Supporting Information:

Crystallographic and NMR evaluation of the impact of peptide binding to the second PDZ domain of PTP1E

Jun Zhang[§], Paul J. Sapienza[¶], Hengming Ke[§], Aram Chang[‡], Sarah R. Hengel[#], Huanchen Wang[§], George N. Phillips Jr.[‡], and Andrew L. Lee^{§, ¶,*}

[§]Department of Biochemistry and Biophysics, School of Medicine and [¶]Division of Medicinal Chemistry & Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

[‡]Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, 53706-1544, USA

[#] The department of Chemistry at The college of St. Scholastica, Duluth, MN 55812, USA

Table S1: Global fitting results of 5% RA-GEF2 bound PDZ2 relaxation dispersion data						
Residue	$k_{\rm ex} ({\rm s}^{-1})$	$\Delta\omega_{ m CPMG}$	$[P_A](\%)$	${}^{a}R_{20}(s^{-1})$	${}^{b}R_{20} (s^{-1})$	$^{c}\Delta\omega_{titration}$
_		(ppm)				(ppm)
17	320.53±11.79	0.97±0.03	94.7±0.2	9.99±0.11	10.55±0.1	0.92
19	320.53±11.79	2.32±0.20	94.7±0.2	12.75±0.56	13.29±0.42	2.16
20	320.53±11.79	1.67 ± 0.06	94.7±0.2	10.38±0.18	11.41±0.14	1.59
21	320.53±11.79	1.15±0.04	94.7±0.2	10.61±0.17	11.3±0.14	1.20
22	320.53±11.79	0.43±0.12	94.7±0.2	14.74±0.31	14.5±0.21	0.28
23	320.53±11.79	0.48 ± 0.03	94.7±0.2	10.79±0.1	11.74±0.1	0.50
24	320.53±11.79	0.60 ± 0.06	94.7±0.2	12.45±0.25	12.66±0.2	0.50
27	320.53±11.79	1.33±0.14	94.7±0.2	17.17±0.64	20.12±0.53	1.27
31	320.53±11.79	0.87±0.11	94.7±0.2	19.32±0.54	20.61±0.41	0.71
34	320.53±11.79	0.77 ± 0.09	94.7±0.2	15.11±0.29	18.21±0.41	0.50
35	320.53±11.79	1.10±0.05	94.7±0.2	12.73±0.19	13.98±0.18	0.92
40	320.53±11.79	$0.54{\pm}0.02$	94.7±0.2	9.59±0.09	10.06 ± 0.08	0.50
45	320.53±11.79	0.80 ± 0.03	94.7±0.2	10.45±0.12	11.19±0.11	0.71
66	320.53±11.79	0.48 ± 0.03	94.7±0.2	10.9±0.1	11.54±0.1	0.43
67	320.53±11.79	0.58 ± 0.02	94.7±0.2	9.82±0.06	10.53±0.05	0.52
70	320.53±11.79	1.07 ± 0.04	94.7±0.2	11.1±0.14	11.69±0.12	0.93
71	320.53±11.79	0.50 ± 0.03	94.7±0.2	12.95±0.12	13.38±0.1	0.36
72	320.53±11.79	1.29±0.05	94.7±0.2	10.91±0.16	11.18±0.13	1.28
74	320.53±11.79	1.06 ± 0.03	94.7±0.2	10.05 ± 0.08	10.69±0.09	0.96
75	320.53±11.79	0.88 ± 0.02	94.7±0.2	10.52 ± 0.07	11.02 ± 0.07	0.81
76	320.53±11.79	0.90 ± 0.03	94.7±0.2	10.05±0.1	11.1±0.08	0.85
79	320.53±11.79	2.52±0.10	94.7±0.2	11.22±0.21	11.81±0.19	2.55
80	320.53±11.79	0.86±0.03	94.7±0.2	9.4±0.09	9.88±0.09	0.82
81	320.53±11.79	0.49±0.03	94.7±0.2	7.78 ± 0.07	7.87±0.06	0.36
82	320.53±11.79	0.59±0.05	94.7±0.2	14.03±0.22	13.72±0.18	0.52
86	320.53±11.79	0.46 ± 0.03	94.7±0.2	10.72 ± 0.09	11.32±0.08	0.35

^a Values at 500 MHz. ^b Values at 600 MHz. ^c The experimental $\Delta \omega_{titration}$ values were calculated as the difference between apo and RA-GEF2 saturated PDZ2.

Table S2: Global fitting results of 5% APC bound PDZ2 relaxation dispersion data						
Residue	$k_{\rm ex} ({\rm s}^{-1})$	$\Delta\omega_{\rm CPMG}$ (ppm)	$[P_A]$ (%)	${}^{a}R_{20} (s^{-1})$	${}^{b}R_{20} (s^{-1})$	$^{c}\Delta\omega_{titration}$
						(ppm)
11	534 ± 17	0.452 ± 0.02	94.5 ±0.3	$10.05\pm\!\!0.06$	10.49 ± 0.07	0.54
17	534 ± 17	1.146 ± 0.037	94.5 ± 0.3	9.88 ± 0.09	10.41 ± 0.09	1.10
19	534 ± 17	2.184 ± 0.143	94.5 ± 0.3	12.23 ± 0.49	13.86 ± 0.48	2.26

20	534 ± 17	1.255 ± 0.04	$94.5\pm\!\!0.3$	10.44 ± 0.11	11.43 ± 0.13	1.19
23	534 ± 17	0.624 ± 0.023	$94.5\pm\!\!0.3$	11.38 ± 0.07	11.78 ± 0.08	0.57
24	534 ± 17	1.591 ± 0.076	94.5 ± 0.3	12.5 ± 0.27	12.05 ± 0.32	1.53
27	534 ± 17	1.585 ± 0.124	94.5 ± 0.3	16.88 ± 0.54	18.98 ± 0.59	1.49
28	534 ± 17	0.589 ± 0.065	$94.5\pm\!\!0.3$	16.67 ± 0.25	18.34 ± 0.33	0.52
31	534 ± 17	0.925 ± 0.077	94.5 ± 0.3	$19.23\pm\!\!0.37$	21.18 ± 0.42	0.88
35	534 ±17	0.904 ± 0.032	94.5 ± 0.3	13.18 ± 0.11	14.3 ± 0.13	0.82
45	534 ±17	0.767 ± 0.024	94.5 ± 0.3	10.68 ± 0.09	11.28 ± 0.1	0.72
54	534 ±17	0.478 ± 0.019	94.5 ± 0.3	10.96 ± 0.06	11.24 ± 0.06	0.44
66	534 ± 17	0.495 ± 0.024	94.5 ± 0.3	11.35 ± 0.08	11.57 ± 0.08	0.48
70	534 ± 17	1.03 ± 0.031	94.5 ± 0.3	11.25 ± 0.09	11.71 ± 0.1	0.96
74	534 ±17	0.822 ± 0.023	94.5 ± 0.3	10.34 ± 0.06	10.8 ± 0.06	0.79
76	534 ±17	1.293 ± 0.042	94.5 ± 0.3	10.33 ± 0.1	10.82 ± 0.11	1.28
78	534 ±17	0.551 ± 0.02	94.5 ± 0.3	10.58 ± 0.07	11.11 ± 0.08	0.49
79	534 ±17	2.604 ± 0.142	94.5 ± 0.3	10.91 ± 0.25	11.73 ± 0.24	2.72
81	534 ± 17	0.534 ± 0.016	94.5 ± 0.3	7.55 ± 0.05	8.11 ±0.05	0.50

^a Values at 500 MHz. ^b Values at 600 MHz. ^c The experimental $\Delta \omega_{titration}$ values were calculated as the difference between apo and APC saturated PDZ2.

O-factor calculations.				
Apo PDZ2	RA-GEF2 bound	APC bound		
7	6	7		
8	7	8		
10	8	10		
11	9	11		
12	10	12		
15	11	14		
16	12	16		
17	14	17		
22	15	19		
23	16	22		
24	17	23		
26	19	24		
27	21	25		
31	23	26		
33	24	27		
34	26	28		
36	27	29		
37	28	30		
38	29	31		
39	30	33		
47	31	34		

Table S3. Residues for which RDCs values were used in

48	34	35
49	37	37
50	38	38
51	40	39
56	41	43
57	43	44
58	44	45
59	45	46
62	47	47
63	48	48
66	49	49
67	51	50
69	52	51
70	54	52
71	55	54
72	56	55
73	57	56
74	59	58
76	61	61
78	62	62
79	63	63
80	64	64
81	65	65
85	66	66
87	67	67
88	69	69
89	70	70
90	71	71
93	72	72
	74	73
	76	74
	77	76
	79	77
	80	78
	81	79
	82	80
	86	81
	87	85
	88	87
	89	88
	90	89
	91	90

Figure S1. Crystal packing within the asymmetric unit for apo PDZ2. (A) top view of the asymmetric unit. The six monomers are colored red, green and blue, and three-blade propeller organization is found. (B) side view of the asymmetric unit. Two layers of three-blade propellers are visible. The figure was prepared using PyMOL.

Figure S2. Involvement of residue 30-33 in crystal packing. (A) Apo PDZ2 crystal packing. An arbitrary asymmetric unit (colored as red) which contains six apo PDZ2 monomers is selected and six surrounding asymmetric units are also displayed. The fragment 30-33 is shown as stick model and colored the same for the fragment belonging to the same asymmetric unit. (B) RA-GEF2 bound PDZ2 crystal packing. Six molecules belonging to six different adjacent asymmetric units are shown. For clarity, fragment 30-33 was shown as stick and colored differently (red or green) for neighboring molecules. The figure was prepared using PyMOL.

Figure S3. Determination of K_D for PDZ2-APC peptide interaction by NMR titration. ¹H-¹⁵N HSQC spectra were acquired at increasing APC:PDZ ratios until no further peak shifts were observed. Only data for the backbone amide at Ile20 are shown, but K_D values for the other reporters are within 10%. The ordinate axis contains the reduced chemical shift difference ($\Delta\delta$) between free and APC-bound PDZ as determined from HSQC spectra. The data were then fit to the standard quadratic equation for binding. The apparent irregularities in the fitted/theoretical line are due to changes in PDZ2 concentration during the titration. Figure S4. Distribution of residues used in calculation of Q-factors (shown in Table 4). Residues for which ¹H-¹⁵N RDC values were used for fitting to structural models are shown in blue on PDZ2. RDC sets are for apo PDZ2 (A), RA-GEF2 bound PDZ2 (B), and APC bound PDZ2. Secondary structural units in PDZ2 are indicated.

Figure S5. Internal correlation time (τ_e) changes induced by RA-GEF2 and APC binding with respect to free PDZ2.

Figure S1

Figure S2

Figure S4

PDZ2 Methyl Group