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We provide the supplementary information for the article “The Spread of Innovations in Social
Networks”, in the Proceedings of the National Academy of Sciences.

This document mainly contains the proofs of lemmas and theorems stated in the paper. In the
end, we also give a short comparison between the results of this paper and a few well-known results
in economics.

1 Proof of Theorem 3

For the sake of clarity, we split the proof of Theorem 3 into two parts: first, we present the charac-
terization in terms of tilted cutwidth (i.e. the first identity in Eq. (9)). This is possible by relating
the convergence time to the evolution of the potential function H. The characterization in terms of
tilted cut (second identity in Eq. (9)) is then presented in Section 1.2.

1.1 Relating the rate of convergence to tilted cutwidth

The first part of the proof relates the hitting time of +1 to the evolution of the potential function
H. The main intuition of the lemma is as follows: the dynamics has a tendency to decrease the
value of potential function H. However to reach the set A from z, it may be necessary to go through
configurations that have high values of H. These configurations create a barrier and the hitting time
is related exponentially to the height the path with the smallest barrier.

Lemma 6. Consider a Markov chain with state space S, and transition rates {pβ(x, y)}x,y∈S re-
versible with respect to the stationary measure µβ(x) = exp(−βH(x) + o(β)), and assume that
pβ(x, y) = exp(−βV (x, y) + o(β)).

Let A = {x : H(x) ≤ H0} be non-empty, and define the typical hitting time for A as in Eq. (3),
with + replaced by A. Then τA = exp{βΓ̃A + o(β)} where

Γ̃A = max
z 6∈A

min
ω:z→A

max
t≤|ω|−1

[H(ωt) + V (ωt, ωt+1)−H(z)] , (10)

and the min runs over paths ω = (ω1, ω2, . . . , ωT ) in configuration space such that pβ(ωt, ωt+1) > 0
for each t.

The proof of this lemma can be obtained by building on known results, for instance Theorem
6.38 in [22]. These however typically apply to exit times from local minima of H(x). We provide a
simple proof based on spectral arguments in Section 4.1.

Proof. (Theorem 3, Tilted cutwidth). Notice that Glauber dynamics satisfies the hypotheses of
Lemma 6, with H(x) given by Eq. (2). In this case, for any allowed transition x→ y, H(x)+V (x, y) =
max(H(x), H(y)). As a consequence, we can drop the factor V (· · · ) in Eq. (10). We thus obtain

τ+ = exp(βmaxz Γ̃+(z) + o(β)) where

Γ̃+(z) = min
ω:z→+1

max
t≤|ω|−1

[H(ωt)−H(z)] . (11)

An upper bound is obtained by restricting the minimum to monotone paths. It is not hard to realize
that the result coincides with 2Γ(F ;hF ) where F is the subgraph induced by vertices i such that
zi = −1. It is far less obvious that the optimal path can indeed be taken to be monotone. The next
lemma proves that and finishes the proof of the first part of the Theorem. �



Lemma 7. Suppose z is a worst case starting point, i.e. it is a state that obtains the maximum in
equation (10). Then there exists a monotone path, a path that only flips −1 to +1 from z to +1,
that obtains the minimum in equation (11).

Proof. It is convenient to use the representation of the path ω = (x0 = z, x1, . . . , x|ω|−1 = +1) as a
sequence of subsets of vertices: ω = (S0 = S, S1, . . . , S|ω|−1 = V ). We will prove the lemma for a more
general class of paths in which St \ St−1 = {v} or St ⊂ St−1, and let G(ω) = maxt[H(St)−H(S0)].

Let us start by examining the worst-case initial configuration. We claim that if B is such a
configuration, i.e., B ∈ arg maxS minω:S→V G(ω), then for every A ⊂ B, H(A) ≥ H(B). Indeed,
suppose H(A) < H(B). By prepending B to any path ω : A → V , we obtain a path ω′ : B → V
with G(ω′) < G(ω). Therefore minω′:B→V G(ω′) < minω:A→V G(ω) which is a contradiction.

Among all paths that achieve the optimum, choose the path ω that minimizes the potential
function f(ω) = |ω|2|V | −

∑
Si∈ω |Si|. Intuitively, f puts a very high weight on shorter paths and

then paths with larger sets. We will prove that, with this choice, ω is monotone.
For the sake of contradiction, suppose ω is not monotone. Let Sk be the set with the smallest index

such that Sk+1 ⊂ Sk. Partition Sk\Sk+1 into two subsets R = (Sk\Sk+1)∩S0 and T = (Sk\Sk+1)\S0.
Without loss of generality assume that for 1 ≤ i ≤ k, Si = {1, 2, · · · i} ∪ S0. Let v1 ≤ v2 · · · ≤ vt be
the elements of T in the order of their appearance in ω.

For a subset A ⊂ T , and i ≤ k define the marginal value of subset A at position i to be
M(A, i) = H(Si \ A) −H(Si). Since H is submodular, M(A, i) is non-decreasing with i as long as
A ⊂ Si. Because of our claim about the initial condition, we have, in particular,

M(R, 0) = H(S0)−H(S0 \R) ≥ 0 . (12)

In order to finish the proof, we consider two cases. The next lemma shows that these two cases
are exhaustive.

Lemma 8. One of the following two statements is correct: Case (I) There exists a subset T ′ ⊂ T
such that for all i, M(T ′, i) ≤ 0; Case (II) M(T ∪R, k) ≥ 0.

Proof. Construct the following partitioning of T into T1 = {v1, v2, · · · vi1−1}, T2 = {vi1 , vi1+1, · · · vi2−1}
· · ·Tr = {vir−1 · · · vk} in such a way that for every Tj = {vij−1 , · · · vij−1} and ij−1 < l < ij ,
M(Tj , vl − 1) = M({vij−1 · · · vl−1}, vl − 1) < 0 and for l = ij , M(Tj , vl − 1) ≥ 0.

Such a partition can be obtained the following way. Start with j = 1 and iteratively add vi’s to
the current set Tj . If M(Tj , vi − 1) ≥ 0, increment j and add vi and the next vertices to the new
subset.

Let Tr = {vs, · · · , vt} be the last subset in the above sequence. We claim that if M(Tr, k) < 0 then
M(Tr, i) < 0 for all i ≥ vs. For every s ≤ j ≤ t and every i between vj and vj+1 by supermodularity
M(Tr, i) = M({vl, · · · vj}, i) ≤M({vl, · · · vj}, vj+1 − 1) < 0. The same argument goes for vt ≤ i ≤ k.
In that case the lemma is correct for T ′ = Tr.

If M(Tr, k) ≥ 0, we will show that the second statement of the lemma is true. For that, we need
to write the H function for all sets T1, · · ·Tr explicitly. For a set Tj and l = ij

M(Tj , vl − 1) = 2

cut(Tj , {1, 2, · · · vl − 1})− cut(Tj , {vl, vl + 1, · · ·n}) +
∑
i∈Tj

hi

 ≥ 0 . (13)

One can write a similar equation j = l by replacing vl − 1 with k. Equation (12) gives a similar
inequality for R. Adding up these inequalities for all j and R and noting that the contribution of



every edge with both ends in ∪jTj ∪R cancels out, we get

M(T ∪R, k) ≥
l−1∑
j=1

M(Tj , vij − 1) +M(Tl, k) +M(R, 0) ≥ 0. (14)

�

We are now ready to finish the proof. Suppose the first statement of the lemma is correct.
We construct a new path ω′ by removing the vertices of T ′ from the sequence 1, 2, · · · , t in the
beginning of ω and also removing T ′ from T . Since ω′ is shorter than ω, we only need to argue that
G(ω′) ≤ G(ω). This is obvious because for every i ≤ k, H(Si \ T ′)−H(Si) = M(T ′, i) ≤ 0.

In the second case, we construct another path by changing Sk+1. First note that since ω is
minimizing the potential function, Sk+2 = Sk+1 ∪ {v} for some v that is not in Sk. Now note that
by replacing Sk+1 with Sk ∪ {v} we obtain a path with a higher value of the potential function and
at most the same barrier. This is because

H(Sk+1 ∪ {v})−H(Sk ∪ {v}) ≥ H(Sk+1)−H(Sk) = M(T ∪R, k) ≥ 0 .

�
1.2 The convergence rate in terms of tilted cut

The second part of the proof of Theorem 3 exploits the fact that Glauber dynamics is monotone for
the Ising model. In other words, given initial conditions x(0) and x′(0) � x(0), the corresponding
evolutions can be coupled in such a way that x′(t) � x(t) after any number of steps.

Proof. (Theorem 3, Tilted cut). By the monotonicity of Glauber dynamics Γ∗(G;h) ≥ Γ∗(F ;hF )
for any induced subgraph F ⊆ G. Lemma 6 implies Γ∗(F ;hF ) ≥ ∆(F ;hF ): indeed given a path ω =
(S0, S1, . . . , S|ω|−1 = V ) this must have at least one step in ∂Ω. Hence Γ∗(G;h) ≥ maxF ∆(F ;hF ).

We need to prove Γ∗(G;h) ≤ ∆(F ;hF ) for at least one induced subgraph F . Fix F to be a
subgraph which achieves the maximum in Eq. (9) (i.e. arg max Γ(F ;hF )). Notice that, to leading
exponential order, the hitting time in F is the same as in G, i.e. Γ∗(F ;hF ) = Γ∗(G;h).

Let pβ(x, y) be the transition probabilities of Glauber dynamics on F , and p+
β (x, y) the kernel

restricted to {+1,−1}V (F ) \ {+1}. By this we mean that we set p+
β (x,+1) = p+

β (+1, y) = 0. Denote

by P+
β the matrix with entries p+

β (x, y) and by ψ0 its eigenvector with largest eigenvalue. By Perron-
Frobenius theorem, we can assume ψ0(x) ≥ 0. We claim that ψ0(x) is monotonically decreasing in
x. Indeed consider the transformation ψ 7→ T (ψ) ≡ P+

β ψ/||P
+
β ψ||2,µ. This is a continuous mapping

from the set of unit vectors in L2(µ) onto itself. Further, if ψ is monotone and non-negative, T (ψ)
is monotone an non-negative as well (the first property follows from monotonicity of the dynamics).
The set of non-negative and monotone unit vectors in L2(µ) is homeomorphic to a simplex. By
Brouwer fixed point theorem, T has at least one fixed point that is non-negative and monotone,
which therefore coincides with ψ0 by Perron-Frobenius theorem.

Lemmas 11 and 12 imply that there exists Ω = {x ∈ S : ψ0(x) > b}, such that

τ+(F ;hF ) ≤ Cn(1 + β)

∑
x∈Ω µ(x)∑

(x,y)∈∂Ω µ(x)p+
β (x, y)

. (15)

for some β-independent constant Cn. Using τ+(F ;hF ) = exp{2βΓ∗(F ;hF ) + o(β)} and the large β
asymptotics of µ(x), p+

β (x, y) we get

Γ∗(F ;hF ) ≤ min
(S1,S2)∈∂Ω

max
i=1,2

[cut(Si, V \ Si)− |Si|h] + oβ(1) . (16)



Since ψ0(x) is monotone, Ω is monotone as well and therefore the last inequality implies the thesis.
�

2 The relationship with the isoperimetric functions

In order to prove Theorem 1, we have to relate Γ∗(G) and in particular tilted cutwidth to the
connectivity of the graph. The following Lemma as well as Lemma 2 mainly establish this goal.

Lemma 9. Assume that, for some L1, L2, with L2 ≥ hmax and for every induced subgraph F ⊆ G,
we have

min
|S|h∈[L1,L2]

[cut(S, V (F ) \ S)− |S|hF ] ≤ L1 , (17)

where it is understood that ∅ 6= S ⊆ V (F ). If, for every subset of vertices U , with |U |h ≤ L2, the
induced subgraph has cutwidth upper bounded by C, then Γ(G; 4h) ≤ C + L1 + L2.

It is interesting to compare this result with the analysis of contagion models [Morr00]. In that
case contagion takes place if there exists an ordering of the vertices i(1), i(2), . . . such that, assuming
xi(1) = +1, xi(2) = +1,. . .xi(t) = +1, the best response for i(t + 1) is strategy +1. Lemma 9 allows
to replace single vertices, by ‘blocks’ as long as they have bounded size and bounded cutwidth.

Proof. Partition V into subsets R1, R2, · · · , Rl by letting V0 ≡ V and defining recursively

Rt = arg min
S∈Ωt

{cut(S, Vt \ S)− |S|hVt}

where Vt = V \ ∪t−1
s=1Rs and Ωt is the set of all subsets S ⊆ Vt such that L1 ≤ |S|h ≤ L2. With an

abuse of notation, we wrote hVt for hG(Vt) (G(Vt) being the subgraph induced by Vt). Explicitly, for
any j ∈ Vt, (hVt)j = hj + |N(j|V \Vt .

Continue this process until no such set S can be found, and let Rl = Vl be the residual set. Notice
that, since L2 ≥ hmax, we necessarily have |Rl|h < L1. By applying Eq. (17) to F = G(Vt), we have

cut(Rt, Vt \Rt) ≤ |Rt|hVt + L1 ≤ |Rt|hVt + |Rt|h = |Rt|2h + cut(Rt, V \ Vt) . (18)

Notice that cut(Rt, Vt \Rt)− cut(Rt, V \Vt) = cut(∪ts=1Rs, Vt+1)− cut(∪t−1
s=1Rs, Vt). By summing up

this relation, we have, for all 1 ≤ t < l,

cut(∪ts=1Rs, V \ ∪ts=1Rs) ≤
t∑

s=1

|Rs|2h = | ∪ts=1 Rs|2h.

For each Rt, consider a linear arrangement of the induced subgraph that achieves its cutwidth.
Construct a linear arrangement of V by concatenating the above linear arrangement of each Rt in
the order t = 1, 2, . . . , l. We will show that this ordering gives us the desired upper bound on the
tilted cutwidth of G. Let S = ∪t−1

s=1Rs ∪R where R ⊂ Rt for some t between 1 and l. Then

cut(S, V \ S) ≤ cut(∪t−1
s=1Rs, V \ ∪

t−1
s=1Rs) + cut(Rt, V \ Vt) + cutwidth(Rt)

≤ cut(∪t−1
s=1Rs, V \ ∪

t−1
s=1Rs) + cut(Rt, V \ Vt) + |Rt|h + L1 + C

≤ 2 cut(∪t−1
s=1Rs, V \ ∪

t−1
s=1Rs) + L1 + L2 + C

≤ 2| ∪t−1
s=1 Rs|2h + L1 + L2 + C .

�



2.1 Proof of Lemma 2

Proof. (Lemma 2). By Theorem 3, it is sufficient to find an upper bound for Γ(F̃ ;hF̃ ) for every

induced subgraph F̃ . By monotonicity of Γ(F̃ ;h) with respect to h, Γ(F̃ ;hF̃ ) ≤ Γ(F̃ ;h). We will
upper bound Γ(F̃ ;h) by showing Eq. (17) holds for any induced subgraph F ⊆ F̃ .

Let hmin = mini hi and hmax = maxi hi ≤ h∆. First notice that, for any U and for any k, there
exists S ⊆ U such that |S| = k and

cut(S,U \ S)− 1

4
|S|h ≤ αh−γmin|S|

γ
h −

1

4
|S|h ≤ A′(α, γ)h

−γ/(1−γ)
min , (19)

where A′(α, γ) = max(αxγ − x/4 : x ≥ 0). Take L1 = A′(α, γ)h
−γ/(1−γ)
min and L2 = L1 + 2hmax. By

Eq. (19)

min
|S|h∈[L1,L2]

[
cut(S, V (F ) \ S)− 1

4
|S|h

]
≤ L1 .

Finally the cutwidth of any set S with |S|h ≤ L2 is upper bounded by α|S|γ log |S| (using [LR99]

and Eq. (5)) which is at most C = A′′(α, γ, hmax)h
−1/(1−γ)
min log max(2, h−1

min). The thesis thus follows
by applying Lemma 9.

But before presenting the proof, let us start with a simple and intuitive argument to show that
the dynamics will be very slow to converge when the underlying graph is an expander. Suppose
the starting point is the configuration in which everyone is taking the action −1. Obviously, before
reaching the state all +1, the dynamics has to go through at least one state in which half of the
vertices are taking the action +1 and half of the vertices are taking the action −1. Because of
the high expansion of the graph, such a configuration will have a very high value of H. Applying
Lemma 6, we are done. The calculations below use Theorem 3 directly to make the above intuition
more precise.

Let F be the subgraph induced by U . By monotonicity of ∆(G;h) with respect to h, for t =
bδ|U |c, we have

∆(F ;hF ) ≥ ∆(F ;hmax +M) ≥ min
|S|=t

[λ|S| − (h∆ +M)|S|] .

which implies the thesis. �

3 Proof of Theorem 1

In this section we finally derive the rate of convergence for specific graph families proving Theorem
1. In most cases, our proof is a simple application of Lemma 9. However, for d-dimensional graphs,
we have to estimate the isoperimetric function. This can be done by an appropriate relaxation.

Given a function f : V → R, i 7→ fi, and a set of non-negative weights wi, i ∈ V , we define

||f ||2w ≡
∑
i∈V

wi f
2
i , ||∇Gf ||2 ≡

∑
(i,j)∈E

|fi − fj |2 . (20)

We then have the following generalization of Cheeger’s inequality.



Lemma 10. Assume there exists two vertex sets Ω1 ⊆ Ω0 ⊆ V and a function f : V → R such that:
(1) fi ≥ |fj | for any i ∈ Ω1 and any j ∈ V ; (2) fi = 0 for i ∈ V \ Ω0; (3) L1 ≤ |Ω1|w ≤ |Ω0|w ≤ L2;
(4) ||∇Gf ||2 ≤ λ ||f ||2h. Then there exists S ⊆ V with L1 ≤ |S|w ≤ L2

cut(S, V \ S) ≤
√

4λ max
i∈V
{|N(i)|/hi} |S|h . (21)

The proof of this Lemma is deferred to the end of this section.

Proof. (Theorem 1)
Random graphs. It is well known that a random k-regular graph is with high probability a k−2−δ

expander for all δ > 0 [Kah92]. Also, it is known that for small constant λ, random graphs with a
fixed degree sequence with minimum degree 3, and random graphs in preferential attachment model
with minimum degree 2 have expansion λ with high probability [24, 23]. The thesis follows from
Lemma 2.

d-dimensional networks. We need to prove that, for each induced subgraph G′, Γ(G′;hG
′
) = O(1).

By Lemma 9, it is sufficient to show that, for any induced and connected subgraph F , there exists
a set S of bounded size such that cut(S, V (F ) \ S) − 1

4 |S|(h)F ≤ 0, with h′i = hi/4. If the original

graph is embeddable, any induced subgraph is embeddable as well. Since hFi ≥ hi, the thesis follows
by proving that for any embeddable graph G, we can find a set of vertices S of bounded size with
cut(S, V \ S) ≤ |S|h/4.

We will construct a function f with bounded support such that ||∇Gf ||2 ≤ λ||f ||2 with λ =
mini∈V { hi

16|N(i)|}. In order to achieve this goal, consider the d-dimensional of G and partition Rd

in cubes C of side ` to be fixed later. Denote by C0 the cube maximizing
∑

i:ξi∈C hi, and let Cj ,

j = 1, . . . 3d − 1 be the adjacent cubes. Let fi = ϕ(ξi), where for x ∈ Rd, we have

ϕ(x) =

[
1− dEucl(x, C)

`

]
+

. (22)

Notice that |∇ϕ(x)| ≤ 1/` and |∇ϕ(x)| > 0 only if x ∈ Cj , j = 1, . . . 3d−1. Since |fi − fj | ≤
|∇ϕ| ||ξi − ξj || we have

||∇Gf ||2 ≤
(
K

`

)2∑
i∈V
|N(i)| I(ξi ∈ ∪3d−1

j=1 Cj) ≤
(
K

`

)2

max
i∈V
{|N(i)|/hi}

∑
i∈V

hi I
(
ξi ∈ ∪3d−1

j=1 Cj
)

≤ 3d
(
K

`

)2

max
i∈V
{|N(i)|/hi}

∑
i∈V

hi I
(
ξi ∈ C0

)
≤ 3d

(
K

`

)2

max
i∈V
{|N(i)|/hi}||f ||2h . (23)

The thesis follows by choosing ` = 2d+2K maxi∈V {|N(i)|/hi}.
Small world networks with r ≥ d. Let U be a subset of vertices forming a cube of side `, and GU

a (ε, k − 5/2), k-regular expander with vertex set U . Such a graph exists for all ` large enough and
ε small enough by [Kah92]. Call AU the event that the subgraph induced by long-range edges in U
coincides with GU , and no long-range edge from i ∈ V \ U is incident on U .

Under AU , the subgraph GU satisfies the hypotheses of Lemma 2, second part, with b = d.
Therefore Γ∗(G;h) ≥ (k − 5/2 − hmax − d)bε`d/4c. The thesis thus follows if we can prove the
existence of U with volume `d = Ω(log n/ log log n) such that AU is true.

Fix one such cube U . The probability that the long range edges inside U induce the expander
GU is larger than (C(n)`−r)k`

d
. On the other hand, for any vertex i ∈ U , the probability that no



long range edge from V \ U is incident on U is lower bounded as∏
j∈V \i

[
1− C(n)|i− j|−r

]k ≥ exp
{
− 3k C(n)

∑
j∈V \i

|i− j|−r
}

where we used the lower bound 1 − x ≥ e−3x valid for all x ≤ 1/2, together with the fact that
C(n) ≤ 1/2d (which follows by considering the 2d nearest neighbors). From the definition of C(n),
the last expression is lower bounded by e−3k, whence

P{AU} ≥
[
C(n)e−3`−r

]k`d
.

Let S denote a family of (n/`d) disjoint subcubes, and denote by NS the number of such subcubes
for which property AU holds. Then E[NS ] = (n/`d)P{AU}. Using the above lower bound together
with the fact C(n) ≥ Cr,d > 0 for r > d and C(n) ≥ C∗,d/ log n for r = d, it follows that there exists
a, b > 0 such that E[NS ] = Ω(na) if `d ≤ b log n/ log logn.

The proof is finished by noticing that, for U ∩ U ′ =, P{AU ∩ AU ′} ≤ P{AU ∩ AU ′}, whence
Var(NS) ≤ E[NS ]. The thesis follows applying Chebyshev inequality to NS .

Small world networks with r < d. It is proved in [25] that these graphs are with high probability
expanders. The thesis follows from Lemma 2.

�

3.1 Proof of Lemma 10

Assume without loss of generality that max{|fi| : i ∈ V } = 1, whence fi = 1 for i ∈ Ω1. We use
the same trick as in the proof of the standard Cheeger inequality

||∇Gf ||2 =
∑

(i,j)∈E

(fi − fj)2 ≥

(∑
(i,j)∈E |f2

i − f2
j |
)2∑

(i,j)∈E(fi + fj)2
. (24)

The denominator is upper bounded by

4
∑
i∈V
|N(i)| f2

i ≤ 4 max

∣∣∣∣ |N(i)|
hi

∣∣∣∣ ||f ||2h . (25)

The argument in parenthesis at the numerator is instead equal to∑
(i,j)∈E

∫ 1

0

∣∣I(f2
i > z)− I(f2

j > z)
∣∣dz =

∫ 1

0
cut(Sz, V \ Sz) dz (26)

where Sz = {i ∈ V : f2
i > z}. The quantity above is lower bounded by

min
z∈[0,1]

cut(Sz, V \ Sz)
|Sz|h

∫ 1

0
|Sz|h dz = min

z∈[0,1]

cut(Sz, V \ Sz)
|Sz|h

||f ||h . (27)

Let S = Sz∗ where z∗ realizes the above minimum (the function to be minimized is piecewise constants
and right continuous hence the minimum is realized at some point). Notice that Ω1 ⊆ Sz ⊆ Ω0 for
all z ∈ [0, 1], and thus we have in particular L1 ≤ |S|w ≤ L2. Further, form the above

λ ≥ ||∇Gf ||
2

||f ||2h
≥ 1

4
min

∣∣∣∣ hi
|N(i)|

∣∣∣∣ {cut(S, V \ S)

|S|h

}2

(28)

which finishes the proof. �



4 Eigenvectors and barriers

For the next two Lemmas, consider a general setting of: a discrete time Markov chain with state
space S, transition probabilities pβ(x, y), reversible with respect to the stationary distribution µ(x).

4.1 Hitting times for large β: proof of Lemma 6

Given A ⊆ S define pAβ (x, y) = pβ(x, y) if x, y ∈ S \ A and pAβ (x, y) = 0 otherwise. Notice by

reversibility the eigenvalues of pAβ are real, and smaller than 1. We assume that pAβ is irreducible and
aperiodic.

The lower bound in the next lemma is due to Donsker and Varadhan [8]: we nevertheless propose
an elementary proof.

Lemma 11. If 1− λ0,A is the largest eigenvalue of pAβ , then

1

log(1/(1− λ0,A))
≤ τA ≤

1

log(1/(1− λ0,A))

{
1 +

1

2
max
x∈S\A

log
1

µ(x)

}
.

Proof. Let PA denote the matrix with entries pAβ (x, y), and f(x) be the characteristic function of

S \A. Then Px {TA > t} = P tAf(x), whence

√
µ(x)Px{TA > t} ≤

√∑
x

µ(x)Px{TA > t}2 = ||P tAf ||µ,2 ≤ (1− λ0,A)t ,

which proves the upper bound. To prove the lower bound, let ψ0(x) denote the eigenvector of
PA, with eigenvalue λ0,A and notice that by Perron-Frobenius theorem, it has non-negative entries.
Therefore

max
x
Px{TA > t} (ψ0, f)µ ≥

∑
x

µ(x)ψ0(x)Px{TA > t} = (1− λ0,A)t(ψ0, f) .

�

Proof. (Lemma 6). Due to Lemma 11, it is sufficient to prove that λ0,A = exp{−βΓ̃A + o(β)}. To
this end we use the well known variational characterization of eigenvalues

λ0,A = inf
ϕ

Dir(ϕ)

E(ϕ2)
, Dir(ϕ) ≡ 1

2

∑
x,y

µ(x)pβ(x, y)(ϕ(x)− ϕ(y))2 . (29)

Here the inf is taken over functions non-vanishing functions ϕ : S \A→ R.
A lower bound can be obtained by comparison. More precisely, for each z ∈ S \ A, let ω(z) be

a path or allowed transition from z to A. Proceeding along the lines of [10, 9], one obtains that
λ0,A ≥ 1/maxx,y C(x, y;ω), where, for each allowed transition x → y, we defined the associated
congestion as

C(x, y;ω) =
1

µ(x)pβ(x, y)

∑
z:ω(z)3(x,y)

µ(z)|ω(z)| .

The thesis then follows by choosing the path ω(z) in such a way to achieve the minimum in Eq. (10)
and taking the limit β →∞.



To get an upper bound, define the boundary ∂B of a configuration B, as the subset of couples
(x, y) such that pβ(x, y) > 0 and x ∈ B, while y 6∈ B. Notice that from Eq. (10) it follows that there
exists a set B ⊆ S \A such that

Γ̃A = min
(x,y)∈∂B

[H(x) + V (x, y)]−min
z∈B

H(z) .

The proof is completed by taking ϕ in Eq. (29) to be the characteristic function of B. �

Like the last Lemma, consider a general Markov chain with state space S, and let A ⊆ S a subset
of configurations.

Lemma 12. Let ψ0 : S → R be the unique eigenvector of PA with eigenvalue 1 − λ0,A and assume
(without loss of generality by Perron-Frobenius theorem) ψ0(x) ≥ 0. Then there exists b ≥ 0 such
that, letting B = {x ∈ S : ψ0(x) > b}, we have

1

|S|

∑
(x,y)∈∂B µ(x)pβ(x, y)∑

x∈B µ(x)
≤ λ0,A ≤

∑
(x,y)∈∂B µ(x)pβ(x, y)∑

x∈B µ(x)
(30)

Proof. The upper bound follows immediately by substituting ϕ(x) = I(x ∈ B) in the variational
principle (29).

In order to prove the lower bound, let 0 = ψ(0) < ψ(1) ≤ · · · ≤ ψ(N) be the points in the image of
ψ0( · ) (obviously N ≤ S). For any (x, y) such that ψ0(x) = ψ(i), ψ0(y) = ψ(j), with i < j, we have
(ψ0(x)−ψ0(y))2 ≥

∑j−1
l=i (ψ(l+1)−ψ(l))2. Therefore, by letting Bl = {x ∈ S : ψ0(x) ≥ ψ(l)}, we have

Dir(ψ0) ≥
N∑
l=1

W (l) (ψ(l) − ψ(l−1))2 , W (l) ≡
∑

(x,y)∈∂Bl

µ(x)pβ(x, y) . (31)

On the other hand, (ψ(i))2 ≤ i
∑i

l=1(ψ(l) − ψ(l−1))2. If M(l) ≡
∑

x µ(x)I(ψ0(x) = ψ(l)) = µ(Bl) −
µ(Bl−1)

E(ψ2
0) =

N∑
i=0

M(i) (ψ(i))2 ≤
N∑
l=1

( N∑
i=l

iM(i)
)

(ψ(l) − ψ(l−1))2 . (32)

Therefore

λ0,A =
Dir(ψ0)

E(ψ2
0)
≥ inf

1≤l≤N

W (l)∑N
i=l iM(i)

, (33)

which implies the thesis. �

5 Non-reversible and Synchronous Dynamics

5.1 Proof of Proposition 4

For the sake of simplicity, we shall focus here on asynchronous dynamics. It is straightforward to
analyze synchronous dynamics using the same technique.

Let St denote the subset of vertices adopting strategy +1 at time t, and denote its size by
Xt = |St| . Clearly X0 = 0, Xt ≥ 0 and |Xt+1−Xt| ≤ 1. The proof is mainly based on showing that
for Xt ≤ nδ, Xt is stochastically dominated by a birth-and-death chain with negative drift.



For b ∈ {0, . . . , k}, call n−(b) the number of vertices i ∈ V \St, with b neighbors in St. Analogously,
let n+(b) be the number of vertices i ∈ St, with b neighbors in St. If we let q ≡ bk(1 − h)/2c (this
is the maximum number of +1 neighbors such that the best response is still −1), it is elementary to
show

P{Xt+1) = `+ 1|St;Xt = `} ≤ 1

n

k∑
b=q+1

n−(b) + e−2β ,

P{Xt+1) = `− 1|Xt = `} ≥ 1

n

q∑
b=0

n+(b)− e−2β .

In both cases, the first term is the probability of picking a vertex for which the best response
corresponds to changing strategy from −1 to +1 (first bound) or from +1 to −1 (second bound).
The term e−2β bounds the probability of non-best-response choices.

Since the degree of all vertices is k, we have
∑k

b=1 n−(b)b ≤ k`. Further assuming Xt = ` ≤ δn,

we also have
∑k

b=1 n−(b) ≥ λ`. It follows that

q
k∑

b=q+1

n−(b) ≤
k∑
b=1

n−(b)(b− 1) ≤ (k − λ)` ,

whence

P{Xt+1 = `+ 1|St;Xt = `} ≤
(
k − λ
q

)
`

n
+ e−2β .

A similar argument yields, for all 1 ≤ ` ≤ nδ,

P{Xt+1 = `− 1|St;Xt = `} ≥
(

1− k − λ
q + 1

)
`

n
− e−2β .

We therefore have

E{Xt+1 −Xt|St;Xt = `} −
(

1− 2
k − λ
q

)
`

n
+ 2e−2β .

where, recalling that λ ≥ 4k/5, we have for all h small enough

α = 1− 2
k − λ
q
≥ 1− 2k

5bk(1− h)/2c
> 0 .

The proof is completed with the following general Lemma:

Lemma 13. Let {Xt}t∈N be a sequence of non-negative random variables adapted to the filtration
{Ft}t∈N such that

E[Xt+1|Ft] ≤ (1− α/n)Xt + ε , (34)

|Xt+1 −Xt| ≤ 1, and X0 = 0. If T∗ = inf{ t ≥ 0 : Xt ≥ nδ} and ε < αδ, then there exists K > 0
such that, with high probability, T∗ ≥ eK n. Further any K can be taken to be any number smaller
than (δα− ε)/α(1 + α+ ε)2.



Proof. Define

Zt =
(

1− α

n

)−t
Xt +

nε

α

[
1−

(
1− α

n

)−t]
. (35)

It is then easy to check that {Zt}t∈N is submartingale with respect to the filtration {Ft}t∈N, and
Z0 = 0. Further

|Zt+1 − Zt| ≤ (1 + α+ ε)
(

1− α

n

)−t
. (36)

The thesis thus follows from

P{T∗ ≤ enk} ≤
exp(nK)∑
t=0

P{Xt ≥ nδ} ≤
exp(nK)∑
t=0

P{Zt ≥ n(δ − ε/α)(1− α/n)−t} , (37)

and applying Azuma-Hoeffding inequality to the latter. �

5.2 Proof of Proposition 5

Given a vertex i in the grid, let Bi(`) be the cube of side (2` + 1) centered at i. Following [27],
consider the censored dynamics in which vertices j ∈ V \Bi(`) never change strategy and are frozen
to the value xj = −1. Denoting by Pi,`{ · } probabilities under this modified dynamics, it follows
from the monotonicity of the transition rates that

P{xi(t) = +1} ≥ Pi,`{xi(t) = +1} ,

Using union bound over i, it is therefore sufficient to show that for some t ≤ exp{cβ + o(β)}

Pi,`{xi(t) = +1} ≥ 1− 1

10n
. (38)

By the same argument as in [11, Theorem 1], the stationary measure µβ(x) for the censored
dynamics satisfies

µβ(x = +1) = 1−O(e−2β) , (39)

for all ` that is large enough. Fix such an `. It follows condition (38) is satisfied in the stationary
state for all β ≥ C log n (with C a big enough constant). It is therefore sufficient to show that
the censored dynamics has mixing time bounded by exp{βc + o(β)}. This is immediate, since the

censored dynamics is an irreducible Markov chain over a space with 2(2`+1)d states so its spectral
gap is at least exp{−Aβ(2`+ 1)d} for some numerical constant A.

6 Comparison with results in the economics literature

Ellison [11] originally considered a Markov chain with transition rates slightly different from the ones
of Glauber dynamics. At each time step, each node i updates its strategy to the best response one
sign(hi +

∑
j∈N(i) xj) with probability 1 − e−β and to the opposite one with probability e−β. In

other words, the probability of making a mistake is independent of the loss in utility. In Section 6
we discuss a class of general models including Ellison’s Markov chain.



On the other hand, it is interesting to consider the implications of Theorem 3 for the [11] are easily
analyzed within the present framework. In order to derive a lower bound for the complete graph, with
hi = h for all i ∈ V , one can restrict attention to F = G and for that graph define Ω to be the family
of all sets with cardinality at most n/2. By evaluating Eq. (8) we get Γ∗(Kn;h) ≥ (n−h)2/4+O(n).
The second example studied by Ellison is a 2k-regular graph resulting from connecting all vertices
of distance at most k in a cycle. In that graph, the maximum is again achieved for F = G, and the
natural linear ordering of the cycle yields Γ(G;h) ≤ 4k2.

Young [27] studied instead Glauber dynamics, and proved a sufficient condition for fast conver-
gence at large β. This work introduces a slightly different notion of convergence time, and proves
that convergence to the risk dominant equilibrium is fast for ‘close-knit’ families graphs. Namely, he
defines (for δ a small positive constant)

τ+(G, δ;h) = sup
x

inf

{
t ≥ 0 : P

x
β{
∑
i∈V

xi(t) ≥ (1− δ)n} ≥ 1− δ

}
. (40)

Further, graph G is said to be ‘(r, v)-close-knit’ if each vertex belongs to at least one set of vertices
S such that |S| ≤ v and, for every S′ ⊆ S:

d(S′, S) ≥ r
∑
i∈S′
|N(i)| , (41)

where d(S′, S) is the number of edges between a vertex in S′ and a vertex in S. A family F of graphs
is said to be close-knit if, for every r ∈ (0, 1/2) there exists a v = v(r) such that every graph in the
family is (r, v(r)) close-knit.

Theorem 14 (Young, 2006). Consider a symmetric 2× 2 game with a risk-dominant equilibrium,
and let F be a close-knit family of graphs. Then there exists β∗ and τ∗(β, δ, v( · )) such that, for any
β > β∗ and any graph in the family

τ+(G, δ;h) ≤ τ∗(β, δ, v( · )) . (42)

Notice that the conclusions of this theorem are not directly comparable with our results, in
that it provides a finite-β upper bound, but does not estimate the β → ∞ behavior. Further, the
definition of hitting time is slightly different from ours and from the one of [11]. On the other
hand, it is easy to use Lemma 9 to show that, for G belonging to a close-knit family τ+(G;h) =
exp{βΓ∗(G)+o(β)} with Γ∗(G) upper bounded by a constant independent of the graph size. Indeed,
if G is (r, v) close-knit with r close enough to 1/2, then there exists a sequence S1, . . . , ST ⊆ V such
that H(St) = minS′⊆St H(S′) ≤ 0 and |Si| ≤ v. By flipping vertices along this sequence and using
the submodularity of H( · ), it follows that Γ(F ;hF ) ≤ v2.

7 Alternative convergence criteria

The convergence time τ+(G;h) was defined as the typical time for x to converge to the all-(+1)
configuration. It is important to investigate whether our conclusions are robust with respect to
modifications of this notion of convergence. To this purpose, we defined in the main text τε(G;h) to
be the typical time for a fraction (1− ε) of the nodes to adopt the +1 strategy.

Formally, define Tε to be the hitting time for the event {
∑

i∈V xi(t) ≥ n(1 − 2ε)}. In analogy
with τ+(G;h), we let

τε(G;h) = sup
x

inf
{
t ≥ 0 : P

x
β{Tε ≥ t} ≤ e

−1
}
. (43)



In particular τ+(G;h) = τε=0(G;h). Further notice that this definition is only marginally different
from the one by Young [27], provided in Eq. (40). The main difference is that we define typicality
always with respect to the same probability threshold e−1 while Young uses instead the same small
number ε.

It turns out that most of our results are robust, in the sense that the τε(G;h) = exp{2Γ∗(G;h, ε)β+
o(β)} where, for Γ∗(G;h, ε) differs from Γ∗(G;h) = Γ∗(G;h, 0) at most by a multiplicative constant,
for all ε small enough. More explicitly, one can find a ε∗ > 0 (and independent of n) such that this
hold for ε < ε∗. Notice that this claim corresponds to the correct notion of robustness: neglecting a
small positive fraction of the agents does not change significantly the convergence time. Also notice
that Figures 3 and 4 in the main text clearly illustrate this point. Complete convergence to the risk
dominant equilibrium takes place in a time that is not larger than twice τ1/2(G;h) (the time at which
strategy +1 becomes majority).

In order to prove the robustness of our rigorous results, it is convenient to to state a theorem
that will play the role of 3.

Theorem 15. Let τA(G, h) be the typical hitting time to A = {x : x ≤ H0}, defined as in (43) with Tε
replaced by TA. For reversible asynchronous dynamics we have τA(G;h) = exp{2βΓA(G;h) + o(β)},
where

ΓA(G;h) = max
z∈{+1,−1}V

ΓA,G(z;h). (44)

and, for any z ∈ {+1,−1}V ,

ΓA,G(z;h) = min
ω:z→A

max
t≤|ω|−1

[H(ωt)−H(z)] . (45)

Proof. The proof follows immediately from Lemma 6, using the fact that, for any allowed transition
x→ y, H(x) + V (x, y) = max(H(x), H(y)). �

Notice that Theorem 15 is neither as elegant nor as easy to use as Theorem 3: it does not
address directly the convergence time τε(G, h), and does not provide a purely graph-theoretical
characterization. Nevertheless, it is sufficient for establishing the robustness of Theorem 1 in main
article, as stated below.

Theorem 16 (Robust version of Theorem 1 in the article). Consider the reversible asyn-
chronous noisy best response dynamics on graph G and let τε(G) = τε(G;h) with hi = h|N(i)| be the
typical convergence time to (1 − ε) majority. As β → ∞, we have τε(G) = exp{2βΓ(G; ε) + o(β)}.
Further, for each the graph sequences below, there exist ε∗ > 0 such that the following happens for
ε < ε∗:

(i) If G is a random k-regular graph with k ≥ 3, a random graphs with a fixed degree sequence
with minimum degree 3 or a preferential-attachment graph with minimum degree 2, then for h
small enough, Γ(G; ε) = Ω(n).

(ii) If G is a d-dimensional graph with bounded range, then for all h > 0, Γ(G; ε) = O(1).

(iii) If G is a small world network with r ≥ d, then Γ(G; ε) = Ω(log(1/ε)/ log log(1/ε)).

(iv) If G is a small world network with r < d, and h is small enough, then with high probability
Γ(G; ε) = Ω(n).



The proof is completely analogous to the one of Theorem 1 and we will only describe the main
differences. Notice that in the above statement only the estimate at point (iii) changed with respect
to the complete agreement case. Further, this changed only through the replacement of log n with
log(1/ε), which is rather natural.

Before proving Theorem 16, we state and prove a generalization of Lemma 2.

Lemma 17 (Robust version of Lemma 2). For a graph G with degree bounded by ∆, assume
there exist disjoint subsets U ⊆ V (G), such that for i ∈ U , |N(i) ∩ (V \ U)| ≤ M , and the subgraph
induced by U is a (δ, λ) expander, i.e., for every k ≤ δ|U |,

φ(GU ; k) ≥ λ. (46)

Let TU,ε be the hitting time for the event {
∑

i∈U xi(t) ≥ (1− δ)|U |} and

τU,ε(G) = sup
x

inf
{
t ≥ 0 : P

x
β{TU,ε ≥ t} ≤ e

−1
}
. (47)

Then there exist ε∗ = ε∗(λ, h, δ,∆,M) such that for all ε < ε∗, we have ΓU (G; ε) ≥ (λ − h∆ −
M)bδ|U |c.
Proof. By the same monotonicity arguments as in Lemma 2, we can reduce the problem to the case
in which all the vertices in V \ U are frozen to +1. This is equivalent (up to renaming of the vertex
set) to assuming V = U , and increasing the bias from h to uhF .

We claim that, for all ξ that is small enough, we can choose ε1(ξ), ε2(ξ) (depending on λ, ∆,. . . but
not on the graph) such that

{x :
∑
i∈U

Vi ≥ (1− 2ε1)|V |} ⊆ A(ξ) ≡ {x : H(x) ≤ H(+1) + ξ|V |} ⊆ {x :
∑
i∈V

xi ≥ (1− 2ε2)|V |} .(48)

Further ε1,2(ξ) → 0 as ξ → 0. The first inclusion follows from the bounded degree and bounded
hi property. The second from the expansion and non-negativity of hi (the latter argument was for
instance already used in the proof of Proposition 4).

Therefore we can lower bound τε(G;h) by some τA(ξ)(G;h) for a suitable choice of ξ(ε) > 0. For
the latter we can use Theorem 15, which implies τA(ξ)(G;h) ≥ exp{βΓA(ξ),G(−1;h) + o(β)}. Let

Ω ⊆ 2V be a collection of subsets of V , such that ∅ ∈ Ω, V \ A(ξ) 6∈ Ω. Using notations already
introduced in the main text, we have the following lower bound in terms of cuts

ΓA(ξ),G(−1;h) ≥ min
(S1,S2)∈∂Ω

max
i=1,2

[cut(Si, V \ Si)− |Si|h] , (49)

At this point the thesis follows by using the same set Ω that is already used in the proof of Lemma
2. (One has to simply check that V \A(ξ) 6∈ Ω via (48).) �

Proof of Theorem 16. Clearly τε(G;h) ≤ τδ(G;h) because the event {
∑

i∈V xi(t) ≥ (1− 2ε)n} neces-
sarily precedes the one {xi(t) = +1 for all i ∈ V }. Hence claim (ii) is immediate from the analogous
claim on τ+(G).

Claims (i) and (iv) follow from appropriate construction of expander subgraphs that have vertex
set U = V . The constructions remain the same as in the proof of Theorem 1 in the main text. The
resulting lower bounds on mixing time are robust by Lemma 17.

Finally, claim (iii) can be proved by repeating the same construction as in Theorem 1 in the
main text, but keeping ` bounded. More precisely, one can construct Ω(nε) disjoint subgraphs with
volume `d = Ω(log(1/ε)/ log log(1/ε)). By Lemma 17, it takes exp(C`d) time before in any of them
the majority switches to +1. This implies the desired lower bound. �
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