Supporting Information

Stumpf et al. 10.1073/pnas.1005794107

SI Materials and Methods

Cell Culture. To generate the HoxB4/AML-ETO progenitor cell line, mice were injected i.p. with 4 mg 5'-fluorouracil. At day 4 after treatment, bone marrow cells were harvested and cultured in SF medium Iscove's modified Dulbecco's medium (IMDM), L-glutamin, 25 mM Hepes, 2% FCS, 300 µg/mL Primatone RL (Sigma), 5 mg/mL insulin, 1× penicillin-streptomycin, 1× nonessential amino acids (NEAA) in minimum essential medium (MEM) containing 20 ng/mL stem cell factor (SCF), 2% IL6, and 1% IL3 final (supernatant). Cells were cultured for 48 h and thereafter infected with retroviral HoxB4 and AML1-ETO9a. Erythroid differentiation was induced by administration of 3 units/mL erythropoietin in SF the abbreviation SF was introduced above medium. Mouse erythroid leukemia (MEL) cells were cultivated in DMEM supplemented with 10% FCS, 1× penicillin-streptomycin (Invitrogen), and 10 μ L/ 500 mL monothioglycerol (Sigma). MEL cell differentiation was induced by adding DMSO to a final concentration of 2%.

Methylcellulose Colony Assays. To investigate colony-forming unit erythrocyte (CFU-E) and burst-forming unit erythrocyte (BFU-E) capacity, Lin⁻ (CD4, CD8, CD11b, CD19, CD45R, Gr-1) c-Kit⁺ bone marrow cells were plated at a density of $1 \times 10^4/500 \ \mu\text{L}$ methylcellulose per 12-well plate (M3334; Stem Cell Technologies). CFU-E assays were supplemented with 2 units erythropoietin (Epo)/mL and incubated over 2 d at 37 °C with 5% CO₂. BFU assays were performed by adding 2 units Epo/mL and 1% IL3 (supernatant) over 8 d at 37 °C with 5% CO₂. The cultures were stained with benzidine (12% acetic acid containing 0.4% benzidine and 0.3% H₂O₂) to score the number of erythroid colonies.

Chromatin Immunoprecipitation Assays. Antibodies used were as follows: GATA-1, N6 (Santa Cruz Biotechnology); TRAP220/ Med1, M-255 (Santa Cruz Biotechnology); Med26/CRSP70, H-228 (Santa Cruz Biotechnology); Pol II, N20 (Santa Cruz Biotechnology); TFIIB, C-18 (Santa Cruz Biotechnology); and acetylation-histone3, acH3K9 (Abcam). Precipitated DNA fragments were detected by real-time PCR using the Roche probe library and the following primers (5'-3') for the β -globin promoter: (forward: CTGAGACTCCTAAGCCAGTG; reverse: GGAATCAGGCTTCGGTGAT; probe #89) and for hypersensitive site 2 of the LCR (forward: AAC ATT TCC TGA ATG ACT GTT AAG C; reverse: ATC ATA GAT GGA AGC TGG AAA AA; probe #110). All primers and probes were used at a concentration of 100 nM, and values were normalized to values of input DNA.

Quantitative Real-Time PCR. RNA purification and reverse transcription into cDNA were performed using the RNAqueous Microkit (Ambion) and the SuperScript II kit (Invitrogen), respectively. The 7500 Fast Real-time PCR System of Applied Biosystems was used to quantify mRNA/cDNA levels using the Roche probe library. Primers and probes were used at and 100 nM, and values were normalized to expression levels of TATA binding protein (TBP). Primers (5'-3') and probes used for realtime PCR were the following: GATA-1 F, TCC CAG TCC TTT CTT CTC TCC; GATA-1 R, CAC ACA CTC TCT GGC CTC AC; probe #66; β -major globin F, TGT GCT GAG GAC TTG GTT CA; β-major globin R, TCC TTC CAC GCT TTT GAA TTA; probe #27; EKLF F, CAA GAG CTC GCA CCT CAA G; EKLF R, GAG CGA ACC TCC AGT CAC A; probe #68; NF-E2 F, TCC TCA GCA GAA CAG GAA CA; NF-E2 R, TGT CTC ACT TGG AAC ATT TAG ACC; probe #27; c-myb F, CAA CAG AGA ACG AGC TGA; c-myb R, GCT GCA AGT GTG GTT CTG TG; probe #40; GATA-2 F, CAC CCC TAA GCA GAG AAG CA; GATA-2 R, TGG CAC CAC AGT TGA CAC A; probe #15; c-Kit F, GAT CTG CTC TGC GTC CTG TT; c-Kit R, CTT GCA GAT GGC TGA GAC G; probe #15; Med1 F, GGA CCT TTC TAA AAT GGC TAT TAT GT; Med1 R, CGG GGT GAG ATA ACC AAC AC; probe #97; TBP F, GGG GAG CTG TGA TGT GAA GT; and TBP R, CCA GGA AAT AAT TCT GGC TCA T; probe #97.

Fig. S1. Chromatin immunoprecipitation analysis of the active histone mark H3K9ac at the β -globin locus in differentiating MEL cells. Acetylated H3K9 is already present at both the β -globin locus control region (HS2) (A) and the β -major promoter (B) before induction of MEL cells by DMSO. The y axis represents the absolute enrichment (mean \pm SD, two independent experiments) normalized to input. Background is defined as the unspecific binding to an unrelated control sequence (–106 kb upstream of GATA-1 locus).

Fig. S3. Med1 is efficiently deleted in lymphoid, myeloid, and progenitor cells in Mx-Cre-mediated Med1 conditional knockout mice. Lymphoid (B220⁺/IgM⁺ splenic B cells), myeloid (Gr-1⁺/Mac-1⁺ bone marrow cells), and progenitor cells (lin-/c-Kit⁺ bone marrow cells) were sorted by FACS out of RFP- and RFP+ populations, and Med1 deletion was verified at both the genomic level (A) and the transcription level (B) by RT-PCR.

Fig. S4. Med1-deficient mice have an increased proportion of proerythroblasts and reduced numbers of erythroblasts. (*A* and *B*) Mature erythrocytes (CD71⁻/ Ter119⁺) but not early progenitor (CD71low/Ter119-) and erythroblast (CD71⁺/Ter119low, CD71 high/Ter119⁺) stages lack expression of the red fluorescent protein (RFP) reporter gene. (*C* and *D*) Flow cytometry analysis of erythroid subsets, using the markers CD71 and Ter119, revealed that Med1 deficiency leads to a partial block in erythroid maturation reflected by an increased proerythroblast (I) to erythroblast (II) ratio (3.6:1) compared with wild-type littermates (1.2:1). (*E*) Quantification of the flow cytometry data comparing Med1 wild-type and Med1-deficient erythroid cell populations, displayed as the percentage of RFP⁺ cells.

Fig. S5. Med1 knockdown in the G1E-ER-GATA1 system has no effects on β -globin and Band3 induction. (*A* and *B*) Med1 knockdown efficiency was checked by RT-PCR (*A*) and Western blot (*B*) in the wild-type (Ctrl) and Med1-shRNA-transduced (Med1-KD) G1E-ER-GATA1 cell line untreated and 24 h after tamoxifen treatment. (C) Expression of β -globin and Band3 was determined by RT-PCR.

S A N O