Biophysical Journal, Volume 99

Supporting Material

In silico Phosphorylation of the Autoinhibited Form of p47^{phox}: Insights into the Mechanism of Activation

Flavia Autore, Bruno Pagano, Arianna Fornili, Katrin Rittinger, and Franca Fraternali

[PSO]						
[atoms]				
	Ν	Ν	-0.280		0	
	Н	Н	0.280		0	
	CA	CH1	0.000		1	
	CB	CH2	0.150		2	
	OP	OA	-0.360		2	
		٩ ٧	0.360		2	
	OMI	OM	-0.635		2	
	OM2 OM2		-0.035		2	
	ир		-0.348		2	
	C III	II C	0.398		2	
	õ	Ő	-0.380		3	
[bonds]	Ű	Ű	0.000		5	
_[]	N	Н	gb 2			
	N	CA	gb 20			
	CA	С	gb_26			
	С	Ο	gb 4			
	С	+N	gb_9			
	CA	CB	gb_26			
	CB	OP	gb_17			
	OP	P1	gb_27			
	P1	OM1	gb_23			
	P1	OM2	gb_23			
	PI	OM3	gb_27			
F 1 1	НР	OM3	gb_l			
[angles]	C	N		aa 21		
	-С Н	IN N		ga_{17}		
	-C	N		$ga_1/$		
	-C N	CA	C	ga_{12}		
	CĂ	C	+N	ga_{12}		
	CA	Č	0	ga 29		
	0	Č	+N	ga 32		
	N	CA	CB	ga 12		
	С	CA	CB	ga 12		
	CA	CB	OP	ga 8		
	CB	OP	P 1	ga_25		
	OP	P 1	OM1	ga_13		
	OP	P 1	OM2	ga_13		
	OP	P1	OM3	ga_13		
	P1	OM3	HP	ga_11		
	OMI	P1 1	OM2	ga_28		
	OM2 OM1	1 I 1	OM3	ga_{28}		
Limpropor		PI	UM3	ga_28		
	s j N	-C	CA		н	αi 1
	C	CA	+N		0	5'_' gi 1
	CĂ	N	C		CB	gi 2
	Р	OP	OM1		OM2	gi 2
	Р	OP	OP		OM1	gi 2
	Р	OP	OP		OM2	gi_2
[dihedrals]					
	-CA	-C	N		CA	gd_4
	-C	Ν	CA		С	gd_19
	N	CA	С		+N	gd_20
	CA	CB	OP		P1	gd_12
	CB	OP	P1		OM2	gd_ll
	CB	01	P I 1		OM1	gd_ll
		0P D1			UM3 ЦЪ	gu_{11}
	Ur	ГІ	01013		пг	gu_11

Table S1: Parameters utilised for the HPO4⁻ group

Table S2: Energy decomposition values for the systems studied

		sSH3 (start)	sSH3 (20ns)	sSH3-3P (start)	sSH3-3P (50ns)	sSH3-3P (ED1) (4ns)	sSH3-DP (20ns)
SH3 _A -SH3 _B	Coul	-59 (9)	-36 (8)	-43 (7)	-205 (18)	-65 (11)	-103 (17)
	LJ	-135 (8)	-158 (9)	-133 (9)	-148 (12)	-97 (7)	-154 (9)
SH3 _A -Polybasic	Coul	-331 (24)	-344 (20)	-330 (31)	-517 (31)	-360 (23)	-230 (22)
	LJ	-252 (16)	-263 (14)	-236 (13)	-457 (22)	-261 (16)	-248 (13)
SH3 _B -Polybasic	Coul	-418 (37)	-306 (22)	-371 (35)	-302 (30)	-273 (28)	-431 (34)
	LJ	-283 (17)	-344 (13)	-295 (18)	-293 (14)	-287 (14)	-363 (18)
SH3 _A -SOL	Coul	-3973 (126)	-4184 (113)	-3817 (152)	-3627 (102)	-4016 (103)	-3969 (82)
	LJ	-354 (53)	-306 (48)	-371 (46)	-251 (46)	-371 (45)	-329 (50)
SH3 _B -SOL	Coul	-4438 (263)	-4437 (106)	-4222 (153)	-4141 (133)	-4473 (116)	-4506 (102)
	LJ	-225 (52)	-203 (52)	-287 (52)	-243 (48)	-273 (46)	-190 (55)
Polybasic-SOL	Coul	-3248 (124)	-2734 (118)	-3622 (121)	-3281 (126)	-3497 (163)	-3072 (111)
	LJ	-591 (51)	-511 (48)	-600 (51)	-451 (55)	-637 (53)	-580 (52)

Energies in $(kJ mol^{-1})$ fluctuations in parenthesis. Highlighted in bold are the most important changes observed.

Fig. S1. Structure of p47^{phox} that crystallized as a domain swapped dimer (PDB 1NG2). The domain swapped monomer is shown in blue with the symmetry-related molecule that was used to create the biologically relevant monomer in grey. Residues 198-201 of the distal loop, which where modelled to create the biological monomer are highlighted in yellow.

Fig. S2. (*A*) RMSF of the protein backbone with respect to the average position over the entire simulation for sSH3 (*dashed-dotted line*) and for sSH3-3P (*solid line*). (*B*) RMSD of the Cα atoms from their initial coordinates as function of time of sSH3 (*black line*) and sSH3-3P (*gray line*).

Fig. S3. Time evolution of the secondary structure elements during MD simulations of (*A*) sSH3, (*B*) sSH3-3P, (*C*) ED1ev and (*D*) sSH3-DP. Secondary structure elements at a given time point as determined by DSSP are colored following the scheme: α -helices in blue; β -sheets in red; turns in yellow; bends in green.

Fig. S4. Eigenvalues as a function of the eigenvector index obtained from essential dynamics analyses for (A) sSH3 and (B) sSH3-3P. Only the first 10 largest eigenvalues are shown out of a total of 528.

Fig. S5. Surface representation of (*A*) sSH3-3P, (*B*) ED1ev and (*C*) sSH3-DP structures at the end of the corresponding simulated time. The molecular surfaces of the residues in contact with the polybasic region (within 5Å) of SH3_A and SH3_B are displayed in blue and red, respectively. The residues that interact with $p22^{phox}$ are highlighted in green (see Table 2). In licorice (*yellow*) the residues of the PBR/AIR region are shown.

Fig S6. Percentage of conserved native contacts color-mapped onto sSH3-3P (*left*), ED1ev (*middle*) and sSH3-DP (*right*). Short-range (*upper panel*) and long-range (*lower panel*) contacts are reported for each residue using a 6-Å and a 15-Å cutoff, respectively. The distance between residues is calculated as the minimum distance over all the atom pairs. The colour scale ranges from red (low conservation) to blue (high conservation).