Chiral Brønsted Base-Promoted Nitroalkane Alkylation: Enantioselective Synthesis of *sec*-Alkyl-3-Substituted Indoles

Mark C. Dobish and Jeffrey N. Johnston*

Department of Chemistry & Vanderbilt Institute of Chemical Biology Vanderbilt University 2301 Vanderbilt Place, Nashville, TN 37235-1822

	S-II-X
Figure 1. ¹ H NMR (CDCl ₃) of 5d.	3
Figure 2. 13 C NMR (CDCl ₃) of 5d	4
Figure 3. ¹ H NMR (CDCl ₃) of 5e.	5
Figure 4. 13 C NMR (CDCl ₃) of 5e	6
Figure 5. ¹ H NMR (CDCl ₃) of 5f	7
Figure 6. 13 C NMR (CDCl ₃) of 5f	8
Figure 7. ¹ H NMR (CDCl ₃) of 5g.	9
Figure 8. 13 C NMR (CDCl ₃) of 5g	10
Figure 9. ¹ H NMR (CDCl ₃) of 5h.	11
Figure 10. ¹³ C NMR (CDCl ₃) of 5h	12
Figure 11. ¹ H NMR (CDCl ₃) of 5i	13
Figure 12. ¹³ C NMR (CDCl ₃) of 5i	14
Figure 13. ¹ H NMR (CDCl ₃) of 5k.	15
Figure 14. ¹³ C NMR (CDCl ₃) of 5k	16
Figure 15. 1 H NMR (CDCl ₃) of 51	17
Figure 16. ¹³ C NMR (CDCl ₃) of 51	18
Figure 17. ¹ H NMR (CDCl ₃) of 6a (major).	19
Figure 18. ¹³ C NMR (CDCl ₃) of 6a (major)	20
Figure 19. ¹ H NMR (CDCl ₃) of 6a (minor).	21
Figure 20. ¹³ C NMR (CDCl ₃) of 6a (minor)	22
Figure 21. ¹ H NMR (CDCl ₃) of 6b	23
Figure 22. ¹³ C NMR (CDCl ₃) of 6b	24
Figure 23. ¹ H NMR (CDCl ₃) of 6c.	25
Figure 24. ¹³ C NMR (CDCl ₃) of 6c	26
Figure 25. ¹ H NMR (CDCl ₃) of 6d.	27
Figure 26. ¹³ C NMR (CDCl ₃) of 6d	
Figure 27. ¹ H NMR (CDCl ₃) of 6e.	29
Figure 28. ¹³ C NMR (CDCl ₃) of 6e	30
Figure 29. ¹ H NMR (CDCl ₃) of 6f	31
Figure 30. ¹³ C NMR (CDCl ₃) of 6f	32
Figure 31. ¹ H NMR (CDCl ₃) of 6g.	33
Figure 32. ¹³ C NMR (CDCl ₃) of 6g	34
Figure 33. ¹ H NMR (CDCl ₃) of 6h.	35
Figure 34. ¹³ C NMR (CDCl ₃) of 6h	36
Figure 35. ¹ H NMR (CDCl ₃) of 6i	37
Figure 36. ¹³ C NMR (CDCl ₃) of 6i	
Figure 37. ¹ H NMR (CDCl ₃) of 6j	

Johnston et al.	Supporting Information II
Figure 38. ¹³ C NMR (CDCl ₃) of 6j	
Figure 39. ¹ H NMR (CDCl ₃) of 6k.	41
Figure 40. ¹³ C NMR (CDCl ₃) of 6k	
Figure 41. ¹ H NMR (CDCl ₃) of 61.	
Figure 42. ¹³ C NMR (CDCl ₃) of 61.	
Figure 43. ¹ H NMR (CDCl ₃) of 6m.	45
Figure 44. ¹³ C NMR (CDCl ₃) of 6m	
Figure 45. ¹ H NMR (CDCl ₃) of 6n.	
Figure 46. ¹³ C NMR (CDCl ₃) of 6n	
Figure 47. ¹ H NMR (CDCl ₃) of 60.	
Figure 48. ¹³ C NMR (CDCl ₃) of 60.	
Figure 49. ¹ H NMR (CDCl ₃) of 9.	
Figure 50. 13 C NMR (CDCl ₃) of 9	

Johnston et al. **Figure 2.** ¹³C NMR (CDCl₃) of 5d.

Johnston et al. **Figure 4.** ¹³C NMR (CDCl₃) of 5e.

Johnston et al. **Figure 5.** ¹H NMR (CDCl₃) of 5f.

Johnston et al. **Figure 7.** ¹H NMR (CDCl₃) of 5g.

Johnston et al. **Figure 9.** ¹H NMR (CDCl₃) of 5h.

Johnston et al. **Figure 13.** ¹H NMR (CDCl₃) of 5k.

Johnston et al. **Figure 14.** ¹³C NMR (CDCl₃) of 5k.

Johnston et al. **Figure 15.** ¹H NMR (CDCl₃) of 51.

Johnston et al. **Figure 17.** ¹H NMR (CDCl₃) of 6a (major).

Johnston et al. **Figure 18.** ¹³C NMR (CDCl₃) of 6a (major).

Johnston et al. **Figure 19.** ¹H NMR (CDCl₃) of 6a (minor).

Johnston et al. **Figure 20.** ¹³C NMR (CDCl₃) of 6a (minor).

Johnston et al. **Figure 21.** ¹H NMR (CDCl₃) of 6b.

Johnston et al. **Figure 22.** ¹³C NMR (CDCl₃) of 6b.

Johnston et al. **Figure 23.** ¹H NMR (CDCl₃) of 6c.

Johnston et al. **Figure 24.** ¹³C NMR (CDCl₃) of 6c.

Johnston et al. **Figure 25.** ¹H NMR (CDCl₃) of 6d.

Johnston et al. **Figure 26.** ¹³C NMR (CDCl₃) of 6d.

Johnston et al. **Figure 27.** ¹H NMR (CDCl₃) of 6e.

Johnston et al. **Figure 28.** ¹³C NMR (CDCl₃) of 6e.

Johnston et al. **Figure 29.** ¹H NMR (CDCl₃) of 6f.

Johnston et al. **Figure 30.** ¹³C NMR (CDCl₃) of 6f.

Johnston et al. **Figure 32.** ¹³C NMR (CDCl₃) of 6g.

Johnston et al. **Figure 33.** ¹H NMR (CDCl₃) of 6h.

Johnston et al. **Figure 34.** ¹³C NMR (CDCl₃) of 6h.

Johnston et al. **Figure 35.** ¹H NMR (CDCl₃) of 6i.

Johnston et al. **Figure 36.** ¹³C NMR (CDCl₃) of 6i.

Johnston et al. **Figure 38.** ¹³C NMR (CDCl₃) of 6j.

Johnston et al. **Figure 40.** ¹³C NMR (CDCl₃) of 6k.

Johnston et al. **Figure 41.** ¹H NMR (CDCl₃) of 6l.

Johnston et al. **Figure 42.** ¹³C NMR (CDCl₃) of 6l.

Johnston et al. **Figure 43.** ¹H NMR (CDCl₃) of 6m.

Johnston et al. **Figure 44.** ¹³C NMR (CDCl₃) of 6m.

Johnston et al. **Figure 45.** ¹H NMR (CDCl₃) of 6n.

Johnston et al. **Figure 46.** ¹³C NMR (CDCl₃) of 6n.

Johnston et al. **Figure 47.** ¹H NMR (CDCl₃) of 60.

Johnston et al. **Figure 48.** ¹³C NMR (CDCl₃) of 60.

Supporting Information II

Johnston et al. **Figure 50.** ¹³C NMR (CDCl₃) of 9.

