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S1 Supporting theoretical analysis

S1.1 Screening of rotation by bare membrane sections

Here we discuss the consequences of the presence of a hypothetical break in the helix. If the break
is very short, the resulting bare membrane region is still able to transmit torques thanks to its
membrane viscosity, and therefore the break is not evident in the measurements presented in Fig. 2
of the main text. Longer breaks, however, result in a mechanical discontinuity of the tube and
would therefore have noticeable consequences on bead rotation.

Let us consider a tube with a dynamin coat disassembled between two altitudes z1 and z2.
In that case, it is difficult for the piece of helix between 0 and z1 to drag the piece between z2

and L along, as the mechanical connection between the two is only realized through a section of
bare membrane tubule. In order to assess the range of this mechanical connection, we consider an
infinite membrane tubule covered by dynamin only up to the altitude z1. We denoting by Ω(z) the
rotation velocity of the membrane tubule and the water it encloses at altitude z ∈ [z1,+∞]. It is
easily shown that the upward flux of angular momentum transmitted through the water within the
tubule at altitude z is equal to π

2 ηr
4∂zΩ. The angular momentum transmitted by the membrane

is 2πr3ηm∂zΩ, where ηm ' 10−9kg.m−1.s−1 is a typical membrane viscosity (1). Meanwhile, the
surrounding fluid exerts a friction on the tubule. It thus acts as a momentum drain and sucks
an amount 2πηr2Ω of angular momentum per unit length per unit time (this expression assumes
that the length scale ` over which Ω varies is much larger than r). Writing the conservation of
angular momentum along the membrane tubule, we conclude that its rotational velocity decays as

Ω(z) = Ω(z1) exp [−(z − z1)/`], where ` = r
2

√
1 + 4ηmηr '

√
rηm
η ' 100 nm� r. Therefore, friction

of the membrane with the surrounding fluid screens the tube’s rotation over length scales of order
`. This means that disassembling the helix over a patch of size ≈ 100 nm would be enough to spoil
the linear relationship observed in Fig. 2(a), as well as the sinusoidal profile of Fig. 2(c). From this
we deduce that if any helix discontinuities are present in our experiments, they must be few and
much smaller than 100 nm.

S1.2 Bead rotation is not due to unbraiding

It has been suggested in Ref. (2) that bead rotation in experiments similar to ours (3) is due to the
unwinding of a braid formed by two tubes attached at z = 0 and z = L respectively—here we refer
to those as tubes 1 and 2. Within this hypothesis, a bead attached to tube 1 in the vicinity of z = 0
should rotate by only a modest amount, as it is close to the tube attachment point. Statistically,
about half of the beads in this region should be bound to tube 2. These are expected to rotate by
a large amount, comparable to those located in z = L in Fig. 2(a) of the main text. That no such
dispersion is observed in our data is proof that we monitor the rotation of a single tube.
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S1.3 Thermodynamic description of the membrane reservoir

In order to predict the dynamics of a tube as in Fig. 3 of the main text, the diffusion equation
Eq. (5) of the main text [or more generally Eq. (21) of Ref. (4)] must be supplemented with boundary
conditions. Ref. (4) proposes the boundary condition δµe(z = 0) = δµe(z = L) = 0, where z = 0
and z = L correspond to the extremities of the tube. This is meant to describe contact of the tube
with two reservoir: one of membrane and one of helix. Although the former is perfectly legitimate
in our experimental setting, interpreting the latter is somewhat more difficult. Moreover, using
this boundary condition leads to very strongly bent and stretched membrane profiles [Eq. (45) and
Fig. 3 of Ref. (4)]. These profiles suggest that the membrane should break much sooner than is
actually observed (5), and are somewhat at odds with the physical intuition that the membrane
should relax to a weakly bent, low-energy configuration at long times.

In this section we propose a more satisfactory set of boundary conditions by properly describing
the contact of the tube with membrane-only reservoirs in z = 0 and z = L. Denoting by

δµ =
∂f

∂ρ

∣∣∣∣
uzθ,Φ

(S1)

the tube total chemical potential, the Gibbs-Duhem relation reads

d(δµ) =
d(δp)

ρ
+ δµed(δΦ) +

δh

ρ
d(δuzθ). (S2)

As the two last terms in the right-hand side are of second order in δ (defined in the main text), we
neglect them in the following. The chemical potential is defined up to a constant, which we choose
such that δµ = 0 in the reference state (hence the δ in δµ). Contact with a membrane reservoir
fixes the membrane chemical potential, which is defined as

µm =
∂f

∂ρm

∣∣∣∣
ρh,uzθ

, (S3)

where ρh = ρΦ and ρm = ρ(1 − Φ) are the mass densities of helix and membrane, respectively.
Eqs. S1, S3 and the definition of δµe [see Eq. (3) of the main text] imply that µm = δµ − Φδµe.
Because of the convention chosen above, δµ vanishes in the reference state. According to its
definition, so does δµe. Therefore δµ = δµe = 0 in contact with the reservoir. Since the definition
of the reference state assumes that the tube is in equilibrium with the reservoir, we deduce from
this that equilibrium with the membrane reservoir is expressed by the condition µm = 0, and we
can thus write µm = δµm.

Integrating Eq. (S2) to first order in δ yields δµ = δp/ρ, and so δµm = 0 = δp/ρ − Φδµe.
Combining this with Eqs. 4a and 4b1, the boundary conditions are expressed by the fact that the
reactive forces δp(z = 0 or z = L, t), δh(z = 0 or z = L, t) and δµe(z = 0 or z = L, t) in contact
with the membrane reservoirs are respectively equal to

δpr = σext +
τext

p
−

(
ξ̃z∆µ+

ξ̃θ∆µ

p

)
(S4a)

δhr = −τext + ξ̃θ∆µ (S4b)

δµre =
σext

ρΦ
+
τext

ρΦp
−

(
ξ̃z∆µ

ρΦ
+
ξ̃θ∆µ

ρΦp

)
, (S4c)

1In the more general case where the two first modes of the tube are not ignored, this equation should be combined
with Eqs. (19a) and (19b) of Ref. (4). Noting that the terms with z-derivatives in these equations are vanishingly
small in the hydrodynamic limit, this yields the same result as the one presented here.
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where we use the fact that the tube’s tension and torque at its endpoints are equal to the externally
applied force and torque σext and τext. Combining Eq. (21) of Ref. (4) and Eqs. S4 with the initial
condition (δρ, δuzθ, δΦ)(z, t = 0) = (0, 0, 0), we compute the tube’s full relaxation dynamics in the
case σext = 0, τext = 0, which yields the results presented in Fig. 3 of the main text. As in Ref. (4),
the values of the active terms are chosen to reproduce the changes of pitch and radius observed in
electron microscopy (6), which reads

ξ̃z∆µ ' −3.5× 10−11 N and ξ̃θ∆µ ' 2.6× 10−17 N.m. (S5)

Note that this new description yields a negative ξ̃z∆µ, as opposed to the positive ξ̃z∆µ calculated
in Ref. (4). This means that we now predict that the tube tends to contract upon GTP hydrolysis,
whereas a positive ξ̃z∆µ implies an extension. Our new description, unlike that of Ref. (4), is
therefore in agreement with the experimental observations of Ref. (3) and the main text.

S1.4 Long-time dynamics of a tube attached at both ends

In this paragraph we discuss the possibility for a continuous tube attached to the glass in two
points (and therefore prevented from rotating) to induce bead rotation. Assuming a continuous
helix whose axis is a straight line throughout the dynamics, no such motion seems possible, and
indeed none is expected from our formalism. In order to show this we consider a tube whose initial
state is described by δuzθ(z, t = 0) = 0. As discussed in the main text and the previous section, the
final state has a uniform tension σ and torque τ , as well as a uniform membrane chemical potential,
which implies δuzθ(z, t = +∞) = constant. Moreover, the fact that the helix is held in z = 0 and
z = L implies

[θ(L,+∞)− θ(L, 0)]− [θ(0,+∞)− θ(0, 0)] = δuzθ(z,+∞)L = 0, (S6)

hence δuzθ(z,+∞) = 0 and the tube does not undergo any rotation.
Rotation of a tube bound at its two ends is however observed in Fig. 2(c), and is found to yield

a sinusoidal velocity profile. Here we propose a possible explanation for this observation. Because
of the propensity of the helix to rotate, torques build up in the tube following GTP injection, and
have been observed to lead to supercoiling of the tube (3, 6). The formation of a supercoil from a
stressed rod is a local phenomenon, which does not require an overall rotation of the rod or flow of
membrane. Consequently, we expect supercoils to form quickly (on non-hydrodynamic time scales)
following the GTP-induced build-up of torque. To simplify, let us assume that the formation of
these supercoils is irreversible—once formed they are thus “frozen” for the rest of the dynamics.
Supercoil formation leads to a local relaxation of the tube, and therefore we expect that the helix
in the vicinity of the supercoils will change its pitch and radius to some extent. This creates
an inhomogeneous initial condition for the tube’s hydrodynamic relaxation. As a consequence,
and unlike in the case considered above, δuzθ(z, t = 0) is not equal to zero everywhere. The
precise structure of this initial condition depends on the details of the supercoiling mechanism, and
is beyond the scope of this study. Assuming however that no additional supercoiling occurs on
hydrodynamic time scales, we predict that this initial condition relaxes according to the diffusion
equation Eq. (5). Since the now complicated function δuzθ(z, t = 0) generically has a non-vanishing
projection onto the slowest mode of the diffusion equation, we expect that the long-time dynamics
of the tube is dominated by the sinusoidal profile observed in Fig. 2(c).

Note that the mechanism presented here might not be the only possible explanation for this
phenomenon, and is only meant as an illustration of the fact that rotation in a tube bound at its
two ends is not logically forbidden. Moreover, it illustrates the general feature that if the paradox
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proposed here is indeed resolved through local, microscopic relaxation processes, then the form of
long-time relaxation of the tube is not affected and we expect our hydrodynamic predictions to
hold.
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S2 Supporting movies—legends

S2.1 Supporting movie 1

Experimental movie corresponding to Fig. 1(b). See main text for legend.

S2.2 Supporting movie 2

Illustration of the dynamics presented in Fig. 3 of the main text. Only a few helical turns are
shown, and in this small region the deformation looks spatially homogeneous—it however has
a more complicated spatial structure on larger length scales, as discussed in the main text and
in Ref. (4). The movie displays the asymptotically exponential relaxation of the helix’s three
hydrodynamic modes. The relaxation times involved in a real system are well separated and range
from hundreds of microseconds to seconds (see Fig. 3). Here these time scales are modified for
easier visualization. Each of the three modes therefore appears to have a relaxation time equal
to 0.4 s. Note that the amplitude of the first mode is very small compared to the next two and
might therefore escape the reader’s attention on first viewing. Finally, the model used allows for
both bending and stretching of the membrane (4). Although its amplitude is small, the former
induces some bulging of the membrane visible in this movie. The membrane is represented as a
semi-transparent surface, and its transparency is proportional to its stretching ratio.
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S3 Supporting figures

Figure S1: Geometry of the membrane sheets assay. (a-c) Side-view schematics representing (a) the
membrane sheets after rehydration and before dynamin injection, (b) the appearance of dynamin-
coated tubes on membrane sheets after dynamin injection, and (c) tubes bound to the coverslip
following dynamin injection. Note that the tubes represented here are essentially parallel to the
coverslip, enabling us to monitor their dynamics, but are some distance away from it, thus allowing
the beads to rotate freely. (d) Top-view fluorescence microscopy image of a membrane sheet at the
stage represented in (c) (dynamin is fluorescently labeled). Scale bar, 5µm.
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Figure S2: Experimental determination of the boundary conditions for a tube bound at one end
only. In order to calculate the maximum wavelength λmax compatible with the boundary conditions
of a given tube, we assume that tubes visibly bound to the glass at both ends obey the boundary
conditions δθ(z = 0, t) = δθ(z = L, t) = 0, which yields λmax = 2L. Fig. 2(c) of the main
text demonstrates the validity of this description, as it shows that the best sinusoidal fit to the
bead velocity data coincides with the boundary conditions directly assessed from video microscopy
data. For tubes bound in z = 0 and free to rotate in z = L, we assume δθ(z = 0, t) = 0
and ∂zδθ(z = L, t) = 0, where the latter condition corresponds to a zero torque being applied
to the tube in z = L. This implies λmax = 4L. In this figure we present experimental data
(circles) similar to that of Fig. 2(c) for such a tube, as well as the best sinusoidal fit of the form
Ω = Ω0 sin [2π(z − z0)/λmax] for this data (line), where Ω0, z0 and λmax are adjustable parameters.
The sinusoidal fit yields λmax ' 160µm, consistent with the direct measurement L ' 45µm. Note
that no beads are attached to the vicinity of the end of this tube, and therefore no data was
collected in the region z > 30µm. Moreover, the fit places the tube’s origin within 2µm of the
directly observed attachment point (z0 = 1.6µm). This shows that a sinusoid with λmax = 4L
is a good description of a tube bound at one end only, and validates the use of this condition in
constructing Fig. 2(d).
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Figure S3: Direct epifluorescence observation of an Alexa-488–dynamin polymer [prepared as in
Ref. (3)] during GTP hydrolysis using an EMCCD Andor camera. (a) tube anchored at both
ends after injection of 6.3µM fluorescently labeled dynamin on membrane sheets and before GTP
injection. (b) 12.74 s after injection of 100µM GTP. (c) 13.33 s after GTP injection. (d) Fission
occurs (white arrow) 13.93 s after GTP injection. (e) 15.11 s after GTP injection and 1.18 s after
tube fission. As mentioned in the main text, no significant discontinuity of the dynamin helix is
observed during this experiment apart from the main breaking event. This is evidence that the
dynamin coat remains continuous up until tube breaking. Scale bar: 5µm.

Figure S4: Fit procedure for the relaxation times presented in Fig. 2(d) of the main text. Relaxation
times are deduced from the data points representing the number of turns θ/2π of a specific bead
as a function of time t (black squares). Ignoring the initial phase where GTP injection and short
wavelength modes interfere with the tube relaxation, these curves are fitted with the function
θ/2π = a exp(−t/τ) + b in the Origin 8.1 software (red line), where a, b and τ are adjustable
parameters. The optimal value for τ is the relaxation time plotted in Fig. 2(d).
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