Qing G supplementary Table

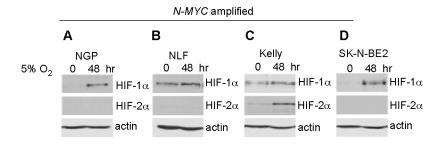
Summary of HIF- $\!\alpha$ staining in 15 primary neuroblastoma tumors.

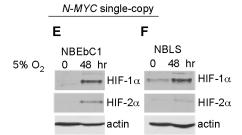
sample	S00- 4578	S02- 3700	S08- 6611	S08- 2426	S03- 2888	S08- 7220		S00- 4481	S01- 3408	S95- 268	S96- 1558	892- 4105	903- 2568	S95- 3787	900- 1545
MYCN status	amp	amp	amp	amp	amp	amp	amp	amp	amp	amp	amp	amp	amp	no	no
HIF-1α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HIF-2α	_	+	+	+	_	_	_	-	_		-	1	1	+	+

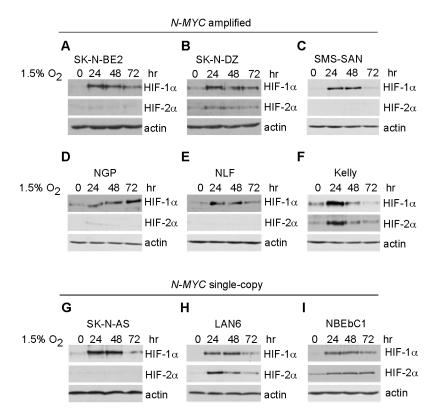
("+": positive HIF- α staining; "–": negative HIF- α staining)

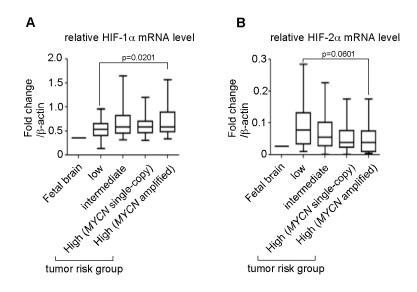
Figure legends for supplemental figures

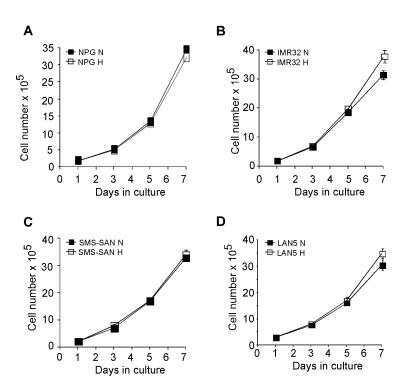
Figure S1. Immunoblot analysis of HIF-1 α and HIF-2 α expression in neuroblastoma cells at 5% O₂. (A-F) Neuroblastoma cells were cultured at 21% and 5% O₂ for 48 hr, and respective HIF- α levels were detected using specific antibodies. Actin was used as a loading control.


Figure S2. Immunoblot analysis of HIF-1 α and HIF-2 α expression in neuroblastoma cells at 1.5% O_2 . (A-I) Neuroblastoma cells cultured at 21% and 1.5% O_2 were harvested at different time points, and respective HIF- α levels were detected using specific antibodies. Actin was used as a loading control.


Figure S3. Relative levels of HIF-1 α and HIF-2 α mRNA in primary neuroblastoma samples with different tumor risks. (A) Relative levels of HIF-1 α . (B) Relative levels of HIF-2 α . The levels of both HIF- α isoforms within each tumor risk group were normalized based on that of actin. Numbers of tumors used in the assay: low risk group (28), intermediate (21), *MYCN* single-copy, high risk (32) and *MYCN* amplified, high risk (20).


Figure S4. Proliferation of *MYCN* amplified cell lines under normoxia and hypoxia. (A-C) NPG, IMR32, and SMS-SAN cells were cultured at 21% and 1.5% O_2 and cell counting was performed at different time points shown in the figure. (D) LAN5 cells were cultured at 21% and 0.5% O_2 and cell counting was performed at different time points shown in the figure. Data are shown as an average of triplicates.


Figure S5. Western analysis of HIF-1 α levels in control and knockdown cells. HIF-1 α was inhibited by control or specific shRNAs in LAN5 cells, and the protein levels at either normoxia or hypoxia were determined by immunoblot assay. β -actin was used as a loading control.


Figure S6. HIF-2 α expression in SK-N-BE2 cells and possible effects on glucose consumption, cell cycle progression and tumorigenesis. (A) Detection of HIF-2 α by immunoblot assay. (B) Expression of HIF- α target genes; p<0.01. (C) Glucose consumption as analyzed for 1 million cells. Data are shown as an average of triplicates. (D) Representative FACS plots from control and HIF-2 α transfected cells grown at 1.5% O₂ for 48 hr. (E) Tumorigenesis analyzed in a xenograft animal model. 5 million control or HIF-2 α transfected SK-N-BE2 cells were injected into nude mice, with each group consisting of 5 tumors. p= 0.886.

