Supplementary Data

Figure W1. *TFF3* mRNA expression is correlated with decreased DMFS in breast cancer patients. 251 breast cancer patients of the Uppsala cohort were split into two groups: low *TFF3* expression (below mean) and high *TFF3* expression (above mean). The DMFS of these two groups was compared by Kaplan-Meier (K-M) analysis as described in the Materials and Methods section.

Figure W2. Forced expression of TFF3 increases cell cycle entry and reduces apoptosis of human mammary carcinoma cells. (A) Cell cycle analysis of MCF7-Vec and MCF7-TFF3 cells by DAPI staining after 24 hours of serum depletion. (B) Determination of early and late apoptosis of MCF7-Vec and MCF7-TFF3 cells by annexin V (AV) and propidium iodide (PI) double staining. Both early apoptosis (AV+ PI-) and later apoptosis (AV+ PI+) are presented as the percentage of total cells. (C) Cell viability of MCF7-Vec and MCF7-TFF3 cells after treatment with doxorubicin at various concentrations in 0.5% FBS for 3 days was determined by MTT assay. *P < .05, **P < .01.

Table W1. Sequences of Oligonucleotide Primers Used for Semiquantitative RT-PCR.

Genes	Abbreviation		Primer Sequence (5'-3')	Amplicon Size (bp)
Trefoil factor 3	TFF3	Forward Reverse	GGCTGTGATTGCTGCCAG GTGGAGCATGGGACCTTTAT	125
Beta-actin	β-ACTIN	Forward Reverse	ATGATATCGCCGCGCTCG CGCTCGGTGAGGATCTTCA	580

Table W2. Sequences of Oligonucleotide Primers Used for qPCR.

Genes	Abbreviation		Primer Sequence (5'-3')	Amplicon Size (bp)
v-akt murine thymoma viral oncogene homolog 1	AKT1	Forward	GCACAAACGAGGGGAGTACAT	113
		Reverse	CCTCACGTTGGTCCACATC	
v-raf murine sarcoma 3611 vial oncogene homolog 1	ARAF1	Forward	CTTGCTGTCCTCCAGCTCT	124
		Reverse	CCGGTTGTTGCACTCCTT	
Ataxia telangiectasia mutated	ATM	Forward	TGGATCCAGCTATTTGGTTTGA	82
		Reverse	CCAAGTATGTAACCAACAATAGAAGAAGTAG	- /-
BCL2-antagonist of cell death	BAD	Forward	CCCAGAGTTTGAGCCGAGTG	249
PCI 2 second littler 1	DAV1	Reverse		207
BCL2-antagonist killer 1	DAKI	Porward		507
BCI 2-associated X protein	RAX	Forward	CCCTCCTCCCTCCCCCCCCCCCCCCCCCCCCCCCCCCCC	199
BOEZ associated A protein	Dilit	Reverse	AGACACGTAAGGAAAACGCATTA	1)))
B-cell CLL/lymphoma 2	BCL2	Forward	TCCGCATCAGGAAGGCTAGA	113
		Reverse	AGGACCAGGCCTCCAAGCT	
BCL2-like 1	BCL2L1	Forward	ATGGCAGCAGTAAAGCAAGC	149
		Reverse	CGGAAGAGTTCATTCACTACCTGT	
beta-Actin	β -ACTIN	Forward	TTCCTGGGCATGGAGTC	84
		Reverse	CAGGTCTTTGCGGATGTC	
Baculoviral IAP repeat-containing 5	BIRC5	Forward	TCCACTGCCCCACTGAGAAC	76
		Reverse	TGGCTCCCAGCCTTCCA	
Breast cancer 1, early onset	BRCAI	Forward	CATGCTGAAACTTCTCAACCAGAA	81
	CASDZ	Reverse	IGIAGGCICCITIIGGIIAIAICATIC	27/
Caspase /, apoptosis-related cysteline peptidase	CASP/	Porward		2/4
Cyclin A1	CCN41	Forward		170
Cyclin XI	CCIVII	Reverse	CTTCTACAATAAGTTTCTGAATG	1/0
Cyclin Dl	CCND1	Forward	ACGAAGGTCTGCGCGTGTT	323
		Reverse	CCGCTGGCCATGAACTACCT	0-0
Cyclin El	CCNE1	Forward	ATCAGCACTTTCTTGAGCAACA	122
		Reverse	TTGTGCCAAGTAAAAGGTCTCC	
Cell division cycle 25A	CDC25A	Forward	TAAGACCTGTATCTCGTGGCTG	131
		Reverse	CCCTGGTTCACTGCTATCTCT	
Cyclin-dependent kinase 1	CDK1	Forward	TCGAAAGCCAAGATAAGCAAC	137
	00.00	Reverse	CCGCAACAGGGAAGAACAGT	0.5
Cyclin-dependent kinase 2	CDK2	Forward	GCIAGCAGACITIGGACIAGCCAG	85
Cyclin dependent kingse /	CDK/	Forward		102
Cyclin-dependent kinase 4	CDR4	Reverse	AAACTECCECATCACATCCTT	102
Cyclin-dependent kinase inhibitor 1A (p21)	CDKN1A	Forward	CCTCATCCCGTGTTCTCCCTTT	97
2) (t)		Reverse	GTACCACCCAGCGGACAAGT	
Cyclin-dependent kinase inhibitor 1B (p27)	CDKN1B	Forward	CTGCAACCGACGATTCTTCTACT	101
		Reverse	GGGC GTC TGCTCCACAGA	
Cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	CDKN2A	Forward	CAACGCACCGAATAGTTACGG	96
		Reverse	AACTTCGTCCTCCAGAGTCGC	
Cadherin type 1	CDH1	Forward	ACACCCGGGACAACGTTTA	81
	CTNINI 4 1	Reverse	TGTGCAGCTGGCTCAAGTC	01
Cadherin associated protein, aipha 1	CINNAI	Porward		81
Cadherin associated protein hera 1	CTNNR1	Forward	C CCACTCCCCTCTCATAAACC	80
Catherin associated protein, beta 1	CIINIDI	Reverse	ACGCAAAGGTGCATGATTTG	00
Cadherin associated protein, gamma	CTNNG	Forward	AACAAGAACAACCCCAAGTT	134
1 0		Reverse	TAGTTACGCATGATCTGCAC	
E2F transcription factor 1	E2F1	Forward	AGATGGTTATGGTGATCAAAGCC	72
		Reverse	ATCTGAAAGTTCTCCGAAGAGTCC	
v-ets erythroblastosis virus E26 oncogene homolog 2	ETS2	Forward	CCCCTGTGGCTAACAGTTACA	222
		Reverse	AGGTAGCTTTTAAGGCTTGACTC	
Fibronectin 1	FN1	Forward	CCCATCAGCAGGAACACCTT	84
- C. EDI	EOS	Reverse	GGUICACIGCAAAGACITIGAA	1(2
v-tos FDJ murine osteosarcoma viral oncogene homolog	FUS	Porward		162
Glyceraldehyde-3-phosphate dehydrogenase	GAPDH	Forward	TGCACCACCAACTGCTTAGC	84
	0.11 D11	Reverse	GGC ATGGACTGTGGTCATGAG	

Table W2. (continued)

Genes	Abbreviation		Primer Sequence (5'-3')	Amplicon Size (bp)
Hypoxanthine phosphoribosyltransferase	HPRT	Forward	TGACACTGGCAAAACAATGCA	94
		Reverse	GGTCCTTTTCACCAGCAAGCT	
HIV-1 Tat interactive protein 2, 30 kDa	HTATIP2	Forward	CGGAGGGATTTGTTCGTGTTG	104
		Reverse	AGCTCCTTTAGAGGATAGCAAGT	
MET proto-oncogene hepatocyte growth factor receptor)	MET	Forward	TGGTGCAGAGGAGCAATGG	111
		Reverse	CATTCTGGATGGGTGTTTCCG	
Matrix metallopeptidase 1	MMP1	Forward	AGCTAGCTCAGGATGACATTGATG	74
		Reverse	GCCGATGGGCTGGACAG	
Matrix metallopeptidase 2	MMP2	Forward	CAAAAACAAGAAGACATACATCTT	232
		Reverse	GCTTCCAAACTTCACGCTC	
Matrix metallopeptidase 9	MMP9	Forward	TGGGGGGCAACTCGGC	224
		Reverse	GGAATGATCTAAGCCCAG	
Metastasis associated 1	MTA1	Forward	GCTGTTACACCACACAGTCTT	166
		Reverse	GGACTCATGTTACTGCGGTTT	
Metastasis associated 2	MTA2	Forward	CCGACGGCCTTATGCTCCT	145
		Reverse	CTGGGCCACCAGATCTTTGAC	
v-myc myelocytomatosis viral oncogene homolog (avian)	MYC	Forward	TGCTGCCAAGAGGGTCAAGT	118
		Reverse	GTGTGTTCGCCTCTTGACATTC	
Nuclear factor of kappa light polypeptide gene enhancer in B cells 1 (p105)	ΝΓκΒ1	Forward	TGCCAACAGATGGCCCATAC	123
		Reverse	TGTTCTTTTCACTAGAGGCACCA	
Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha	NFĸBIA	Forward	CTCCGAGACTTTCGAGGAAATAC	135
		Reverse	GCCATTGTAGTTGGTAGCCTTCA	
Nonmetastatic cells 1 protein (NM23A)	NME1	Forward	GCTGCAGCCGGAGTTCAAAC	289
		Reverse	GCAATGAAGGTACGCTCACAGT	
Occludin	OCLN	Forward	TGCCGCGTTGGTGATCTTT	100
		Reverse	GCCCAGGATAGCACTCACTATT	
Plasminogen activator urokinase	PLAU	Forward	CACGCAAGGGGAGATGAA	341
		Reverse	ACAGCATTTTGGTGGTGACTT	
Plasminogen activator urokinase receptor	PLA UR	Forward	AATGGCCGCCAGTGTTACAG	227
		Reverse	CAGGAGACATCAATGTGGTTC	
v-raf-1 murine leukemia viral oncogene homolog 1	RAF	Forward	TTTCCTGGATCATGTTCCCCT	153
		Reverse	ACTTTGGTGCTACAGTGCTCA	
Retinoblastoma 1	RB1	Forward	GAACATCGAATCATGGAATCCCT	116
		Reverse	AGAGGACAAGCAGATTCAAGGTGAT	
SI00 calcium binding protein A4	S100A4	Forward	GATGAGCAACTTGGACAGCAA	123
	CEDDRIDS	Reverse	CIGGGCIGCITAICIGGGAAG	
Serpin peptidase inhibitor, clade B (ovalbumin), member 5	SERPINB5	Forward	CIACITIGIIGGCAAGIGGAIGAA	90
	CEDDINIE1	Reverse	ACIGGIIIGGIGICIGICIIGIIG	05
Serpin peptidase inhibitor, ciade E (nexin, plasminogen activator inhibitor type 1)	SERPINEI	Forward	CACAAAICAGACGGCAGCACI	85
	CATAIL	Reverse		1.47
Shail homolog 1	SIVAIL	Forward	ATCGGAAGCCTAACTACAGCG	14/
	SNCC	Reverse	GICCCAGAIGAGCAIIGGCA	()
Synuclein, gamma (breast cancer-specific protein 1)	SNCG	Forward	IGAGCAGCGICAACACIGIG	64
Terfeil ferrer 1	TEE1	Reverse Example	GAGGIGACCGCGAIGIICIC	105
Ifefoli factor 1	1771	Porward D		105
Teef.: 1 fearer 2	TEE2	Reverse Example	CICIGGGACIAAICACCGIGCIG	12/
Irefoll factor 5	1773	Porward D	CITCLECACTO	124
Tumor necrosis factor recentor superfamily, member 14	TNEDSE1 4	Forward		160
rumor necrosis factor receptor superianny, memori 174	1101/051/171	Pavarca		10)
Tumor necrosis factor recentor superfamily member 10B	TNEDSEINR	Forward	ACACCETTCTCCTCCTTCT	1///
runor necrosis factor receptor superianny memoer rob	1101/101/100	Pavarca		144
Tumor necrosis factor recentor superfamily member 25	TNEDSE25	Forward		155
ranoi necrosis factor receptor superfamily includer 23	11111012)	Reverse	GAGE CTECATECCAGECTTE	1))
Tumor protein p53 (Li-Fraumeni vndrome)	TP53	Forward	TECACCTETEEETTCATTCC	396
ramor proton p35 (ta-riaunon yndronic)	11))	Reverse		570
Vascular endothelial growth factor-A	VEGE-A	Forward	TACCTCCACCATCCCAAC	148
vascular christificilar growth factor-21	1201-21	Reverse	GGTACTCCTGGAAGATGTC	071
Vimentin	VIM	Forward	CCTTGAACGCAAAGTCGAATC	106
, includi	¥ 11¥1	Reverse	GACATGCTGTTCCTGAATCTGAG	100

Gene Function	Gene	Ratio (TFF3/Vec)*	Р
Cell cycle control and DNA damage repair	BRCA1	0.93	7.30e - 01
	CDK1	2.41	3.90 <i>e</i> - 04
	CDC25A	0.79	2.90e - 01
	CDC25C	1.13	4.00e - 01
	CDK2	0.64	2.20e - 02
	CDK4	0.87	5.00e - 03
	CDKN1A	0.46	1.90e - 04
	CDKN1B	1.01	7.80e - 01
	CDKN2A	1.02	8.10 <i>e</i> - 01
	CCNA1	17.07	1.20e - 04
	CCNB1	1.01	5.30e - 01
	CCND1	0.61	3.20e - 01
	CCNE1	0.74	1.50e - 01
	E2F1	0.85	6.00 <i>e</i> - 02
	RB1	0.94	6.60 <i>e</i> – 01
	TP53	0.91	1.13e - 01
Adhesion and invasion	CTNNA1	0.96	8.60 <i>e</i> - 01
	CTNNB1	0.99	9.60e - 01
	CDH1	0.74	3.00e - 02
	CTNNG	0.39	5.00e - 02
	FN1	2.43	1.00e - 02
	C-MET	1.36	1.40e - 01
	MMP1	1.28	4.80 <i>e</i> - 01
	MMP2	0.98	6.20e - 01
	MMP9	1.08	8.40 <i>e</i> - 01
	MTA1	0.93	3.00e - 01
	MTA2	0.98	8.60 <i>e</i> - 01
	NME1	0.39	1.10e - 06
	OCLU	0.80	5.00e - 01
	PLAU	1.42	8.80e - 01
	PLAUR	0.59	4.00e - 02
	SERPINB5	1.25	3.30e - 01
	SERPINE1	0.78	5.60e - 01
	VEGF	1.35	1.80e - 01
	VIMENTIN	2.51	1.80 <i>e</i> - 04
	SLUG	0.72	1.60e - 01
	SNAIL	1.25	1.10e - 01
	SNCG	0.27	1.10e - 03
Apoptosis	ATM	1.08	5.69e - 01
	ARAF	1.21	7.89e - 02
	BAD	0.84	4.35e - 01
	BAK1	1.01	7.70e - 01
	BAX	0.05	4.40e - 04
	BCL2	4.52	1.10e - 03
	BCL2L1	0.80	1.22e - 01
	CASP7	0.41	3.00 <i>e</i> - 04
	MCL1	1.10	9.00 <i>e</i> - 01
	S100A4	1.03	7.50e - 01
	BIRC5	1.26	1.40e - 01
	RAF	0.92	3.00e - 01
	HTATIP2	0.44	1.20 <i>e</i> – 05
	TNFRSF10B	1.14	1.80e - 01
	TNFRSF1A	0.81	4.10e - 01
	TNFRSF25	1.89	4.00e - 03
Transcription factors	ELF5	0.80	6.00e - 01
	ETS2	1.12	6.40 <i>e</i> - 01
	FOS	0.49	1.60 <i>e</i> - 02
	ΝΓκΒ1	1.19	2.70e - 01
	NFĸBIA	2.94	1.59e - 02

 ${\bf Table ~W3.}~{\rm qPCR}$ Analysis of Modulation of Gene Expression by Forced Expression of TFF3 in MCF-7 Cells.

*Average of three experiments represents each gene fold changes (P < .05). A positive value indicates increased gene expression and a negative value indicates decreased gene expression in MCF7-TFF3 cells relative to MCF7-Vec cells.

Figure W3. Production of rabbit polyclonal antibody against TFF3. (A) SDS-PAGE demonstrating formation of the monomeric and dimeric forms of rhTFF3 protein under nonreducing and reducing conditions, respectively. (B) Affinity binding of TFF3-pAb to rhTFF3 in an ELISA. A 96-well NUNC plate coated with 100 ng of rhTFF3 was incubated with various concentrations of rabbit TFF3-pAb. Bound antibodies were detected by incubation with goat antirabbit IgG conjugated with horseradish peroxidase and colorimetrically measured at 450 nm. (C) The detection limit of TFF3-pAb to rhTFF3 in an ELISA. A 96-well NUNC plate coated with various concentrations of rhTFF3 was incubated with 1 μ g/ml TFF3-pAb. Bound antibodies were detected by incubation with goat antirabbit IgG conjugated with goat antirabbit IgG conjugated with various concentrations of rhTFF3 was incubated with 1 μ g/ml TFF3-pAb. Bound antibodies were detected by incubation with goat antirabbit IgG conjugated with various concentrations of rhTFF3 was incubated with 1 μ g/ml TFF3-pAb. Bound antibodies were detected by incubation with goat antirabbit IgG conjugated with various concentrations of rhTFF3 was incubated with 1 μ g/ml TFF3-pAb. Bound antibodies were detected by incubation with goat antirabbit IgG conjugated with horseradish peroxidase and colorimetrically measured at 450 nm. (D) SDS-PAGE Western blot analysis of specificity of TFF3-pAb. Protein samples of purified rhTFF1 and rhTFF3 were subjected to SDS-PAGE. The proteins were transferred to a polyvinylidene fluoride membrane and probed by either rabbit TFF1-pAb (top panel) or rabbit TFF3-pAb (bottom panel). (E) MCF-7 and T47D cells were treated with TFF3-pAb at the concentration of 200 μ g/ml in 0.5% FBS for 24 hours, and apoptosis was determined by annexin V and PI double staining as described in Materials and Methods.

Figure W4. Effects of TFF3 polyclonal antibody treatment on morphologic aspects of vital organs of mice. TFF3-pAb was dosed 16 days after MCF-7 cell implantation and thereafter daily for 2 weeks. Histologic analyses with hematoxylin and eosin staining failed to identify any histologic alterations in the vital organs including liver, lung, intestine, kidney, and stomach between TFF3-pAb–treated mice and control IgG–treated mice.

Meta-analysis of Breast Cancer Microarray Data Sets

Data were collected from publicly available breast cancer microarray data sets in the cancer microarray database Oncomine (www. oncomine.org). *TFF3* gene expression was log-transformed, mediancentered per array, and SD normalized to one per array. A meta-analysis approach was used to determine whether higher expression levels of the gene TFF3 was associated with ER+ or ER- status in breast cancer patients. Using *t* values and sample sizes from each study, we calculated effect sizes by the standardized mean difference method. The withinstudy variance for the effect size was calculated as the inverse of the study sample size. The pooled effect size was estimated in an intercept-only model with the study identifiers as random effects; this model was weighted by the between-study variance and the estimated withinstudy variances that were held constant. The meta-analysis was carried out using the MIXED procedure in SAS version 9.2 (SAS Institute, Inc, Cary, NC).

Figure W5. *TFF3* expression is correlated with ER-positive status in human mammary carcinoma. Meta-analysis of *TFF3* gene expression profiles of human mammary carcinoma obtained from the Oncomine database showing a positive association of *TFF3* mRNA expression with ER-positive status in mammary carcinoma.

Figure W6. *TFF3* mRNA expression is correlated with decreased survival in patients with ER-positive breast cancer treated with tamoxifen. Kaplan-Meier analysis of the correlation of *TFF3* mRNA expression to DMFS (A and D), disease-specific survival (B) and disease-free survival (C) in tamoxifen-treated ER-positive breast cancer patients.

References

- Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, and Massagué J (2005). Genes that mediate breast cancer metastasis to lung. *Nature* 436, 518–524.
- [2] Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-Van Gelder ME, Yu J, et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node–negative primary breast cancer. *Lancet* 365, 671–679.
- [3] Van De Vijver MJ, He YD, Van't Veer LJ, Dai H, Hart AAM, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347, 1999–2009.
- [4] Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, and Liu ET (2003). Breast cancer classification and prognosis based on gene expression profiles from a population-based study. *Proc Natl Acad Sci USA* 100, 10393–10398.
- [5] Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X,

Iglehart JD, Livingston DM, and Ganesan S (2006). X chromosomal abnormalities in basal-like human breast cancer. *Cancer Cell* **9**, 121–132.

- [6] Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. *Cancer Cell* 10, 529–541.
- [7] Hess KR, Anderson K, Symmans WF, Valero V, Ibrahim N, Mejia JA, Booser D, Theriault RL, Buzdar AU, Dempsey PJ, et al. (2006). Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 24, 4236–4244.
- [8] Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, Lindahl T, Pawitan Y, Hall P, Nordgren H, et al. (2006). Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. *Cancer Res* 66, 10292–10301.
- [9] Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S, Liu ET, et al. (2005). An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. *Proc Natl Acad Sci USA* **102**, 13550–13555.

- [10] Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A, Ferno M, Peterson C, and Meltzer PS (2001). Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. *Cancer Res* 61, 5979–5984.
- [11] Ginestier C, Cervera N, Finetti P, Esteyries S, Esterni B, Adelailde J, Xerri L, Viens P, Jacquemier J, Charafe-Jauffret E, et al. (2006). Prognosis and gene expression profiling of 20q13-amplified breast cancers. *Clin Cancer Res* 12, 4533–4544.
- [12] West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson JA Jr, Marks JR, and Nevins JR (2001). Predicting the clinical status of human breast cancer by using gene expression profiles. *Proc Natl Acad Sci USA* 98, 11462–11467.
- [13] Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, Van De Rijn M, Jeffrey SS, et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. *Proc Natl Acad Sci USA* **98**, 10869–10874.
- [14] Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B, et al. (2006). Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. *J Natl Cancer Inst* 98, 262–272.
- [15] Zhao H, Langerød A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, Bukholm IK, Kåresen R, Botstein D, Børresen-Dale AL, et al. (2004). Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. *Mol Biol Cell* 15, 2523–2536.