleotides. We call this system 1. Next, we have carried out 7 MD simulations of much

longer linear DNA chain of 200 base-pairs (400 beads), which was immersed in the NaCl salt

buffer of various concentrations in a range ∼ [0.1 − 100] mM, to study the dependence of the

DNA persistence length on the solution ionic strength. We refer to all those systems as system 2.

Finally, we have built and simulated a 90-base-pair DNA nanocircle with imposed torsional stress

to predict the structural phase transition to a buckled state upon varying NaCl concentration in a

range of C ∼ [1− 500] mM. Details on the geometry and preparation of this nanocircle, which we

call system 3, are provided in the Methods Section of the main text. The Biochemical Algorithms

Library (BALL) (19) was used to build all the models.

All CG DNA molecules were first neutralized by the necessary amount of the Na+ ions and

additional NaCl molecules were added to reproduce the physiological, or other conditions. Note

there was no water in CG systems. The size of the periodically repeating cubic cell in the system 1

was the same as in the corresponding all-atom system, and the Particle Mesh Ewald technique was
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used to treat the long-range (Coulomb) interactions. To be consistent when going from atomistic

to coarse-grained simulations, we kept the sizes of simulation boxes equal to those of AA system,

such that both the cutoff for direct Coulomb interactions and, importantly, the size of periodic cell

along with the precision of the Ewald summation procedure (which defines the number of k-space

points) remain unchanged. Our experience with varying the periodic box sizes suggests that the

latter requirement is necessary, since different conditions for Ewald procedure may influence elec-

trostatics. Following these requirements, the number of ions and the size of periodically repeating

cubic cell in system 1 were the same as in the corresponding AA system.

Long DNA molecule in a set of systems 2 was immersed in a large periodic box having dimen-

sions ∼ 800 × 800 × 800 Å, and circular 90-base-pair DNA in a set of systems 3 was placed in

a periodic cube of the linear dimension of ∼ 120 Å. The number of mobile Na+ and Cl− ions in

systems 2 and 3 varied to reproduce the desired ionic concentration.

Initially all systems were minimized according to the standard steepest descent algorithm. Then

they were heated up to 300 K during the 5 ns and subsequently equilibrated for another 10 ns.

We used the canonical NVT integration scheme (Nose/Hoover temperature thermostat) to update

particle’s positions and velocities at each timestep (20). To determine the biggest timestep that can

be used to simulate the CG system without instabilities, we used the criteria of the total energy

conservation, the latter being the energy of the CG system complemented by the contribution from

the Nose-Hoover Hamiltonian (21). It turned out that it was safe to use the timesteps of up to 10

fs, so we used this upper limit in our MD simulations. The production run for each optimization

iteration was 20 ns to ensure the convergence of the covariance matrix in Eq. (1), see the main

text. We verified the convergence at each iteration by comparing the data generated by two halves

of the MD trajectory.
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3 Parametrization of the Coarse-Grained Models

Our 2-bead model of the double-stranded DNA chain is structurally analogous to the DNA model

developed in our prior work (22). However, due to the presence of mobile Na+ and Cl− ions in

the current model, Hamiltonian parameters for the DNA chain needed to be re-optimized with

the MRG-CG technique (see the Table 1). As for the ionic interaction parameters between the

mobile ions, we have taken those from our recent work on the coarse-graining the physiological

NaCl solution (23), see the Table 2. As mentioned in the main text, we did not optimize inter-

ionic potentials as they generated, after optimizing the rest of the Hamiltonian parameter set, very

plausible inter-ionic radial distribution functions, as shown in Figure 1.

In contrast, the derivation of the functional forms and the corresponding parameters describing

ion-DNA interactions was a nontrivial aspect of the present study. In particular, trial interaction

potentials among the beads of DNA and Na+ and Cl− ions extracted from the all-atom system

could not be directly used in our CG model. Indeed, conventional Boltzmann inversion procedure

used for derivation of other types of structural potentials resulted in significantly overestimated

attraction/repulsion among the bead of DNA and Na+ /Cl− ion. Apparently, this was caused by

correlation effects from the neighboring DNA beads (due to chain connectivity). To cut off these

correlation effects and single out a “typical” interaction between DNA bead and mobile ions we

obtained an MD trajectory of a separate system comprised of a number of unconnected DNA

“monomers”, dymethylphosphate (DMPH) ions, and Na+ and Cl ions. Those DMPH ions were

constructed by “clipping out” the phosphate group from the backbone strand of the all-atom DNA

system, enveloped by 2 methyl groups. Each DMPH ion carries the net charge −1, immersed in

the NaCl salt buffer. Further details for atomistic DMPH parameterization and MD simulations

can be found in our prior work (7). The CG Hamiltonian terms obtained using this approach is

introduced in the main text, Eq.(6), while all the defining parameters are given in the Table 3.

Extracted effective interaction potentials among DMPH ions and Na+ and Cl− ions appeared
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Figure 1: The comparison between inter-ionic radial distribution functions computed from the
reference all-atom system (solid black lines) and the corresponding coarse-grained system (blue
dashed lines).
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Figure 2: (A) The dimethyl phosphate (DMPH) ion, (CH3)2PO−4 (on the right), was obtained by
adding hydrogens, to complete the valence of carbon atoms, to the (−C −PO−4 −C−) functional
group,“clipped out” from the DNA strand backbone (shown on the left). Partial charges of the
DMPH anion atoms are provided in units of the electron charge. (B) Trial effective interacion
potential between single DNA bead and Na+ ion extracted from the actual system of the DNA
chain in the aqueous NaCl solution (black curve) and the analogous system where DNA polymer is
substituted with the unconnected DMPH ions (red dashed curve). It is seen that DNA connectivity
(correlation effects caused by neighbouring DNA beads) results in a significantly overestimated
ion–bead-of-DNA trial potential (black curve).

to be an excellent starting point for describing ion-DNA interactions in our CG model. Indeed,

as shown in the Figure 3 of the main text those potentials generated both 1D and 2D distributions

of mobile ions around DNA which were already very much consistent with the atomistic results.

Notably, only 2 iterations of the following MRG-CG procedure were needed to improve those dis-

tributions even more. On the other hand, had we started from the trial ion–bead-of-DNA potentials

extracted from the actual system – DNA polymer and mobile Na+ and Cl− ions – the number of

MRG-CG iterations would be significantly larger. In addition, the convergence of the Hamiltonian

parameter set always may be an issue when starting from unfavorable initial conditions. This point

is illustrated in the Figure 2b.
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4 Physical and Mathematical Background of the MRG-CG Tech-

nique

In the Methods Section we introduced the main relations of the MRG-CG method. Although the

technique is based on the RG Monte Carlo method by R. Swendsen which was used as long as

30 years ago to study criticality in spin systems (24), we recently applied it to complex molecular

systems, providing a new interpretation in light of the Field Theory. The latter, in particular,

invites for an immediate method generalization by means of reproducing the moments of the order

2 and more for the physical observables entering the Hamiltonian. This is briefly mentioned in the

Methods Section. Below we discuss other possibilities to enhance the method accuracy and also

provide some important mathematical details on solving set of linear equations, Eq.(1) of the main

text. Additional technical discussion can be found in prior works (22, 23).

4.1 Field-theoretical interpretation.

In the present study and our earlier works (22, 23) we have limited ourselves with matching only

the first moments of the physical observables, which are the first derivatives of the partition func-

tion over the corresponding conjugate fields, see Eq.(2). According to the general field-theoretical

scheme (25), we call this approach mean-field, although this terminology is ambiguous. To avoid

misunderstanding, we emphasize that the “mean-field” here refers to the conjugate fields {Kα}

(Hamiltonian parameters) coupled to the collective observables, {Sα}, which may be complex

functions of the “low-level” structural system characteristics, such as inter-particle separation,

bending angles, and the like. For example, the role of {Sangle
α } is played by various powers of the

“primary” order parameter, (θ − θ0), which is the deviation from the equilibrium bending angle.

The same is true for the bond and all of the fan interactions where the role of different observables

is played by various monomials of the deviation from the equilibrium interparticle separation (see

the Methods Section of the main text). The variable (r − r0) itself is the characteristic of primary
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importance for, say, for chemists investigating ionic association/dissociation, where the inter-ionic

distance is the plausible reaction coordinate. Because observables {Sα} represent monomials of

(θ− θ0) and (r− r0) of the order 2 and more, matching the first moments in distributions of {Sα}

really captures the partition function details well beyond from what can be expected from a simple

mean-field picture.

This argument applies with lesser transparecy to the collective modes describing structure of

the ionic “shells”, cumulative Gaussian functions, SGauss
α =

∑
allpairs e−C

(α)[r−R(α)]
2

, due to more

complex functional form. However, the concept remains the same – reproducing averages of Sαs

effectively captures finer details that are neglected in the mean-field regime.

To summarize, there are two ways to enhance the accuracy of the MRG-CG method. First,

as mentioned in the beginning, one can try to reproduce higher-order correlators of physical ob-

servables entering linearly the CG Hamiltonian, H =
∑N

α=1KαSα, and leave the number N of

observables fixed. On the other hand, one can introduce additional variables, such as higher-order

monomials of (r−r0), or more complicated functions of r, and remain in the regime, which we call

mean-field over Sαs, for the lack of a better term. The former approach will necessarily demand

dealing with over-determined systems of linear equations, as the initial system of N equations

[see Eq.(1), main text] will be supplemented by ∼ Nn additional equations for ∆〈S1...Sn〉 (see

the Methods Section). The latter approach is conjugate with the search for additional physically

motivated observables which would form a more complete basis set. At the same time, such an ex-

tended basis set has to be compact enough in order not to generate high degeneracy of the obtained

solutions. For example, even in the present CG model of DNA and ions characterized by the total

of 47 observables (39 of the DNA and 8 of the ion-DNA structural characteristics included into

optimization) we faced the degeneracy problem caused by singularity of the covariance matrix en-

tering Eq.(1) (see the main text). A standard way to reduce the degeneracy is to utilize the Singular

Value Decomposition (SVD) technique to eliminate those covariance matrix eigenvectors which

superfluously affect Hamiltonian parameters. We elaborate next on the nontrivial inverse problem
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which we had to overcome before direct use of the SVD.

4.2 Compact Basis Set and Solving the Inverse Problem.

Eigenvalues of the covariance matrix, 〈SαSγ〉 − 〈Sα〉〈Sγ〉, indicate how changes in various dy-

namical modes affect different effective potentials. For the DNA problem, it turns out that the

covariance matrix is nearly singular, resulting in degeneracy of solutions that represent various

sets of parameters. Apparently, this problem is caused by some redundancy of interaction potential

functions as well as by the noise which is normally present in the input data obtained from MD

simulations (26, 27). When too many observables are used to describe the CG system, larger un-

certainty in the covariance matrix inversion results, and, thus, the stronger the degeneracy of the

resulting set of CG Hamiltonian parameters. This implies, in particular, a significant advantage of

using our compact set of 47 basis functions associated with DNA and ionic motions, as opposed,

for example, to a very large set of ∼ 600 positional Dirac delta functions used to describe solely

ionic behavior in work by Lyubartsev et al (28). Indeed, each type of interactions in Ref. (28)

was defined by order of 200 observables (instead of 3 Sαs associated with DNA bond, bending

angle and fan interactions in our case), defined by the corresponding set of positional Dirac delta

functions. Since our model of DNA and ions is described by more than 15 interaction potentials,

such representation would require to deal with order of 4000 variables, requiring inversion of a

matrix of ∼ 107 elements to solve the set of linear equations, Eq.(1) of the main text. Repre-

senting bending angle potentials, which are 3-body interactions, is even more problematic in the

positional basis, resulting in immense computational difficulty because of necessity to deal with

very large arrays. Note also that had we included the 4-body dihedral potential in the considera-

tion, the corresponding matrices would be even larger. On the other hand, within our approach this

computational difficulty is bypassed by projecting such a large many-dimensional array into a very

compact 2-dimensional array defined in a set of basis functions of different dimensions (our Sαs).

Because the elements of the covariance matrix, 〈SαSγ〉 − 〈Sα〉〈Sγ〉, have dissimilar physical
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units, SVD technique can not be directly used to eliminating those matrix eigenvectors which

superfluously affect Hamiltonian parameters (to reduce the degeneracy). For example, the matrix

element 〈Sbond2 ·Sangle3 〉−〈Sbond2 〉〈Sangle3 〉 has a dimension of [Å
3·Rad4], while the diagonal element〈(

Sbond2

)2〉 − 〈Sbond2 〉2 is measured in units of [Å
6
]. Therefore, to use SVD at each iteration, we

reduced the corresponding covariance matrix to a dimensionless form by appropriately rescaling

vectors ∆Kα and ∆〈Sα〉. Then, in matrix notation the rescaled Eq.(1) of the main text reads,

∑
j

Mij√
qi · qTj

·
[
Xj ·
√
qj
]

=
Bi√
qi
, qi ≡Mii, (1)

with M , X and B standing for the covariance matrix, vector of the corrections ∆Kα and the vec-

tor of deviations ∆〈Sα〉, respectively. As follows from the second equation, vector q is composed

from the diagonal elements of the original matrix M . Hence, the latter is reduced to a dimension-

less form (with unit elements on the diagonal) after its element-by-element division by the tensor√
qi · qTj . After filtering out near zero eigenvalues and performing a subsequent matrix inversion,

the original units of the elements ∆Kα were obtained by reverse transformation.

In summary, the compact basis set of the basis functions, or observables {Sα} possessing var-

ious physical units, allowed the inclusion of many-body interactions into optimization scheme,

which was one of the principal novelties of our approach.
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·Å
−

2
],

[k
ca

l/m
ol
·Å
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Na+ –Na+ Na+ –Cl− Cl–Cl−

A 8.4 · 105 1.14 · 105 2.7 · 107

B1 -0.013 -1.06 -0.59
B2 0.61 2.61 0.33
B3 -0.2 -0.29 -0.053
B4 0.086 0.276 0.078
B5 -0.023 -0.072 -0.022
C1 5 8.4 5.8
C2 2.46 3.5 3.12
C3 4.38 3.52 3.5
C4 3.73 5.66 4
C5 7.4 5 9.9
R1 3.8 2.75 4.9
R2 4.75 3.52 6.1
R3 6.2 5.1 7.5
R4 7.2 6 8.5
R5 8.7 7.3 9.7

Table 2: Inter-ionic parameters defining the Hamiltonian, Eq.(5), were taken from our prior work
on coarse-graining NaCl solutions at various ionic concentrations (23). Parameters A and B1...B5

are given in units of [kcal/mol·Å12] and [kcal/mol], respectively. Gaussian variances C1...C5 have
units of [Å−2], while positions of Gaussian functions, R1...R5, are measured in Å.
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Na+ –DNA-bead Cl− –DNA-bead
A 1.82 · 104 1.48 · 103

B1 0.11 -0.06
B2 0.173 -0.19
B3 0.035 -0.06
C1 7.8 9
C2 1.2 0.5
C3 0.31 0.11
R1 6.5 5.1
R2 8.6 7.5
R3 11.5 11.0

Table 3: Optimized parameters defining interactions among ions and beads of DNA, Eq.(6). Pa-
rameters A and B1...B5 are given in units of [kcal/mol·Å6] and [kcal/mol], respectively. Gaussian
variances C1...C5 have units of [Å−2], while positions of Gaussian functions, R1...R5, are mea-
sured in Å.
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