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Estimation of the amount of individual-specific splicing. We asked whether the extent of
unannotated splicing we observed might be partially attributable to splicing events limited to a
fraction of the individuals in our sample, due to sequence polymorphisms which influence splicing.
Though we have little power to detect such polymorphisms in these samples (Pickrell et al., 2010),
if sequence polymorphisms with strong influences on splicing are prevalent there should be other
patterns in the data which indicate this. First, a significant fraction of the splice junctions we see
should be seen in only a single individual (under the assumption that many polymorphisms in a
sample are individual-specific). In fact, only 47 junctions covered by more than three sequencing
reads are limited to a single individual (this is 0.03% of all the splice junctions with more than
three reads). Manual inspection of these junctions showed that several are due to genes expressed
in only a single individual (rather than individual-specific splicing), and we could identify only one
putative case of a rare sequence polymorphism causing the generation of an alternative isoform.

The above confirms that the overwhelming majority of isoforms present at any appreciable fre-
quency are not individual-specific. We then considered the possibility that the very low-abundance
isoforms we observed might be enriched for individual-specific variants. This might be the case if,
for example, polymorphisms often have a very small influence on splicing. To test this, we used the
set of splice junctions covered by exactly two sequencing reads (there are over 32,000 of these). If
the rate at which each splice form is generated is constant across individuals, the two reads from
each junction should not be more likely to come from the same individual than two random reads.
In fact, in about 6% of the cases, both reads come from the same individual, while we would expect
1.5% of them to come from the same individual by chance. This would seem to suggest that about
4.5% of these splice junctions do not fit the model of uniform sampling. However, on examination
of the splice junctions with two reads from the same individual, we noticed that the two reads were
often identical (55% of the 2074 splice junctions with exactly two reads, both from the same indi-
vidual); this was not the case when the two reads were from different individuals. This suggested
that PCR biases during library preparation were confounding this analysis (see, for example, Quail
et al. (2008) and Kozarewa et al. (2009)); we estimate a duplication rate of 1.2% (see below). If
we remove putative duplicate reads from the analysis, this now suggests that about 1.5% of splice
junctions with two reads do not fit the model of uniform sampling. We regard this as an upper
bound for the amount of individual-specific splicing, as other unknown library preparation biases
may contribute to this estimate.

Estimation of the duplication rate of RNA-Seq reads. As described above, we noticed
that sometimes the exact same read was present multiple times in the same individual. Since for
most individuals only a single sequencing library was prepared, these duplicate reads are likely
PCR artifacts (Kozarewa et al., 2009; Quail et al., 2008). We wanted to estimate the fraction of
sequencing reads that might be due to such effects. We identified all splice junctions present in
only a single individual and for which all the sequencing reads covering the junctions are identical.
If there are N such splice junctions, and we assume that all of the reads seen more than once are
due to duplications, then the expected number of duplicated reads for every true read is:
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where ni is the number of splice junctions covered by i identical reads. In our data, this value is
0.012, suggesting that about 1.2% of reads are PCR duplicates.

The impact of intron length and gene expression level on splicing error rates. In the
main text, we show that larger introns have increased splicing error rates (Figure S6A; ρ = 0.83,
P < 2×10−16). We also saw that highly expressed genes also tend to have lower splicing error rates
(Figure S6C; ρ = −0.43, P = 7 × 10−6). Since these two correlations are somewhat confounded
(Castillo-Davis et al., 2002), we considered whether the effects of one remains after correction for
the other. First, we calculated, as in the main text, the splicing error rate of each intron. Let this
be ei, where i indexes the intron. Then, we split all introns into 100 bins based on their length, and
calculated the mean splicing error rate for introns in each bin, as well as the mean intron length.
We then fit a spline to these points (Figure S6A). This was done using the smooth.spline function
in R, with a smoothing parameter of 1. For each intron, then, we can calculate the expected rate
of splicing error given the intron length. Let this be êi. We can then calculate the residual, ri from
this fit:

ri = ei − êi (2)

We then split introns into 100 bins based on expression level, and calculated the mean of the ri
in each bin, as well as the mean of the expression level in each bin. After the correction, there is
no correlation between expression level and splicing error rate (Figure S6D; ρ = 0.04, P = 0.66).
When we do the reverse correction, we find no reduction in the correlation between intron length
and splicing error rate (Figure S6B; ρ = 0.83, P < 2 × 10−16).

Sequence analysis of introns in highly expressed genes. We also considered the possibility
that the sequences of introns in highly expressed genes have evolved to contain fewer sequences
that could spuriously be recognized as exons by the cell. For each intron identified in the LCLs,
we calculated the density of motifs matching the consensus 5’ splice site, the consensus 3’ splice
site (to judge this, we used a position weight matrix derived from Ensembl; see below), and the
density of hexamers matching putative exonic splicing enhancers (ESEs) (Fairbrother et al., 2002).
We find that there is a negative correlation between the density of putative ESEs and the 3’ splice
site motif in introns and the expression level of a gene, as well as a modest positive correlation
between the density of the 5’ splice site motif in introns and the expression level of a gene (Figure
S7). Combining these factors, we counted the density of “pseudo”-exons (matches to the 3’ and
5’ splice sites located 100-300 bases apart, with an ESE hexamer density of at least 0.1 between
them) in each intron. Introns in highly expressed genes are depleted for pseudo-exons relative to
introns in lowly-expressed genes (Figure S7). This would seem to indicate that the sequences of
introns in highly expressed genes have evolved to reduce the number of potential spurious exons.

2



However, two additional predictions of this model are not borne out. First, we would expect
that the exons of highly expressed genes should have higher ESE density than exons in lowly
expressed genes; in fact, the opposite is true (not shown). Second, to control for differences in
sequence composition between introns at different expression levels, we compared the density of
pseudo-exons in introns with that in control introns generated by permuting the sequences of each
intron. We expected that highly expressed genes should be more depleted of pseduo-exons than
lowly expressed genes in this analysis; in fact, we saw no such relationship (not shown). We
conclude that, while there is slightly suggestive evidence that that selection against splicing errors
has influenced the sequences of introns in highly expressed genes, this is most likely an artifact
driven by difference in sequence composition of genomic regions containing these genes.

Position weight matrices for the splice sites. To build position weight matrices for the
consensus splice sites, we extracted three bases exonic and six bases intronic of each 5’ splice site,
and 20 bases intronic and two bases exonic of every 3’ splice site annotated in Ensembl. We then
estimated the fraction of each of the four bases at each position, and used this as our PWM. To
judge how well a given sequence matches each PWN, we simply used a log-likelihood ratio from
multiplying together the marginal probabilities at each base:

l(S) =
∑

i

log(P (Si)/0.25), (3)

where S is the sequence, P (Si) is the probability from the PWM of seeing the base at position i

in the sequence at position i in the PWM, and 0.25 is the background probability (which we set to
be uniformly distributed on all four bases). For the above analysis, we used a log-likelihood ratio
threshold of 2 as a “match” to the PWM.
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Table 1: Summary of new data produced. For each lane, we give the sequencing center where
the lane was sequenced, the cell line ID, the total number of reads and the number of reads that
mapped (uniquely or not) to the genome (excluding splice junctions). All data are available at
http://eqtl.uchicago.edu.

Center Ind Total Mapped
yale GM18859 10007505 8719400
yale GM19092 11123460 9806511
yale GM19102 8971294 7995293
yale GM19141 9626823 8639032
yale GM19206 11010264 9588663
yale GM19207 11044860 9879829
argonne GM18859 12279759 10333351
argonne GM19092 12762642 10664340
argonne GM19102 10151922 8577579
argonne GM19141 9778473 8407019
argonne GM19206 10756275 8700526
argonne GM19207 10454167 8828939
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