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Supplementary Material 1 

I. Marking Study 2 

Abstract 3 

In the main body of this paper we presented an HFO detection and classification algorithm that requires 4 

no manual intervention.  In this supplement, we compare the performance of the automated method 5 

with that of three expert human reviewers on an HFO verification task.  Our main qualitative conclusion 6 

is that human reviewers are currently not in sufficient agreement about what constitutes an HFO to 7 

place high emphasis on ground truth data in detection benchmarking; and we find that the automated 8 

approach is statistically indistinguishable from humans in the classification task. 9 

Introduction 10 

Despite the proliferation of tools for automatically detecting seizures and other epileptiform activity, no 11 

algorithm yet exists for the fully automated extraction of 100-500 Hz transient high-frequency 12 

oscillations (HFOs) from intracranial EEG recordings.  Several authors have reported on semi-automated 13 

approaches (Crépon et al. 2010; Csicsvari et al. 1999a; b; Staba et al. 2002) to HFO detection, which use 14 

intensive visual pre- and post-processing in conjunction with machine detection.  As Gardner et al. 15 

discuss (Gardner et al. 2007),  none of these groups presents formal validation data for their automated 16 

methods; acceptable detection performance is either implicit or simply asserted.  Staba et al. (Staba et 17 

al. 2002), for example, state without demonstration that “during development of [their] technique, it 18 

was found that it was effective in detecting greater than 84% of putative oscillatory events observable 19 

with visual EEG analysis.”  20 

 21 
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 “Gold standards” for HFO detection  22 

 23 

How concerned should one be, at this point in time, about the scarcity of formal validation data for 24 

published machine HFO detection algorithms?  Below we argue that, given the current state of the field, 25 

it would be misguided to place too strong an emphasis on classical performance metrics for existing or 26 

proposed automated detectors.  As justification for this opinion, we offer the following three points.  27 

First, even in the absence of rigorous direct validation, current methods are undoubtedly useful, as 28 

evidenced by their widespread acceptance:  several research groups (Crépon et al. 2010; Schevon et al. 29 

2009; Staba et al. 2007; Staba et al. 2002; Worrell et al. 2008) have adopted methods similar to those 30 

originally presented without formal validation by Csicsvari et al. (Csicsvari et al. 1999a), for instance, and 31 

have done so with success – where “success” means simply that detected events turned out to be 32 

related to outcome measures of scientific interest.   33 

 34 

Second, as the results of Gardner et al. (Gardner et al. 2007) show, the task of having clinicians visually 35 

identify transient oscillations in iEEG – a requirement for generating ground truth data against which to 36 

evaluate automated methods – does not yield the complete set of events that is verified by the same 37 

reviewers when presented with a superset of their own markings containing those of a machine 38 

detector as well.  Though the Gardner study involved oscillations in the gamma band, it seems likely that 39 

their conclusion that human reviewers tend to make many false negative errors would also apply to 100-40 

500 Hz HFOs.  In fact, one might expect the effect to be even larger, both because 100-500 Hz HFOs are 41 

less familiar to clinical reviewers and vigilance requirements for marking are even more demanding 42 

given the higher recording bandwidths.   Findings like those of Gardner et al. call into question the 43 

sensibility of using a set of human markings as an absolutely rigid benchmark for automated detectors. 44 

 45 
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Lastly, insisting on perfect establishment of ground truth tends to raise the distracting existential 46 

question “what is an HFO?”  HFOs are, after all, human constructs, employed because they presumably 47 

help us understand or communicate about the workings of the brain.  Far more critical than pinning 48 

down specifically which waveforms are and are not HFOs, a priori, is using the concept of an HFO to 49 

probe the data for evidence of its validity and practical utility.  Taking this empirical tact, we settle for a 50 

crude detector – one that has been vetted by clinical opinion for its ability to find at least some things 51 

resembling what would catch the eyes of human reviewers – and we analyze its imperfect outputs.  If 52 

we find results of scientific importance, we can use them to refine our understanding of what the critical 53 

properties of HFOs are and subsequently to optimize our detector, in the hope that we will extract 54 

more, or different, information in the next iteration.  This evolutionary view of detector design is a 55 

fundamental to the approach we have taken in this work.            56 

 57 

What we should be asking of the earliest incarnations of fully automated methods, then, is not whether 58 

they meet premature and arbitrary performance specifications for detection, but whether they can 59 

approximate the successes of semi-automated methods without data pre-selection and post-processing 60 

by humans.  The latter limit the scientific interpretability of conclusions about HFOs and seizure 61 

generation – including our ability to assess the generalizability and clinical utility of those findings – to a 62 

far greater degree than the odd percentage point of sensitivity or specificity.  63 

 64 

The present study 65 

 66 

At the same time we offer this lengthy caveat, we also appreciate that it is helpful for practitioners who 67 

wish to evaluate our algorithm to understand it within the context of human performance.  In the work 68 
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we describe below, we asked three board-certified epileptologists to classify detected HFO candidates 69 

and compared their markings with the outputs of our automated classifier.  70 

Methods 71 

Reviewer Labeling 72 

Five thousand HFO candidates (~0.4%) were randomly selected among all those identified in stage 1, 73 

across all patients.  As a conservative measure, we excluded all events from the two subjects (CT 01 and 74 

SZ 05) from whom a subset of data had been used to develop artifact-distinguishing features.   The 75 

remaining 4,773 randomly selected events, across ten patients (nine epilepsy and one control) 1, were 76 

then used in a human labeling experiment.  77 

Three board-certified neurologists independently marked all presented events as either valid (positive) 78 

or invalid (negative) HFOs, according to the following criteria for what constitutes a valid HFO: “Any 79 

transient, quasi-periodic voltage variation with predominant frequency between 100 and 500 Hz, lasting 80 

on the order of tens of milliseconds, standing prominently apart from the background signal, and having 81 

apparently physiologic origin.”   The criteria were intentionally somewhat vague to reflect the fact that 82 

there is currently no standard operational definition of an HFO.   83 

Events were presented to reviewers via a custom Matlab graphical user interface (GUI), shown in Figure 84 

S1.  The GUI was comprised of four complementary views of each HFO candidate.  The bottom view 85 

displayed roughly 1 second (0.5 seconds on either side of the candidate) of 5 Hz–1 kHz2 single-channel 86 

                                                            
1 For CT 01, 1 of 1 data file was used in artifact training; for SZ 05, only 1 of 8 total files was used in training.  Thus, the number 
of subjects from whom events were drawn for the labeling experiment is only one less than the total number of patients, not 
two.    

2 Display distortion was in practice negligible at this default timescale due to the relatively low signal power above the effective 
Nyquist frequency of the display.  As reviewers were free to zoom in (but not out), this compromise allowed us to faithfully 
represent the full bandwidth across nearly all available time scales without the need for zoom-adaptive filtering. 
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iEEG, sampled at 2,713 Hz, with vertical scaling of 21 µV/mm.  The event under consideration was 87 

delimited by red lines (solid, start; dotted, stop) and the view could be scrolled for 30 seconds on either 88 

side of the default display window.   The top, left view was of the raw data (near DC—9 kHz, 32,556 Hz 89 

sampling rate) corresponding to the detection; the top, middle view was of the bandpassed data 90 

corresponding to the detection (100-500 Hz, 2713 Hz sampling rate); and the top, right view was a 91 

frequency-domain representation of the middle view.  Unlike the bottom view whose vertical scaling 92 

was fixed, all top views were auto-scaled to fit their viewing windows.  Reviewers were free to edit their 93 

markings until they had labeled every event and declared the task complete.   94 

The human labeling task was binary, while the automated algorithm classified detections into one of five 95 

groups: four clusters, plus a fifth group (“Cluster 0”) comprised of detections that were eliminated in 96 

stage 2.   In order to compare human and machine performance directly, we took as machine-negative 97 

all events in cluster 0 and in cluster 2, whose centroid bore the closest qualitative resemblance to the 98 

artifacts we had designed features to identify.  All other clusters were taken as machine-positive.  This 99 

post-hoc labeling decision was made blinded to the human reviewers’ markings;  and while made 100 

manually for the present experiment, we note that it could readily be made automatically in the future if 101 

desired – for example by storing the coordinates of the cluster 2 centroid and assigning the negative 102 

HFO label to an automatic cluster whose centroid was sufficiently nearby. 103 

Data Analysis 104 

We use the chi-squared test of homogeneity to test whether HFO counts are distributed identically 105 

across populations (where “population” is analysis-dependent and clear from context below), and the 106 

chi-squared test of independence to test whether marker labels are independent.  The chance model we 107 

use for markers assigns a positive label to each event with probability p = Np/N, with Np the total 108 
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number of events actually labeled positive by the marker and N the total number of marked events 109 

(4,773).   110 

Results 111 

In describing the results below, we use the term “reviewer” to refer specifically to humans and 112 

“marker,” more generally, as a term that encompasses both humans and the machine algorithm.  The 113 

terms “detection” and “event” are used synonymously.     114 

Putative prevalence of valid HFOs by marker 115 

Human reviewers were not in agreement about the overall prevalence of HFOs in the data set of 116 

candidates presented to them.  The percentages of detections marked as positive HFOs by reviewers A, 117 

B, C, and the machine classifier (M) were 24.6%, 5.5%, 11.5%, and 13.0%, respectively.   We rejected the 118 

null hypothesis that the proportion of detections marked as positive was independent of human 119 

reviewer (χ2(2, N = 14,319) = 763.84, p << 0.0001).  Also apparent from these numbers is that the 120 

automated method’s propensity to mark events as positive is not extreme relative to humans’. 121 

Human reviewer preference by cluster 122 

Reviewers had clear and differing cluster preferences.  Figure S2A shows, for each human reviewer, all 123 

events falling into clusters 1-4 that were classified as positive HFOs.  For reviewer A, the majority of such 124 

detections (57.1%) fell into cluster 4.  The largest clusters for Reviewer B were 3 and 4, with the former 125 

(44.3%) favored over the latter (27.1%).   Reviewer C displayed yet a third pattern, splitting a majority 126 

fairly evenly between clusters 1 (42.0%) and 4 (41.4%).   For all three human reviewers, the smallest 127 

percentage was in cluster 2 (6.1%, 13.6%, and 1.9%, for A, B, and C, respectively), the putative artifact 128 

class.  We reject the null hypothesis that the proportion of detections in each of the four clusters was 129 

the same across human reviewers (χ2(6, N = 563) = 97.40, p << 0.0001).   130 
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Figure S2B shows, for each human reviewer, all events falling into clusters 1-4 that were classified as 131 

negative HFOs.  As expected, the putative artifact cluster dominates for all three reviewers: 43.3%, 132 

36.1%, and 39.3% for reviewers A, B, and C, respectively.  And as is the case for positive labels, we again 133 

reject the null hypothesis that the proportion of detections in each of the four clusters was the same 134 

across human reviewers (χ2(6, N = 2197) = 41.47, p << 0.0001).  Not shown in figure S2 are events that 135 

were marked as “0” by the automated detector – detections that were never classified into clusters 1-4 136 

due to elimination in stage 2.  These events are accounted for below, where we give standard 137 

performance metrics for the automated classifier against a ground truth set derived from the human 138 

reviewers’ markings.       139 

Inter-rater agreement 140 

A question of fundamental importance in defining ground truth data is to what degree independent 141 

human reviewers agree amongst themselves regarding what constitutes an HFO and what does not.  142 

Table S1 gives contingency tables, including the kappa score (Cohen 1960) and percentage agreement, 143 

for each of the three human-human marker pairs (top) and each of the three machine-human marker 144 

pairs.   For all tables, we reject at the 5% significance level the null hypothesis that marker labels were 145 

independent, and the kappa values greater than one indicate that these difference were in the direction 146 

of agreement in all cases (AB: (χ2(1, N = 4773) = 260.94, p << 0.0001); AC: (χ2(1, N = 4773) = 25.09, p << 147 

0.0001); BC: (χ2(1, N = 4773) = 298.50, p << 0.0001); MA: (χ2(1, N = 4773) = 85.80, p << 0.0001); MB: 148 

(χ2(1, N = 4773) = 270.96, p << 0.0001); MC: (χ2(1, N = 4773) = 139.94, p << 0.0001);).  The average 149 

pairwise percentage agreement among human reviewers was 79%, while that for machine-human pairs 150 

was 80%.  The average pairwise kappa score among human reviewers was 0.15, while that for machine-151 

human pairs was 0.17.  The latter average, however, and the individual kappa scores that comprise it are 152 

not straightforward to interpret given the different biases of the reviewers.   153 
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We also note that we have aggregated across subjects in computing these inter-rater agreement 154 

measures.  Given the rarity of positive HFOs, sample sizes were too small to compute reliable statistics 155 

on an individual subject basis.  But inspecting kappa scores leads us to hypothesize that the degree of 156 

inter-marker agreement and the differences between human-human and machine-human pairs may 157 

vary with patient.  For example, average human-human kappa for SZ 05 (1627 events) was 0.21 while 158 

the machine-human value was 0.27; for SZ 07 (1448 events) average performance was near chance for 159 

both human-human (-0.07) and machine-human (0.01) pairs; and for SZ 03 (295 events) average human-160 

human kappa was 0.37, while average machine-human kappa was 0.19.  It would be instructive to 161 

investigate these differences more systematically by conducting another marking experiment in which 162 

larger random samples of equal sizes were drawn from each subject. 163 

The main conclusion we reach is that a given human is no more consistent with another human in his 164 

markings than he is with the machine.  165 

HFO ambiguity  166 

Ground truth looks very different depending on which of several plausible defining rules is adopted.  167 

33.7%3 of all detections were marked by at least one human reviewer as positive HFOs, while 39.6%4 of 168 

all detections were marked by at least one marker as positive.  6.0%5 of events were marked by at least 169 

two human reviewers (i.e. majority consensus) as positive HFOs, while 10.3%6 of all events were labeled 170 

positively by at least two markers.  Only 2.0%7 of events were marked by all three viewers (i.e. 171 

                                                            
3 Chance, which should be higher = 36.9%. 

4 Chance, which should be higher = 45.1%. 

5 Chance, which should be lower = 4.5%. 

6 Chance, which should be lower = 8.7%. 

7 Chance, which should be lower = 0.16%. 
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unanimous consensus) as valid HFOs, while 2.5%8 of all events were marked by at least three markers as 172 

positive9.  The range of these values, which is affected by both the marginal probabilities displayed by 173 

each marker and the degree to which they tend to actually agree, gives one view of the general 174 

uncertainty among reviewers about what counts as an HFO.  175 

General classifier performance metrics 176 

We formed a ground truth data set by labeling as positive all events marked positively by at least two 177 

human reviewers (i.e. majority human vote) and as negative all remaining events.   The overall accuracy 178 

of the automated classifier against this benchmark was 86.7%.  Sensitivity was a moderate 46.8%, 179 

reflecting the conservatism of Stage 2, which was designed to retain only events with large spectral 180 

dissimilarity from the background, a condition not explicitly enforced in the marking instructions for 181 

reviewers and to which we anticipated not all would adhere.  Specificity was 89.2%, reflecting strong 182 

classification performance for negative events.   Given the relatively high marginal probability of 183 

negative events, however, precision was 21.5%.  The F1-measure, the harmonic mean of precision and 184 

sensitivity, was 0.30.   185 

The precision metric reported above for the automated procedure should be viewed in light of the 186 

sparseness of positive events and in terms of its improvement on Stage 1 alone.   Moving from a data set 187 

that is 6% “pure”10 to one that is 21.5% pure is an improvement of 258%.  It is also important to 188 

remember that precision, as well as the other performance metrics we report, is highly dependent on 189 

our definition of ground truth.  If we consider a ground truth data set whose positively labeled examples 190 
                                                            
8 Chance, which should be lower = 0.74%. 

9 All reported values were significantly different at the 5% level (chi-squared test) from their chance values, which were 
computed using the marginal probabilities displayed by each marker.  For brevity, we have omitted these results, as they are 
tangential to the point of the paragraph.            

10 Six percent is the probability that a given event emerging from stage 1 would be declared a positive HFO by at least two 
human reviewers. 
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are the union of all three human reviewers’ positive markings, for example, the precision improves to 191 

54.6% (with the F1-measure improving slightly, indicating that this increase is not completely  192 

counterbalanced by a decrease in sensitivity).   Also, the precision metric reported above is an 193 

aggregated measure with respect to the machine clustering.  The precision for each of the four clusters 194 

considered individually is different and in some cases higher than this aggregate measure, as we discuss 195 

below.   196 

Table S2 shows the performance results obtained when we modify our ground truth definition in a 197 

manner consistent with the recommendations of Gardner et al. (Gardner et al. 2007).  The modified 198 

ground truth set considers any event marked by at least two markers, human or automated, to be a 199 

positive HFO.  The table compares the performance of each marker against this hybrid human-machine 200 

ground truth, and also gives the difference between each metric and that expected under a chance 201 

model.  Chance values, which can be computed exactly, were for convenience generated by simulation 202 

in the following way.   For each rater, 100 random m x n marking matrices were generated, where m 203 

was the total number of marked events (4,773) and n was the total number of markers (4).   Random 204 

marking matrices were drawn according to actual probability mass function displayed by each reviewer.   205 

For each trial, performance metrics were computed using the modified ground truth rule described 206 

above, and the 100 values in each performance metric category were averaged to yield a final expected 207 

value for each.  Values in parentheses in the table are the differences between the observed values and 208 

these chance values.     209 

Machine cluster purity 210 

Given a machine-positive HFO cluster (i.e. 1, 3, or 4) the probability that one of its members was also 211 

marked positive by human reviewers was dependent on cluster.   Table S3 shows these results for two 212 

cases, one in which ground truth positive is taken to be the union of all human reviewer positive 213 
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markings and one in which ground truth positive is taken to be a majority vote.   For completeness, we 214 

also include the values computed for cluster 2.  For both the majority ground truth (χ2(2, N = 619) = 215 

13.64, p = 0.0011) and the union ground truth (χ2(2, N = 619) = 33.88, p << 0.0001), we reject the null 216 

hypothesis that the proportion of ground truth positive events occurring in each of the three machine 217 

positive clusters is the same.  218 

Discussion 219 

The results of this marking study strongly reinforce the idea that we are in the nascent stages of 220 

describing high frequency oscillations within the brain.  Human reviewers do not agree on the 221 

prevalence of HFOs.  Nor, relatedly, do they agree particularly well on what constitutes an HFO when 222 

they see one.  Other results strongly suggest that, in addition to poor inter-rater agreement, intra-rater 223 

reliability is moderate at best (Gardner et al. 2007).   Different reviewers demonstrate strong 224 

preferences for waveforms with differing characteristics.  Nonetheless, the level of agreement does 225 

exceed chance – there is a core of commonality worth investigating more thoroughly.   But the evidence 226 

makes it clear that, currently, “ground truth” HFO data are a false sense of security, and should be 227 

regarded as suggestive rather than authoritative.        228 

 229 

The automated algorithm we introduce performs similarly to humans at the task of culling positive 230 

exemplars from a large set of candidate HFOs.  Humans agree no more with each other than they do 231 

with the machine.  The second and third stages of the automated algorithm, taken together, offer at 232 

least a threefold improvement in positive predictive value over the stage 1 detector alone – more if we 233 

consider individual clusters, some of which seem to capture waveform features that are more saliently 234 

HFO-like to humans than others.  The automated approach provides the further advantages of being 235 

perpetually consistent in its application of detection criteria and indefatigable in its marking effort.   236 
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 237 

The relative uncertainty among humans about what constitutes an HFO gives us confidence in framing 238 

our work as exploratory, and in the value of studying the outputs of our algorithm on their own merits.  239 

In future work, we will examine the relationship between the clusters our algorithm finds and putative 240 

areas of seizure generation.  241 
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II. Other supporting material 242 

 243 

In addition to the marking study detailed above, we provide several descriptions, figures, and tables that 244 

supplement other aspects of the main-body text. 245 

 246 

Stage 2, additional detail 247 

The principal components can be found by successively seeking out the spatial directions along which 248 

the lengths of the orthogonal projections of the data observations have maximal variance, subject to the 249 

constraint that each successive direction is orthogonal to its predecessors.  These directions are exactly 250 

the eigenvectors of the covariance matrix,  , of the data: 251 

 252 

  253 

  (1) 254 

where  is the  power spectral density representation of background segment , described 255 

above, and  is the mean of all  background segments associated with a given HFO candidate (for us, 256 

 )11.  The new coordinates for each background data segment are computed as: 257 

 258 

  259 

  (2) 260 
  261 
 262 

                                                            
11 Since the number of background segments is smaller than their dimensionality, , the data lie in a linear subspace whose 

maximum dimension is .  Therefore, at least  eigenvalues (projection variances) must be zero, and this fact 

is used to increase the efficiency with which the relevant eigendecomposition is performed (Bishop 2006). 
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 where  is the new  data matrix of background-segment representations,  is the  matrix 263 

whose  row is   , and  is the  matrix whose columns are the unit-normalized eigenvectors 264 

of  corresponding to the  largest eigenvalues  (for us, , as mentioned above).   The -265 

dimensional  projection for the HFO candidate segment itself is then computed, after removing the 266 

mean of the background segments and dividing by their standard deviation, using the same matrix . 267 

 268 

The BIC can be derived starting from the Laplace approximation to the “model evidence” (Bishop 2006) 269 

– the probability of the data given a particular model after marginalizing over all possible values of the 270 

parameters.   Assuming a broad (nearly uniform) Gaussian prior distribution over the parameters and a 271 

Hessian matrix of the negative log-likelihood function (evaluated at the optimal parameter vector given 272 

the data) that is of full rank, the evidence for the  model ( ), denoted by , can be 273 

approximated by: 274 

 275 

  276 

  (3) 277 

  278 

(Bishop 2006) where the subscript  stands for the “maximum likelihood” estimates found via EM, 279 

and the constant  in the second term on the right is the number of free parameters in the  model; 280 

the latter term penalizes model complexity and hence guards against overfitting.   The computation in 281 

(3) is the BIC, and we select the model for which it is largest. 282 

 283 

The goal in stage 2 is to assign a given HFO candidate to one of two classes,  (background) or  284 

(anomaly), while minimizing the misclassification rate.  This is theoretically done by assigning  to 285 

whenever 286 
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  287 

  (4) 288 
  289 

    290 

(Duda and Hart 1973), where  is the 2-  representation of the HFO candidate, discussed above.   291 

Applying Bayes’s Theorem, this condition can be shown to be equivalent to  292 

  293 

  (5) 294 

  295 

The GMM describing  allows estimation of the quantity on the left directly, but there is no such model 296 

describing , and one cannot reasonably be inferred  given that there is at most a single observation 297 

from .   The prior probabilities of and , respectively, are similarly unknown.   298 

 299 

To address these issues, a heuristic criterion is employed, based on the squared Mahalanobis distances, 300 

, from the HFO candidate to the center of each GMM component, given by: 301 

 302 

  303 

  (6) 304 
 305 

The squared Mahalanobis distances of a random sample drawn from a multivariate normal distribution 306 

(computed using the unbiased sample covariance matrix) will be distributed approximately as central 307 

chi-squared with  degrees of freedom, where  is the dimensionality of the data (McLachlan 1999).  308 

Using the assumption that   is a monotonic decreasing function of , so that the latter is 309 

high wherever the former is low, it is estimated that 310 
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 311 

  (7) 312 

  313 

where  is the central chi-squared density function with  degrees of freedom: 314 

 315 

  (8) 316 

 317 

The function  is the Gamma function .    318 
 319 
 A similar estimate was used by Roberts (Roberts 2000).  320 

 321 

Procedurally, the percentage of the central chi-squared density lying to the right of the calculated 322 

Mahalanobis distance from each mixture component is found.  A weighted average of these 323 

percentages, with weights equal to those of the corresponding mixture components is then computed.  324 

If the resultant estimated probability exceeds 5%, the HFO candidate is considered to have been 325 

generated by the local background process and it is removed from candidacy.  All candidates for which 326 

the calculation in (7) – computed with respect to the candidate’s unique local background model – falls 327 

below the 5% threshold are passed on to the final clustering stage. 328 

  329 
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 330 

Figure Legends 331 

Figure S1. HFO marking tool.  Screen shot of custom GUI used to present detections to clinical reviewers.   332 

Figure S2. Human reviewer cluster preferences.  Each whole pie represents the total number of 333 

positively marked HFOs by a human reviewer (A: reviewer A; B: reviewer B; C: reviewer C) that were 334 

classified by the machine as belonging to clusters 1, 2, 3, or 4.  Pie wedges represent the proportion of 335 

such marks falling into each cluster (blue: cluster 1; green: cluster 2; red: cluster 3; cyan: cluster 4).  336 

Figure S3. Cluster 1 sample events in context.  Raw (left) and 100-500 Hz bandpassed (right) voltage 337 

traces of the five randomly selected events from cluster 1 that appear in figure 5B.  Detected events are 338 

demarcated by red lines (solid = start; dotted = stop) and shown within the context of 0.5 seconds of 339 

data on either flank.  Events are arranged on the vertical axis in the same order as in figure 5B.  In the 340 

abbreviations above each trace, the first letter indicates whether the recording comes from a macro- 341 

(M) or microelectrode (m).  RT = right temporal; LPO = left parietooccipital; MR = motor.  Note that 342 

identical labels do not imply identical electrodes, only that the electrodes have the same lobar location. 343 

Figure S4. Cluster 2 sample events in context.  Raw (left) and 100-500 Hz bandpassed (right) voltage 344 

traces of the five randomly selected events from cluster 2 that appear in figure 5B.  Detected events are 345 

demarcated by red lines (solid = start; dotted = stop) and shown within the context of 0.5 seconds of 346 

data on either flank.  Events are arranged on the vertical axis in the same order as in figure 5B.  In the 347 

abbreviations above each trace, the first letter indicates whether the recording comes from a macro- 348 

(M) or microelectrode (m).  LIF = left inferior frontal; LT = left temporal; AT = anterior temporal.  Note 349 

that identical labels do not imply identical electrodes, only that the electrodes have the same lobar 350 

location. 351 
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Figure S5.  Cluster 3 sample events in context.  Raw (left) and 100-500 Hz bandpassed (right) voltage 352 

traces of the five randomly selected events from cluster 3 that appear in figure 5B.  Detected events are 353 

demarcated by red lines (solid = start; dotted = stop) and shown within the context of 0.5 seconds of 354 

data on either flank.  Events are arranged on the vertical axis in the same order as in figure 5B.  In the 355 

abbreviations above each trace, the first letter indicates whether the recording comes from a macro- 356 

(M) or microelectrode (m).  A = anterior; LAMT = left anterior mesial temporal.  Note that identical labels 357 

do not imply identical electrodes, only that the electrodes have the same lobar location. 358 

Figure S6.  Cluster 4 sample events in context.  Raw (left) and 100-500 Hz bandpassed (right) voltage 359 

traces of the five randomly selected events from cluster 4 that appear in figure 5B.  Detected events are 360 

demarcated by red lines (solid = start; dotted = stop) and shown within the context of 0.5 seconds of 361 

data on either flank.  Events are arranged on the vertical axis in the same order as in figure 5B.  In the 362 

abbreviations above each trace, the first letter indicates whether the recording comes from a macro- 363 

(M) or microelectrode (m).  RF = right frontal; LPO = left parietooccipital; RT = right temporal.  Note that 364 

identical labels do not imply identical electrodes, only that the electrodes have the same lobar location. 365 

 366 

 367 

  368 
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