Designation	Oligonucleotide
oKK60	<u>CGTATACTTTACATTGATCACGTTTGCACTATAGACTGAATTTAAATT</u>
	AGAATTTTATCGGATCCCCGGGTTAATTAA (ZDS2 flanking sequence
	underlined)
oKK62	<u>GTGGCCTTATATAGGTATCTATCAATCTTGTAAACAGTTATGAGTTAA</u>
	ATGTCTGGGAATTCGAGCTCGTTTAAAC (ZDS2 flanking sequence
	underlined)
oKK135	CGTGTCGTCAAGAGTGGTC
oKK148	CAGT <u>GGATCC</u> AGCAGCTGTATAAGGAGTG (BamHI site underlined)
oKK149	TAGT <u>GAGCTC</u> GCTGTATTGGACAGATCATTC (SacI site underlined)
oKK205	GAGTGATATCTATACTGTCG
oKK210	ATCTCAACTTTGCCTCCAAG
oKK229	GTACGAAGCTTATAATTATAATGCGGAAAAAATG (HindIII site
	underlined)
oKK230	AGTGCAG <u>GAAGGATTTC</u> AGCACAAAACAATTTTGATTTTAAATTC
	(XmnI site underlined)
oKK247	TTCTACTTATTAAGATCAATAGGCACGTGCTATTTTCGAACATCCACTT
	<u>TCAATATG</u> GACATGGAGGCCCAGAATACCC (<i>RTS1</i> flanking sequence
	underlined)
oKK248	TGGCATGCCCTAAACTTCCTCACTTCTTCGAGCTTGTAATGAATTGCTG
	<u>TTTCACTG</u> CAGTATAGCGACCAGCATTCAC (<i>RTST</i> flanking sequence
· VVC	
0K 10 0K 70	
0K Y 8	GATTTGAGGGGCAGTAGG <u>TCGCGA</u> AGTGTTGTCTCTCTC (Nrul site
oKV0	CACACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
0K19	underlined)
oKY12	ACCACCATGGTACTGATGGAAGATATG (NeoI site underlined)
oKY13	TCTCTGCAGGTCGAGGCCTTATATAGGTATCTATC (PstI site underlined)
oKY20	GAATTTTATGGTACTGATGGAAGATATGCAAAACAAAGATGGCTGC
011120	AGGTCGACAACCCTTAAT (Underline indicates complement to 9x-myc
	cassette of pOM22)
oKY21	GAGTGATATCTATACTGTCGTCGACATTAGTAGCATCGCCCTCTTCGC
	GGCCGCATAGGCCACT(Underline indicates complement to 9x-mvc cassette
	of pOM22)
oKY31	GGCTGCAAAATGGTCACATTG
oKY32	CTTGTATTTCTCCTTCTTGTGG
oKY33b	C ATATCGAGGTCAAACTGGAGAGATCTTACGCATAAGAAATA
	TAATATAGCGCACACGGATCCCCGGGTTAATTAA (CDC55 flanking
	sequence underlined)
oKY34b	<u>GTATGTGGGGAAGATATGGGATAAAAAAAGTAAGGGAAAAT</u>
	AAGGAATTATTATAATGAATTCGAGCTCGTTTAAAC (CDC55 flanking
	sequence underlined)

Supplemental Table 1. Oligonucleotides used in this study

oKY35	GGGAAAACTAGTGTTTCTATA
oKY49	CTGCAGCGAGGAGCCGTAAT
oKY50	GAAG <u>GGATCC</u> ATGGTACTGATGGAAGATATG (BamHI site underlined)
oKY54	GAAG <u>GGATCC</u> ATGTCCAATAGAGATAACG (BamHI site underlined)
oKY55	GAAGACTAGTGTATATGTCTATGTATGCAGC (SpeI site underlined)
oKY56	GAAG <u>GGATCC</u> CATATGCATAGCAACGTATTTG (BamHI site underlined)
oKY76	GAAGAAGAAGAAGCTCGGTTCGATACTCTTTATTCGA (Sac I site
	underlined)
oKY77	CGGATATATGCGGTGTGAAAT
oKY83	ATGGGTCGCGGA TCCGTCATTGAACCAGAAGTGAGA (BamHI site
	underlined)
oKY87	CGCAAGCTTGTCGACGAATTCGGCCTTATATAGGTATCTATC
	underlined)
oKY97	GGAGTTTGCACAAGACAAGACTATT
oKY99	GTTTTGGTGAAGTGATGAAAGAAGT
oKY100	ACCTCATAAAATCTAGCCAACATATCGAGGTCAAACTGGAGA
	GATCTTACGGATCCCCGGGTTAATTAA (CDC55 sequence underlined)
oKY101	TTGAATTCAAGTTCAATTTAAATTTCAATTAAAACAGTAGTAGT
	<u>ATGTG</u> GAATTCGAGCTCGTTTAAAC (CDC55 sequence underlined)
oKY103	CTCAGGCCACAAACAACCATTGTCCA
oKY106	CTTCACCTGTCAATACCGTC
oMR1	CACCTGCTCCATGTATAAG

Supplemental Figure 1

Supplemental Figure 2

									*																											
P.tricornutum (485-527)	FΡL	QI	Lκ	Q R	ΤP	T	RVL	H F	R	зN	МI	R	VR	H١	Z L	s,	AQ	A١	H R	11) -					-		-		-	DH	łΥ	FF	۲L	- H	11
Z.mays (35-79)	KEN	ΛE	ιv	QΚ	ΤP	I.	RVL	H F	R	S P	LE	R	KR	T	I H	IWI	ME	IE	Ξĸ	1.	ΓG					-		-		s	s١	١Y	ΥL	. L	- H	I L
E.siliculosus (498-540)	EEL	- V)	vQ	QΑ	ΤP	Ц	RVL	H F	R	ΤL	LD	R	P R	s	I F	G	MR	ΑĐ	ΞW	1	۰ ا		-			-		-		-	E۲	ł F	F G	۱L	ΕL	. A
S.niekkendorffii (408-452)	ΚEL	E	I Q	QΚ	ΤP	v	RVL	H F	R	S P	LΥ	R	P R	T	I H	IWI	MR	CE	ΞA	Lł	H D		• •			-		-		s	sg	Υ	FL	. L	- H	I L
H.sapiens (436-478)	КDL	-ĸ	I D	QΚ	ΤP	L	RVL	H F	RI	PL	Aν	R	AR	٧	I H	1 F 1	ME	тο	2 <u>Y</u>	٧I) -					-		-		-	E۲	Η	FF	۲Ľ	- H	I L
A.thaliana (415-458	ΚEL	-ĸ	I L	QΚ	ΤP	v	RVL	H F	R	S P	LD	R	ΕK	Т	I H	IWI	мĸ	V E	Ξĸ	L	<g< td=""><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>Н</td><td>s۲</td><td>łΥ</td><td>FL</td><td>. L</td><td>- H</td><td>I L</td></g<>		-			-		-		Н	s۲	łΥ	FL	. L	- H	I L
A.mellifera (338-394)	ΥVι	-ĸ	I I	QΚ	ΤP	Т	RVL	H F	R	SL	I N	R	E R	к	I F	Q	LΚ	L	IΥ	Lł	۰ ا					-		-		-	Кŀ	ł F	S L	. L	- Y	۲L
P.falciparum (485-527)	кнι	ĸ	I I	QΚ	ΤP	м	RVL	H F	RI	PL	SΡ	R	E R	L	I Y	Έľ	MR	ΑF	RW	٧I	٢P	QB	ΞL	ĸ	٩L	Ν	I S	s	E (A (N I	F	FΙ	L	- D	١.
H.magnifpapillata (167-209)	κ <mark>n</mark> i	IVI	LM	QΚ	ΤP	I.	RVL	H F	RI	PL	ΙT	R	E R	т	I Y	1E]	T N	Ľ	T R	νı).		-			-		-		-	EF	H	ΥD	L	- F	Т
C.elegans (365-407)	ΙΡL	-ĸ	ιv	QΚ	ΤP	v	RVN	1K F	R/	A L	LD	R	E R	w	I Y	'SI	MN	Fι	- ĸ	LI).		-			-		-		-	DH	Η	FΕ	v	- R	٢L
E.histolitica (368-410)	ΚDι	L	I Q	QΚ	ΤP	I.	RVL	H F	R	зL	LΤ	R	E R	М	ΙY	'SI	LΕ	Lŀ	ΗP	11) -					-		-		-	G۲	ł F	GL	. L	- E	ΞL
Sc Zds1 (836-878)	FΡL	PI	LL	τv	SТ	v	I M F	DH	RI	LΡ	I N	V	E R	А	ΙY	1R I	LS	нι	- ĸ	L :	3.					-		-		-	N S	sκ	RG	۶L	- R	έE
Sc Zds2 (853-895)	FPL	PN	N L	ΤN	SТ	v	I M F	DH	RI	LG	1 N	v	E R	А	ΙY	1R I	LS	нι	- ĸ	L :	з.					-		-		-	DF	۶G	RE	L	- R	Q
S.pombe (815-844)						-	Y	ws	R I	FΡ	I C	т	E R	А	I Y	1R I	LS	н	ιĸ	L :	з.					-		-		-	N A	λH	R F	Ľ	- F	Q
C.neoformans (578-620)	APF	s	РS	ΡТ	SP	N	FQN	IYA	R	ΥP	ΙH	v	E R	A١	VΥ	'R I	LS	н	ιĸ	L)	Α.					-		-		-	N A	٩R	RF	L	- Y	Έ

Supplemental Figure 3

18° C

30° C

 $rts1\Delta zds1\Delta zds2\Delta$

Supplemental Figure 1. Alignment of amino acid sequences with high homology to the ZH4 domain of Zds2p (residues 813-912) from representative fungal species (Accession numbers are as follow. *S. cerevisiae* Zds1 NP_014000.1, *S. cerevisiae* Zds2 NP_013598.1, *S. pombe* NP_594632.1, *A. gossypii* NP_982357.1, *C. glabrata* XP_447996.1, *K. lactis* XP_453144.1, *Y. lypolitica* XP505344.1, *C. albicans* XP_717304.1). BLAST (Altschul *et al.*, 1990) was used to identify proteins that are homologous to Zds2p (813-912) and Tcoffee (Notredame *et al.*, 2000) alignment program was used to align the ZH4 domain. Asterisks mark the substituted amino acids (R863 and V868) in temperature-sensitive Zds2-3p. Dark blue shading indicates complete conservation of the residue whereas light blue shading indicates a semi-conserved residue.

Supplemental Figure 2. Alignment of amino acid sequences with some identity to a portion of the ZH4 domain of Zds2p (residues 853-895) from representative species (Accession numbers are as follow. *P. tricornutum* XP_002179385.1, *Z. mays* NP_001131786.1, *E. siliculosus* CBN75013.1, *S. moellendorffii* EFJ27746.1, *H. sapiens* NP_653310.2, *A. thaliana* NP_173466.2, *P. falciparum* XP_001348196.1, *A. mellifera* XP_001348196.1, *H. magnipapillata* XP_002155895.1, *C. elegans* NP_496819.1, *E. histolytica* XP_655941.1, *S. cerevisiae* Zds1 NP_014000.1, *S. cerevisiae* Zds2 NP_013598.1, *S. pombe* NP_594632.1, *C. neoformans* XP_571315.1. BLAST (Altschul *et al.*, 1990) was used to identify proteins with sequence similarity and Tcoffee (Notredame *et al.*, 2000) alignment program was used to align the residues of Zds2p (853-895) found to have some identity across multiple Kingdoms. The residue marked with an asterisk denotes R863 in Zds2p and a conserved R in Pus10 family proteins in animals that is modeled to be involved in RNA binding (McCleverty *et al.*, 2007). Dark blue shading indicates a high degree of conservation whereas light blue shading indicates a semi-conserved residue.

Supplemental Figure 3. $zds1 \Delta zds2 \Delta$ bud morphology defect does not require *RTS1*. Deletion of *RTS1* in a $zds1\Delta zds2\Delta$ strain did not suppress the mutant, elongated bud phenotype at either 30°C or 18°C. DIC micrographs of representative log-phase $rts1\Delta zds1\Delta zds2\Delta$ (KKY1218) cells cultured at 18 or 30°C in rich medium (YPD) for 4h, after initial culturing at 30°C. Scale bar represents 5 microns.