Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers

Maren E. Buck,¹ Sarina C. Schwartz,¹ and David M. Lynn^{1,2,*}

¹Department of Chemistry, 1101 University Avenue, and ²Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706

Supporting Information

Monomer activation:

Figure S1. Activation, initiation, and propagation of the acid-catalyzed oligomerization of VDMA as proposed by Heilmann et al.¹ The nitrogen of the azlactone ring is protonated by a strong acid to activate the azlactone ring. A counterion then adds to the activated monomer by Michael Addition to the olefin, forming an enol-like intermediate. This enol-like tautomer can then undergo a subsequent Michael Addition reaction with an additional unit of activated monomer to form the dimer. This process can propagate to form higher order oligomers (i.e., trimers, tetramers, pentamers, etc.; see Figure S2 for structures).

Figure S2. Structures of cyclic oligomers formed during oligomerization, as proposed by Heilmann et al.¹

Table S1. LC-MS characterization of oligomer precipitated from non-distilled monomer. The oligomers were hydrolyzed prior to LC-MS analysis to improve solubility in aqueous solvents and the resolution of the peaks on the LC column, as described previously by Heilmann et al.¹

$M_{\rm w}$	MS assignment ^a
158	Monomer $+ 1H_2O$
315	$Dimer + 2H_2O$
472	Trimer $+ 3H_2O$
611	Tetramer $+ 3H_2O$
629	Tetramer $+ 4H_2O$
768	Pentamer $+ 4H_2O$
784	Pentamer $+ 5H_2O$
925	$Hexamer + 5H_2O$
941	Hexamer $+ 6H_2O$

^a Mass spectrometry notations refer to the extent of hydrolysis of each oligomeric structure. For example, "Tetramer + $3H_2O$ " indicates that 3 out of 4 azlactone rings have been hydrolyzed.

Table S2. LC-MS characterization of intentionally synthesized oligomers. The oligomers were hydrolyzed prior to LC-MS analysis to improve solubility in aqueous solvents and the resolution of the peaks on the LC column, as described previously by Heilmann et al.¹

$M_{\rm w}$	MS assignment ^a
418	Trimer
472	Trimer $+ 3H_2O$
629	Tetramer $+ 4H_2O$
732	$Pentamer + 2H_2O$
768	$Pentamer + 4H_2O$
871	$Hexamer + 2H_2O$

^a Mass spectrometry notations refer to the extent of hydrolysis of each oligomeric structure. For example, "Tetramer + $3H_2O$ " indicates that 3 out of 4 azlactone units have been hydrolyzed.

References

 Heilmann, S. M.; Moren, D. M.; Krepski, L. R.; Rasmussen, J. K.; Gaddam, B. N.; Roscoe, S. B.; Lewandowski, K. M.; McIntosh, L. H.; Roberts, R. R.; Fansler, D. D.; Szekely, G. G.; Weil, D. A.; Thakur, K. A.; Pathre, S. V.; Battiste, J. L.; Hanggi, D. A., J. Macromol. Sci., Part A: Pure Appl. Chem. 2003, A40, 755-790.