INDIVIDUAL LYSINE ACETYLATIONS ON THE N-TERMINUS OF S. CEREVISIAE H2A.Z ARE HIGHLY BUT NOT DIFFERENTIALLY REGULATED

Monika Mehta¹, Hannes Braberg^{2,3}, Shuyi Wang^{2,3}, Anita Lozsa⁴, Michael Shales^{2,3}, Alejandra Solache⁴, Nevan J. Krogan^{2,3} & Michael-Christopher Keogh¹

¹ Dept of Cell Biology, Albert Einstein College of Medicine, New York, USA

² Dept of Cellular and Molecular Pharmacology, UCSF, San Francisco, USA

³ California Institute for Quantitative Biomedical Research, UCSF, San Francisco, USA

⁴ Millipore Corporation, Temecula, California, USA

Running Title: Differential analysis of *S. cerevisiae* H2A.Z acetylation

Address correspondence to: Dr Michael-Christopher Keogh PhD, Chanin 415A, Dept of Cell Biology, 1300 Morris

Park Avenue, Bronx NY 10461. Tel: 718 430 8796. Fax: 718 430 8574.

Email: michael.keogh@einstein.yu.edu

SUPPLEMENTARY TABLES / FIGURE LEGENDS

Suppl. Table 1	Antibodies used in this study
Suppl. Table 2	Strains used in this study
Suppl. Table 3	Mutants screened for differential regulation of Htz1 acetylation

Suppl. Fig. 1 The generation of $Htz1^{Ac}$ -specific antibodies

(A) α Htz1-K8^{Ac} sera from rabbit 10818, or (B) α Htz1-K10^{Ac} sera from rabbit 10808, were tested against a comprehensive peptide panel (sample shown) in Luminex assays. PB, Pre-Bleed; RMF, Relative Mean Fluorescence.

Suppl. Fig. 2 The acetylation of individual Htz1 N-terminal lysines is not interdependent

Whole cell extracts from the indicated strains were immunoblotted as indicated. As an example K8R is the specific mutation of lysine 8 to arginine, while $K8Ac^*$ is the mutation of all lysines other than K8 (i.e. K3R, K10R, K14R). WT, wild type; Δ is $htz1\Delta$. Rpn8 is a loading control.

Suppl. Fig. 3 The acetylation status of Htzl does not regulate association of the variant with chromatin

Htz1 acetylation is abolished in 4KR or 4KQ and increased in $hda1\Delta$ cells. (A - B) Indicated strains were spheroblasted (<u>Total</u>), fractionated into <u>Cy</u>toplasm, <u>N</u>ucleus and <u>Ch</u>romatin, and immunoblotted as indicated. α HA monitors the localization of $htz1.HA_3$. Appropriate segregation of histone H2B and Rpn8 indicate efficient fractionation: the former is primarily localized in insoluble chromatin, the latter in soluble cytoplasm.

Suppl. Fig. 4 Genetic interactions show that $[htz]-N\Delta \approx htz]-4KR \neq htz I\Delta$

(A) Gene Ontology (GO) categories for the synthetic sick / synthetic lethal (SS/SL) interactors of $htz1\Delta$, $N\Delta$ or 4KR. This highlights the relative similarity between these mutants: i.e. the latter two are most closely related. Numbers in the center of each group indicate their respective SS/SL interactors identified. Note that $N\Delta$ and 4KR were mated to the non-essential deletion and DAmP collections, while $htz1\Delta$ was only mated to the former (hence the reduced number of interactors identified). Each map was generated with the OSPREY network visualization system (1). (B) The top hits for over-represented GO functional categories within the SS/SL interactors of $htz1\Delta$, 4KR, or $N\Delta$. Each list was generated with <u>GOstat</u>, which considers and ranks the GO terms contained in the data (2). The precise SS/SL interrogation group differs from the Osprey list (e.g. $htz1\Delta$: 269 or 272 interactors) as the gene space used by each program varies slightly.

Suppl. Fig. 5 *Efficient Htz1^{Ac} does not require individual Asf1-dependent acetylations on histores H3 or H4*

(A - B) WCEs from the indicated unacetylatable histone H3 or H4 point mutants (from the SHIMA collection (3)) were immunoblotted as indicated. H4-K12^{Ac} and Rpn8 are controls.

Suppl. Fig. 6 *Htz1*^{Ac} *is required for resistance to TBZ but not to Camptothecin*

(A) Growth curves on rich non-selective media (YPD) were analyzed on a Bioscreen (see Experimental Procedures). A*: Boxed area (from A) is re-plotted to facilitate comparison across strains. (B - C) $htz I\Delta$ shows a mild sensitivity to the topoisomerase inhibitor camptothecin (CPT) on plates (Fig. 5A) but not in liquid culture. Growth curves on YPD containing CPT (μ M as indicated) were analyzed on a Bioscreen. C*: Boxed area (from C) is re-plotted to facilitate comparison across strains. (D - E) $htz I\Delta$, and to a lesser degree $N\Delta$, 4KR or 4KQ, are sensitive to the microtubule inhibitor TBZ. Growth curves on YPD containing TBZ (μ g/ml as indicated) were analyzed on a Bioscreen. E*: Boxed area (from E) is re-plotted to facilitate comparison across strains.

Suppl. Fig. 7 *Htz1^{Ac} is regulated by benomyl via the Hda1 deacetylase complex*

(A) The reduction of $Htz1^{Ac}$ on benomyl treatment is dependent on all members of the Hda1-complex. Strains were grown in YPD to $OD_{600} \sim 0.5$ and benomyl (BEN; µg/ml) added. WCEs were harvested and immunoblotted as indicated. Rpn8 is a loading control. WT, Wild type. (B) Benomyl has no impact on the abundance of Hda1, Hda2 or Hda3. Strains containing C-terminally TAP-tagged forms were grown in YPD to $OD_{600} \sim 0.5$ and benomyl (BEN; µg/ml) added for two hours. WCEs were immunoblotted and probed as indicated. PAP is Peroxidase antiperoxidase to detect the immunoglobulin component of the TAP tag. Rpn8 is a loading control. (C) Hda1-complex subunits show no mobility shift (which could indicate post-translational modifications such as ubiquitylation or phosphorylation) after treatment of cells with benomyl (B; 40µg/ml) or MMS (M; 0.05%). Gels in the PAP panel were run for significantly longer than those in **B** to increase resolution. Rpn8 is a loading control. U, untreated.

Suppl. Fig. 8 *Htz1*^{Ac} levels are unaffected by 6AU or MPA treatment

 URA^+ wild type cells were grown in synthetic complete medium (lacking uracil) to $OD_{600} \sim 0.5$ and 6-azauracil (6AU) or mycophenolic acid (MPA) added at concentration indicated before growth for another two hours. WCEs were harvested and immunoblotted as indicated. Rpn8 is a loading control. U, Untreated.

Anti-	Species	Info	Sera #	Source
Histone H2B	Rabbit	Polyclonal	39237	Active Motif
Histone H3-K9 ^{Ac}	Rabbit	Polyclonal	39137	Active Motif
Histone H3-K27 ^{Ac}	Rabbit	Polyclonal	39135	Active Motif
Histone H4-K12 ^{Ac}	Rabbit	Polyclonal	39165	Active Motif
Htz1-K8 ^{Ac}	Rabbit	Polyclonal	07-770	Millipore
Htz1-K10 ^{Ac}	Rabbit	Polyclonal	07-771	Millipore
Htz1-K14 ^{Ac}	Rabbit	Polyclonal	07-719	Millipore (4)
Peroxidase anti-Peroxidase (PAP)	Rabbit	Polyclonal	P1291	Sigma
HA epitope tag	Mouse	Monoclonal	12CA5	-
Rpn8 (YOR261C)	Rabbit	Polyclonal	sera4797	Dan Finley, HMS

Supplementary Table 1: Antibodies used in this study

Name	Alt. name	Genotype	Used *	Ref.
KFY351	YSB1583	ΜΑΤ a ura3Δ0 leu2Δ0 his3Δ1 met15Δ0 trp1Δ::HIS3	Throughout	Buratowski Lab
KFY471	BY4741	MATa $ura3\Delta 0 leu2\Delta 0 his3\Delta 1 met15\Delta 0$	Throughout	Open Biosystems
KFY472	Y3656, YF1109	MAT α ura 3 Δ 0 leu 2 Δ 0 his 3 Δ 1 met 15 Δ 0 lys 2 Δ 0 can 1 Δ ::MFA1 _p -HIS3-MF α 1 _p -LEU2	Throughout	(5)
KFY1069	YMS196	MAT α ura 3 Δ 0 leu 2 Δ 0 his 3 Δ 1 met 15 Δ 0 lys 2 Δ 0 LYS2+	Throughout	(6)
		can1 Δ ::STE2 _p -Sp.his5 ⁺ lyp1 Δ ::STE3 _p -LEU2 cyh2	U U	()
KFY1129		KFY471 hda1∆::Kan.MX	ST3	Open Biosystems
KLY391		KLY34 hda1 <u>A</u> ::Kan.MX	F1F, F6	This work
KFY1391		KFY471 hda2∆::Kan.MX	ST3, SF7A	Open Biosystems
KFY1125		KFY471 <i>hda3∆::Kan.MX</i>	ST3, SF7A	Open Biosystems
KFY1513		KFY471 HDA1.TAP::HIS3.MX	SF7B-C	(7)
KFY1514		KFY471 HDA2.TAP::HIS3.MX	SF7B-C	(7)
KFY1515		KFY471 HDA3.TAP::HIS3.MX	SF7B-C	(7)
KFY662	AT17	KFY472 set3∆::Kan.MX	ST3	Greenblatt lab
KFY689	AT53	KFY472 hst1 <i>∆</i> ::Kan.MX	ST3	Greenblatt lab
KFY695	AT61	KFY472 hos2Δ::Kan.MX	ST3	Greenblatt lab
KFY701	AT69	KFY472 sap30∆::Nat.MX	ST3	Greenblatt lab
KFY699	AT66	KFY472 <i>rxt2Δ</i> ::Nat.MX	ST3	Greenblatt lab
KFY705	AT74	KFY472 pho23 <i>A::Nat.MX</i>	ST3	Greenblatt lab
KFY704	AT73	KFY472 ume1∆::Nat.MX	ST3	Greenblatt lab
KFY431		KFY471 rpd3 <u>A</u> ::Kan.MX	ST3	Open Biosystems
KFY871	AT357	KFY472 rpd3 <i>∆::Nat.MX</i>	ST3	Greenblatt lab
KFY1368		KFY471 sin3∆::Kan.MX	ST3	Open Biosystems
KFY879	AT352	KFY472 sin3∆::Nat.MX	ST3	Greenblatt lab
KFY598		KFY471 eaf3∆::Kan.MX	ST3	Open Biosystems
KFY800	AT243	KFY472 eaf3Δ::Nat.MX	ST3	Greenblatt lab
KFY432		KFY471 rco1Δ::Kan.MX	ST3	Open Biosystems
KFY841	AT321	KFY472 rco1∆::Nat.MX	ST3	Greenblatt lab
KFY1072		KFY471 sir2∆::Kan.MX	ST3	Open Biosystems
KFY908	AT409	KFY472 hos3∆::Nat.MX	ST3	Greenblatt lab
KFY867	AT352	KFY472 hos1 <i>∆::Nat.MX</i>	ST3	Greenblatt lab
KFY681	AT43	KFY472 eaf1Δ (vid21Δ)::Nat.MX	ST3, F1E	Greenblatt lab
KFY392		KFY471 eaf1Δ (vid21Δ)::Kan.MX	ST3	Open Biosystems
KFY476	YF1115	KFY472 yng2 <u>A</u> ::Nat.MX	ST3, F1E	Greenblatt lab
KFY799	AT242	KFY472 yaf9∆::Nat.MX	ST3, F1E	Greenblatt lab

Name	Alt. name	Genotype	Used *	Ref.
KFY391	YSB1758	MAT a ura3Δ0 leu2Δ0 his3Δ1 met15Δ0 trp1Δ::URA3 yaf9Δ::Kan.MX	ST3	Buratowski lab
KFY712	AT87	KFY472 swc2Δ (vps72Δ)::Nat.MX	ST3	Greenblatt lab
KFY356	YSB1599	MAT a ura3∆0 leu2∆0 his3∆1 met15∆0 trp1∆::HIS3 swc2∆::Kan.MX	ST3	Buratowski lab
KFY357	YSB1610	KFY351 swc6 Δ (vps71 Δ)::Kan.MX HTZ1.HA ₃ .KI-TRP	ST3	Buratowski lab
KFY1140		KFY471 swr14::Kan.MX	ST3. F1D	Open Biosystems
KFY589	YF526	KFY471 htz1 <i>∆</i> ::Kan.MX	,	(8)
KFY628	NJK1172	KFY472 htz1.Λ::Nat.MX	F1E	(9)
KLY36		MAT α ura3 Δ 0 leu2 Δ 0 his3 Δ 1 met15 Δ 0 htz1 Δ ::Nat.MX	F1D, SF2	This work
KLY400		KLY34 Nat.NT2-GAL1 ₀ -HTZ1.HA3.KI-TRP	F3B-C	This work
KLY726		KLY400 hda1Δ::Kan.MX	F3C	This work
KLY727		KLY34 Nat.NT2-GAL1 _p -htz1-4KR.HA ₃ .KI-TRP	F3C	This work
KFY582	LPY3498	MAT a ura3-52 leu2-3,112 trp1∆1 his3∆200	F1D	(10)
KFY583	LPY4345	KFY582 esa1-L327S +/- [pLP795: ESA1, URA3, CEN/ARS]	F1D ^{NS}	(10)
KFY584	LPY4346	KFY582 esa1-L254P +/- [pLP795: ESA1, URA3, CEN/ARS]	F1D	(10)
KFY585	LPY4346	KFY582 esa1∆414 +/- [pLP795: ESA1, URA3, CEN/ARS]	F1D ^{NS}	(10)
KFY1136		KFY471 gcn5 <u></u> <i>∆::Kan.MX</i>	F1D	Open Biosystems
KFY935	AT461	KFY472 sgf73∆::Nat.MX	ST3	Greenblatt lab
KFY602		KFY471 sas3∆::Kan.MX	ST3	Open Biosystems
KFY910	AT411	KFY472 sas34::Nat.MX	ST3	Greenblatt lab
KFY635		KFY471 sas2 <u>A</u> ::Kan.MX	ST3	Open Biosystems
KFY913	AT415	KFY472 sas2 <i>∆::Nat.MX</i>	ST3	Greenblatt lab
KFY634		KFY471 hat1∆::Kan.MX	ST3	Open Biosystems
KFY929	AT441	KFY472 hat2 <u>A</u> ::Nat.MX	ST3	Greenblatt lab
KFY1392		KFY471 hpa2 <u>A</u> ::Kan.MX	ST3	Open Biosystems
KFY1135		KFY471 <i>rtt109∆::Kan.MX</i>	ST3	Open Biosystems
KFY900	AT398	KFY472 <i>rtt109∆::Nat.MX</i>	ST3	Greenblatt lab
KFY1138		KFY471 vps75 <u>A</u> ::Kan.MX	ST3	Open Biosystems
KFY1010	AT678	KFY472 vps75 <u>A</u> ::Nat.MX	ST3	Greenblatt lab
KFY1137		KFY471 asf1Δ::Kan.MX	ST3	Open Biosystems
KFY742	AT131	KFY472 asf1 <i>λ::Nat.MX</i>	ST3	Greenblatt lab
KLY396		KLY34 asf1 <i>\D</i> ::Kan.MX	F4A-B	This work
KFY1438	SRH001	MAT a ura3-1 leu2-3,112 trp1-1 his3-11 lys2∆ can1-100 TELVIIL::URA3 bar1∆::LEU2 Kan.MX6-GAL1₅-3HA-ASF1	F4D-E	(11)
KFY1439	SRH014	MAT a ura3-1 leu2-3,112 trp1-1 his3-11 lys2∆ can1-100 gal1::hisG bar1∆::LEU2 Kan.MX6-GAL1 _P -ASF1-3HA-PEST-HIS3	F4D-E	(11)
KFY498	FY2162,	MAT a ura3-52 leu2Δ1 trp1Δ63 his3Δ200 lys2-126δ Ty912Δ35-LacZ::his4	SF5A-B	(12)

Name	Alt. name	Genotype	Used *	Ref.
	YBL574	[hht1-hhf1]Δ::LEU2 [hht2-hhf2]Δ::HIS3 [pDM9: HHT1-HHF1, URA3, CEN/ARS]		
KFY1379		KFY498 [pDM9 shuffled] + [hht2-K9A, HHF1, TRP1, CEN/ARS]	SF5A	(3)
KFY1380		KFY498 [pDM9 shuffled] + [hht2-K27A, HHF1, TRP1, CEN/ARS]	SF5A	(3)
KFY1382		KFY498 [pDM9 shuffled] + [hht2-K56A, HHF1, TRP1, CEN/ARS]	SF5A	(3)
KFY1384		KFY498 [pDM9 shuffled] + [HHT2, hhf1-K5A, TRP1, CEN/ARS]	SF5B	(3)
KFY1385		KFY498 [pDM9 shuffled] + [HHT2, hhf1-K8A, TRP1, CEN/ARS]	SF5B	(3)
KFY1386		KFY498 [pDM9 shuffled] + [HHT2, hhf1-K12A, TRP1, CEN/ARS]	SF5B	(3)
KFY590		KFY471 elp1Δ::Kan.MX	ST3	Open Biosystems
KFY837	AT315	KFY472 elp2 <u>A</u> ::Nat.MX	ST3	Greenblatt lab
KFY591		KFY471_elp3∆::Kan.MX	ST3	Open Biosystems
KFY720	AT101	KFY472 elp3//::Nat MX	ST3	Greenblatt lab
KFY734	AT121	KFY472 elp4/Nat MX	ST3	Greenblatt lab
KEV732	ΔΤ118	KEY472 eln64::Nat MX	ST3	Greenblatt lab
NI 1752	ATTIO		010	Greenblatt lab
KFY1314		KFY471 <i>hir1∆::Kan.MX</i>	ST3	Open Biosystems
KFY1315		KFY471 hir2Δ::Kan.MX	ST3	Open Biosystems
KFY1510		KFY471 hir3∆::Kan.MX	ST3	Open Biosystems
KFY1471		КFY471 <i>rtt106∆::Kan.MX</i>	ST3	Open Biosystems
KLY66		KFY471 spe1/\::Kan.MX	ST3	This work
KI Y67		$KEY471$ spe 2Λ Kan MX	ST3	This work
KI Y81		KFY471 spe3 <i>A</i> ::Kan MX	ST3	This work
KLY68		KFY471 spead $Kan.MX$	ST3	This work
NE 100			010	
KLY34		KFY351 HTZ1.HA3.KI-TRP	Throughout	This work
KFY358		KLY34 swr1_:Kan.MX	ST3, F1C	(4)
KLY270		KLY34 pho85 <i>∆::Nat.MX</i>	ST3	This work
KLY269		KLY34 ado1∆::Nat.MX	ST3	This work
KLY289		KLY34 bem14::Kan.MX	ST3	This work
KLY268		KLY34 rts1A::Nat.MX	ST3	This work
KLY299		KLY34 pho13∆::Kan.MX	ST3	This work
KLY20		KFY1069 <i>htz1∆::Nat.MX</i>	F2, F5, SF4, SF6, SF8	This work
KLY185		KFY1069 <i>htz1-K3R</i>	SF2	This work
KLY186		KFY1069 <i>htz1-K8R</i>	SF2	This work
KLY187		KFY1069 <i>htz1-K10R</i>	SF2	This work
KLY192		KFY1069 <i>htz1-K14R</i>	SF2, SF6	This work
KLY188		KFY1069 htz1-K14Q	SF2, SF6	This work
KLY711		KFY1069 htz1-K8R.K10R.K14R	SF2	This work
KLY193		KFY1069 htz1-K3R.K10R.K14R	SF2	This work
KLY712		KFY1069 htz1-K3R,K8R,K14R	SF2	This work
KLY713		KFY1069 htz1-K3R,K8R,K10R	SF2	This work

Name	Alt. name	Genotype	Used *	Ref.
KLY229		KFY1069 htz1-4KR	Throughout	This work
KLY230		KFY1069 htz1-4KQ	Throughout	This work
KLY28		KFY1069 HTZ1::Nat.NT2 (Tracking)	F2	This work
KLY35		KFY1069 htz1-NA::LoxP::Nat.NT2	F2	This work
KLY262		KFY1069 htz1-4KR::Nat.NT2	F2	This work
KLY263		KFY1069 htz1-4KQ::Nat.NT2	F2	This work
KLY231		KFY1069 htz1-K3R::Nat.NT2	F2	This work
KLY232		KFY1069 htz1-K8R::Nat.NT2	F2	This work
KLY199		KFY1069 htz1-K10R::Nat.NT2	F2	This work
KLY233		KFY1069 htz1-K14R::Nat.NT2	F2	This work
KLY506		KFY1069 htz1-K3Q::Nat.NT2	F2	This work
KLY507		KFY1069 htz1-K8Q::Nat.NT2	F2	This work
KLY530		KFY1069 htz1-K10Q::Nat.NT2	F2	This work
KLY200		KFY1069 htz1-K14Q::Nat.NT2	F2	This work
KLY717		KFY1069 htz1-K8R, K10R, K14R::Nat.NT2	F2	This work
KLY714		KFY1069 htz1-K3R, K10R, K14R::Nat.NT2	F2	This work
KLY715		KFY1069 htz1-K3R, K8R, K14R::Nat.NT2	F2	This work
KLY716		KFY1069 htz1-K3R, K8R, K10R::Nat.NT2	F2	This work

* F1D, Figure 1D (etc); $^{\rm NS}$, not shown; ST3, Supplementary Table 3.

g. F1g. ID-E)
nge(1/2)
educed (2/3)
2)
Fig. 1D)
.)
2)
/3) (e.g. Fig. 1F)
)
nge (2/3)
nge (2/3)
.)
.)
2)
nge (12/20)
,
4)
·

Supplementary Table 3: Strains used for proteomic screening to identify novel Htz1^{Ac} regulators

Not intended as an exhaustive description of the enzymatic activities in many of these complexes Deletion unless stated otherwise a

b

с

Temperature sensitive allele Eaf3 is a member of the NuA4 acetyltransferase and Rpd3S deacetylase complexes (13) Strongly reduced is defined as below the level of detection in Western analysis d

e

Histone H3 / H4 point mutants were from the SHIMA collection (see Supplementary Figure 5) f

SUPPLEMENTARY REFERENCES

- 1. Breitkreutz, B. J., Stark, C., and Tyers, M. (2003) *Genome Biol* 4, R22
- 2. Beissbarth, T., and Speed, T. P. (2004) *Bioinformatics* 20, 1464-1465
- 3. Nakanishi, S., Sanderson, B. W., Delventhal, K. M., Bradford, W. D., Staehling-Hampton, K., and Shilatifard, A. (2008) *Nat Struct Mol Biol* **15**, 881-888
- 4. Keogh, M.-C., Mennella, T. A., Sawa, C., Berthelet, S., Krogan, N. J., Wolek, A., Podonly, V., Carpenter, L. R., Greenblatt, J. F., Baetz, K. K., and Buratowski, S. (2006) *Genes Dev* 20, 660-665
- 5. Tong, A. H. Y., Evangalista, M., Parsons, A. B., Xu, H., Bader, G. D., Page, N., Robinson, M., Raghibizadeh, S., Hogue, C. W., Bussey, H., Andrews, B., Tyers, M., and Boone, C. (2001) *Science* **294**, 2364-2368
- 6. Schuldiner, M., Collins, S. R., Weissman, J. S., and Krogan, N. J. (2006) Methods 40, 344-352
- 7. Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O'Shea, E. K., and Weissman, J. S. (2003) *Nature* **425**, 737-741
- Krogan, N. J., Keogh, M.-C., Datta, N., Sawa, C., Ryan, O. W., Ding, H., Haw, R. A., Pootoolal, J., Tong, A., Canadien, V., Richards, D. P., Wu, X., Emili, A., Hughes, T. R., Buratowski, S., and Greenblatt, J. F. (2003) *Mol Cell* 12, 1565-1576
- 9. Krogan, N. J., Baetz, K., Keogh, M.-C., Datta, N., Sawa, C., Kwok, T. C. Y., Thompson, N. J., Davey, M. G., Pootoolal, J., Hughes, T. R., Emili, A., Buratowski, S., Hieter, P., and Greenblatt, J. F. (2004) *Proc Natl Acad Sci USA* **101**, 15313-15318
- 10. Clarke, A. S., Lowell, J. E., Jacobson, S. J., and Pillus, L. (1999) Mol Cell Biol 19, 2515-2526
- 11. Zabaronick, S. R., and Tyler, J. K. (2005) Mol Cell Biol 25, 652-660
- 12. Duina, A. A., and Winston, F. (2004) *Mol Cell Biol* 24, 561-572
- Keogh, M.-C., Kurdistani, S. K., Morris, S. A., Ahn, S. H., Podolny, V., Collins, S. R., Shuldiner, M., Chin, K., Punna, T., Thompson, N. J., Boone, C., Emili, A., Weissman, J. S., Hughes, T. R., Strahl, B. D., Grunstein, M., Greenblatt, J. F., Buratowski, S., and Krogan, N. J. (2005) *Cell* 123, 593-605

Suppl Fig 1: Mehta et al

Suppl Fig 2: Mehta et al

Single Mutation Single Ac remains

Suppl Fig 3: Mehta et al

В

htz1	SS/SL	GO term	Category	P-value
Δ	272	<u>GO:0006325</u>	Establishment &/or maintenance of chromatin architecture	0
		<u>GO:0016568</u>	chromatin modification	0
		<u>GO:0051276</u>	chromosome organization & biogenesis	0
		<u>GO:0006323</u>	DNA packaging	0
		<u>GO:0005667</u>	transcription factor complex	1.11E-77
		<u>GO:0006351</u>	transcription, DNA-dependent	2.21E-62
		<u>GO:0016570</u>	histone modification	8.84E-54
		<u>GO:0006974</u>	response to DNA damage stimulus	2.00E-47
		<u>GO:0032200</u>	telomere organization & biogenesis	1.90E-45
		<u>GO:0006366</u>	transcription from RNA polymerase II promoter	3.83E-43
		<u>GO:0006338</u>	chromatin remodeling	5.79E-35
		<u>GO:0045449</u>	regulation of transcription	6.12E-35
4KR	386	<u>GO:0032200</u>	telomere organization and biogenesis	2.39E-45
		<u>GO:0051276</u>	chromosome organization and biogenesis	1.43E-43
		<u>GO:0016570</u>	histone modification	1.43E-22
		<u>GO:0006351</u>	transcription, DNA dependent	3.86E-20
		<u>GO:0016568</u>	chromatin modification	8.85E-20
		<u>GO:0006323</u>	DNA packaging	1.10E-17
		<u>GO:0006366</u>	transcription from RNA polymerase II promoter	7.26E-17
		<u>GO:0007035</u>	vacuolar acidification	5.46E-09
		<u>GO:0045449</u>	regulation of transcription	1.10E-08
		<u>GO:0005667</u>	transcription factor complex	1.71E-08
		<u>GO:0006338</u>	chromatin remodelling	7.89E-08
		<u>GO:0006885</u>	regulation of cellular pH	8.61E-08
NΔ	398	<u>GO:0032200</u>	telomere organization and biogenesis	1.85E-46
		<u>GO:0051276</u>	chromosome organization and biogenesis	1.67E-44
		<u>GO:0016570</u>	histone modification	1.08E-21
		<u>GO:0016568</u>	chromatin modification	6.67E-20
		<u>GO:0006351</u>	transcription, DNA dep	1.12E-19
		<u>GO:0006323</u>	DNA packaging	9.94E-18
		<u>GO:0006366</u>	transcription from RNA polymerase II promoter	8.22E-16
		<u>GO:0007034</u>	vacuolar transport	5.24E-09
		<u>GO:0005667</u>	transcription factor complex	6.03E-09
		<u>GO:0007035</u>	vacuolar acidification	7.50E-09
		<u>GO:0007033</u>	vacuole organization and biogenesis	7.55E-09
		<u>GO:0045449</u>	regulation of transcription	1.31E-08

Suppl Fig 5: Mehta et al

Suppl Fig 8: Mehta et al

