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A Previous Work

This paper describes the first of a three-tiered approach for the analysis of chromosomal

alterations in high-throughput platforms (Scharpf et al., 2008). Briefly, first tier methods

provide locus-specific estimates of copy number. Existing methods include those that pro-

vide estimates of total copy number relative to a reference (Bignell et al., 2004; Bengtsson

et al., 2008), allele-specific copy number relative to a reference (Nannya et al., 2005; Huang
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et al., 2006), or absolute estimates of allele-specific copy number (LaFramboise et al., 2006;

Wang et al., 2007). Second tier algorithms smooth the locus-specific estimates within an

individual as a function of the genomic physical position to identify alterations spanning

multiple loci. This includes segmentation algorithms (Olshen et al., 2004; Hupe et al., 2004),

regression-based smoothing methods (Huang et al., 2006; Rigaill et al., 2008), hidden Markov

models (Colella et al., 2007; Lamy et al., 2007; Wang et al., 2007; Korn et al., 2008; Scharpf

et al., 2008), or a combination. For instance, Rigaill et al. employs an iterative approach

that involves segmentation (Hupe et al., 2004) and regression. A critical choice governing

the suitability of a smoothing algorithm is whether cell contamination is thought to have oc-

curred. Specifically, a mixture of cell populations can give rise to non-integer copy numbers.

While hidden Markov models (HMMs) can jointly model the genotype and copy number in-

formation to identify copy-neutral regions of homozygosity in addition to copy number gains

and losses (Colella et al., 2007; Wang et al., 2007; Scharpf et al., 2008), HMMs typically

assume integer copy number states. Continuous state HMMs or HMMs that estimate the

fraction of contaminated cells (Lamy et al., 2007) may represent viable alternatives. As seg-

mentation algorithms can theoretically detect any non-integer change in the copy number,

nonparametric methods are often preferable when there is evidence of two or more cell pop-

ulations. Finally, third tier methods assess the contribution of chromosomal alterations to

phenotypes in studies involving many individuals (Purcell et al., 2007; Barnes et al., 2008).

Considerations for locus-level copy number estimation. A common approach for

locus-level estimation of copy number is to estimate the ratio or log ratio of the intensities

at each loci relative to a reference (Bignell et al., 2004; Golden Helix, 2009; Bengtsson et al.,

2008). Disadvantages of this approach include (i) the explicit requirement of a reference set,

(ii) a deviation from a ratio of one can represent an alteration in either the reference or the

test sample making it difficult to hypothesize about a dosage effect on phenotype, and (iii)

information on the allelic copy number at polymorphic loci is often ignored. Our preference
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is a quantitation of the allelic copy number dosage in both normal and disease samples.

Two critical features when estimating copy number at each locus are probe- and batch-

effects. Probe effects represent variation in the observed fluorescence intensities that arise as

a result of characteristics of the probe, namely the sequence. Probe effects are present in vir-

tually all hybridization-based platforms, including gene expression microarrays. Model-based

approaches for normalizing gene expression data have been useful for reducing nonbiological

variation in the raw intensities that arise as a results of differences at the sequence level,

such as GC content (Wu et al., 2004). In contrast to probe effects, batch effects comprise

systematic differences in the intensities across samples.

General framework for locus-level models. A general framework for modeling the

normalized fluorescence intensities yin gene expression arrays has been recently described

(Wu and Irizarry, 2007). Specifically, Wu and Irizarry decompose the observed probe-level

fluorescence intensities into optical background, non-specific binding, and specific binding,

Observedgij = Backgroundgij +Nonspecificgij + Specificgij , (9)

for gene g = 1, . . . , G, probe i = 1, . . . , Ig, and array j = 1, . . . J . In the context of

hybridization-based technologies, each component has an error term that is approximately

log-Normal. Probe and batch-effects have been observed in genotyping platforms (LaFram-

boise et al., 2006; Rabbee and Speed, 2006; Beroukhim et al., 2007; Carvalho et al., 2007;

Wang et al., 2008; Korn et al., 2008). Existing models for copy number estimation that fit

into the general framework proposed by Wu and Irizarry include the probe-level (feature-

level) model proposed by LaFramboise et al. (2006) and a locus-level model proposed by

Wang et al. (2008), whereby statistical summaries of the feature-level intensities are treated

as the observed data.
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A.1 Feature- and locus-level models

Feature-level models. LaFramboise et al. (2006) developed a probe-level allele-specific

quantitation (PLASQ) algorithm that models the feature-level intensities as a linear function

of copy number on the log scale. The quantile-normalized log intensity for each feature on

the array is decomposed as background, specific hybridization, nonspecific hybridization, and

error. An iteratively reweighted least squares approach is used to estimate the parameters

in a set of normal samples where the number of copies of allele A and allele B are treated

as known covariates. In a set of test samples, the parameters for background, specific-

hybridization, and cross-hybridization are now assumed to be known and the allele-specific

copy number is estimated via iteratively reweighted least squares.

While fundamentally sound, there are several practical drawbacks to this approach. First,

a set of normal controls is not always available. Because of genome-wide batch effects (Sec-

tions 2 and 5), the use of historical controls as part of any copy number estimation algorithm

has limited value. A second drawback is computational. An iterative estimation procedure

embedded within a feature-level model for the observed intensities is computationally in-

tensive. Notably, PLASQ was first developed for the Affymetrix 100k arrays. The more

recent Affymetrix 5.0 and 6.0 platforms have an order of magnitude more probes. Finally,

the advantage of a feature-level model for platforms that contain sets of identical probes

for each locus, such as the Affymetrix 6.0, is less clear. An approach that first summarizes

the normalized probe-level intensities to the level of the locus has clear practical advantages

that may outweigh the benefits of modeling the probe-level variation. A more thorough

comparison of these two approaches has not been explored.

Locus-level models. Locus-level models for the summarized intensities have been used

by several algorithms (Huang et al., 2006; Wang et al., 2008). Algorithms that provide

allele-specific estimates of copy number generally use a variation of the following approach.

First, biallelic genotypes are called on a set of samples from a normal training set. The allele-
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specific copy number is assumed to be known from the biallelic genotype calls on this training

set. In particular, the number of copies of the A and B alleles, denoted as (cA, cB), is (2, 0) for

genotypes AA, (1, 1) for genotypes AB, and (0, 2) for genotypes BB. Secondly, a procedure is

used to estimate parameters that roughly correspond to the level of background, nonspecific

hybridization, and specific hybridization. Several different approaches for estimating these

parameters have been proposed, including recent approaches that take into account the

correlation of the summarized intensities for the A and B alleles (Wang et al., 2008). For

instance, Wang et al. compute the within-genotype average for each allele at each locus,

and then regress the within-genotype averages on the allele-specific copy obtained from the

biallelic genotypes. The coefficients from this regression can be used to predict the locations

for other copy numbers. In addition, Wang et al. describe an approach for obtaining the

posterior mean copy number that can be used for classification of discrete copy number

classes.

While more amenable computationally for recent arrays, existing locus-level models for

copy number estimation do not accommodate batch effects that persist after preprocessing.

One approach is to fit the software separately to each plate. For instance, this is an approach

advocated by Birdsuite (Korn et al., 2008; McCarroll et al., 2008). In our experience, batch

effects persist in the smoothed estimates returned by the Birdseye HMM and the Canary

algorithms, two components of their suite of software (e.g., supplementary Figure 3). Fur-

thermore, Birdsuite does not currently provide locus-level estimates of copy number whereby

one can more effectively assess cell contamination and batch effects. Similarly, the software

proposed by Wang et al. precomputes parameter estimates from training data (Wang et al.,

2008).

In summary, we believe locus-level models are attractive with fewer computational draw-

backs than feature-level models. Improvements are needed to account for batch effects that

persist after preprocessing, as well the potential to improve locus-level estimates of the uncer-

tainty by borrowing strength from the millions of other loci interrogated by these platforms.
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A.2 Batch effects

Batch effects can occur as a result of differences between laboratories in the handling and

preparation of biological samples, as well as changes in reagents and experimental conditions

over time within a laboratory. Batch effects have been previously observed and described for

genotyping methods. Genotype calls for most algorithms are concordant for over 99.5% of the

measured SNPs in the Affymetrix SNP arrays when the performance is assessed on individ-

uals in the HapMap study (Consortium, 2003). Nevertheless, important differences emerge

as a result of batch effects. To illustrate, supplementary Figure 1 compares two approaches

for genotyping Affymetrix 6.0 data where the same HapMap samples were processed at two

different labs denoted as Lab A and Lab B. The plotting symbols denote the true genotypes

assigned by HapMap and the ellipses denote the prediction regions for the genotype calls in

the two labs. The default software for genotyping the Affymetrix 6.0 data, Birdseed, uses

plots of the A versus B allele intensities to make genotype calls (left panel). For Lab A,

Birdseed makes zero mistakes, but for Lab B Birdseed makes 41 mistakes. The reason for

the number of mistakes is the large shift in the A and B intensities between labs. The right

panel displays a plot of the log-ratio versus the total intensity that is used for genotyping by

the Corrected Robust Linear Model with Maximum-likelihood based distances (CRLMM)

algorithm (Carvalho et al., 2007). Because the log-ratio is less susceptible to batch effects,

the crlmm algorithm makes fewer mistakes in Lab B (right panel). Hence, while genotyping

can be made robust to batch effect, estimates of copy number that are based on the signal

abundance are much more susceptible to batch effects.

B Technical considerations for Table 1

Supplementary Table 1 (identical to Table 1 in the main text) offers a comparison of two

implementations of a hidden Markov model (HMM) on the Chakravarti dataset in which

26 of the 96 samples had chromosome 21 trisomy. As the true copy number variant re-

gion is the entire chromosome 21, there is no penalty for over-smoothing that one would
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expect for the detection of smaller micro-deletions and amplifications. The smoothness for

the two HMMs considered in this analysis is a function of the transition probabilities and

the emission probabilities. For the latter, Birdseye and VanillaICE assume a Gaussian dis-

tribution of the normalized intensities. The smoothness of the state path is influenced by

the locus-level uncertainty estimates, with larger standard errors tending to promote a more

smooth state sequence. While we have not formally compared the locus-level estimates of

uncertainty from Birdsuite to the variance estimates in crlmm, we expect the estimates to

differ as Birdsuite does not quantile normalize to a target reference distribution and crlmm

quantile normalizes to a reference distribution obtained from HapMap. Furthermore, crlmm

shrinks the locus-specific variance estimates to the population average estimated from all

loci. With respect to transition probabilities, both crlmm and Birdseye model the probabil-

ity of transitioning between two states as a function of the genomic distance, e−d/c, where

d is the distance between adjacent markers and c is a constant. Larger values of c control

the smoothness and recommended values are based on the expected smoothness for a spe-

cific platform. The distance between adjacent markers in the two implementations depends

on which markers were used in the analysis. For the VanillaICE HMM, we performed an

analysis with polymorphic markers only and an analysis with the full set of markers. For

the Birdseye HMM, the distance depends on whether any of the markers were removed as

outliers; Canary calls were used in place of the Birdseye predictions in regions of common

copy number polymorphisms (McCarroll et al., 2008). Using the default values of c in both

implementations (see software versions in Section I of the supplementary material.), the

probability of transitioning between any two states was multiplied by 0.005, 0.5, or 0.0025

as discussed in the supplementary material to Korn et al. (2008).

C Bipolar dataset: comparison with Birdsuite

We also fit the Birdsuite software to each plate in the bipolar controls. The Birdsuite

software uses separate algorithms for calling copy number: a HMM for discovery of de-

novo copy number variant (Birdseye) and one for calling copy number in regions that are
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Copy number 2 ĈN = 1 ĈN = 2 ĈN = 3

Birdseye / Canary SNPs + NPs 0.0042 0.9914 0.0043

crlmm & VanillaICE SNPs 0.0003 0.9957 0.0041

crlmm & VanillaICE SNPS + NPs 0.0004 0.9962 0.0034

Copy number 3 ĈN = 1 ĈN = 2 ĈN = 3

Birdseye / Canary SNPs + NPs 0.0006 0.0817 0.9177

crlmm & VanillaICE SNPs 0.0000 0.0454 0.9546

crlmm & VanillaICE SNPs + NPs 0.0000 0.1069 0.8931

Table 1: The proportion of integer copy number estimates that agree with the true copy
number for chromosome 21 in the trisomy dataset were computed for two HMM implemen-
tations. The true copy number for loci on chromosome 21 is assumed to be 3 for the 26
trisomy samples and 2 for the 70 normal samples. The results from Birdsuite are a merge of
the Birdseye HMM and Canary calls. The VanillaICE HMM was fit to the set of polymorphic
markers using the adjusted prediction regions described in Section 4.4 (row 2) and has fewer
false negatives that Birdsuite for 3-copy loci. The addition of the set of nonpolymorphic
markers to the analysis (row 3) results in more false negatives among the trisomy subjects
relative to the polymorphic set alone (0.955 versus 0.893). At 2-copy loci (the normal sub-
jects), the specificity was 0.991 for Birdsuite and 0.996 for VanillaICE in both the full (SNPs
+ NPs) and the SNP-only analysis (data not shown).
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believed to contain common variants (Canary). By contrast, the current implementation of

our algorithm does not use external data and assumes that the typical copy number across

samples within a batch is two. A consequence is that Canary can call an amplification or

deletion in nearly all of the samples within a batch in a region that is believed to contain

a common variant (see supplementary Figure 3), whereas our algorithm is unlikely to do

so. An interesting feature of the Birdseye segmentation is that we observe strong batch

effects in regions that are thought to contain common copy number variants. These regions

contain groups of probes that tend to have correlated intensity profiles across samples and,

as a result, smoothing via a HMM does not reduce the batch effect. While the Canary

algorithm can be helpful for reducing the batch effect in such regions, batch effects often

persist (supplementary Figure 3b).

D Simulation study for common copy number alterations

To assess the extent to which our estimation procedure is robust to common variants, we

simulated 26 artificial datasets from the Chakravarti study. The simulated datasets differ in

the ratio of trisomy to normal controls, ranging from 1.9% (1/52) to 50% (26/52) trisomies.

Supplementary Figure 4 in Section H plots the average log intensities versus the log ratio for

5 randomly selected SNPs for a dataset with 50% trisomy cases (row 1) and a dataset with

1.9% trisomy cases (row 2). The triangle plotting symbol denotes a subject with 3 copies

of chromosome 21. The shading of the plotting symbols is proportional to the posterior

probability of altered copy number. We suggest an additional iteration of crlmm that updates

the within-genotype centers via a trimmed median, excluding subjects with high posterior

probabilities of altered copy number. Supplementary Figure 5 plots the median copy number

across 12,579 polymorphic loci for the trisomy subjects in each of the simulated datasets after

estimating within-genotype medians from (i) all subjects (solid blue), (ii) only the normal

controls (black), and (iii) samples with high posterior probabilities of normal copy number

(dashed blue). When approximately 30% of the subjects have chromosome 21 trisomy, our
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model begins to have more difficulty in discriminating subjects that have altered copy from

normal subjects, as evidenced by the vertical separation between the dashed blue and black

lines. The ability to discriminate copy number estimates in the trisomy subjects from the

noise level for normal copy number (orange line) diminishes with increasing proportions of

subjects with altered copy number. This simulation suggests that improved classification

of subjects with altered copy number will also improve the accuracy of the copy number

estimates. Such classification procedures would likely require more iterations than the two-

step approach currently implemented in crlmm, and could be evaluated using the simulation

described here.

For the study of complex germline diseases, the challenge is typically to identify small

copy number variants (e.g., 10kb-100kb) that may elevate risk to complex diseases, but

are generally not deterministic for the disease and are present in a subset of the diseased

population and possibly a smaller subset of those without disease. Large variants, those that

are greater than 1Mb, are rare and can be identified with any reasonable smoothing. While we

do not generally know a priori the prevalence or the genomic location of small copy number

variants that elevate disease risk in any given population, the simulation demonstrates that

we can nevertheless derive estimates of absolute copy number with small bias even when

the prevalance of the variant is high (approximately 30 percent). Note that this approach is

completely unsupervised with respect to disease status and does not require an assumption

that those without disease have normal copy number.

For somatic cell diseases such as cancer, the frequency and size distribution of copy num-

ber variants is substantially different than that of germline diseases. A supervised approach

that uses only the normal controls to derive the batch-specific prediction regions for inte-

ger copy number may be preferable to the iterative bias adjustment. As demonstrated in

the simulation, the bias remains relatively flat even when 50 percent of the samples have

altered copy number (the black line in supplementary Figure 5). The trade-off for using

only the normal samples is that fewer observations are available to robustly estimate model
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parameters and the number of SNPs for which imputation of unobserved genotype medians

is required increases.

E The crlmm R package

The crlmm R package is available for download from Bioconductor (http://www.bioconductor.

org/).

Data considerations. The version of the R package crlmm described here (see Section

I) does not rely on reference samples to estimate model parameters. As a consequence,

one must have a moderate number of samples in a given batch to use this algorithm. As

few as 10 samples in a batch are possible, but the resolution to detect small changes in

copy number by downstream algorithms that smooth the copy number estimates will be less

for datasets with fewer samples. In particular, outliers will be more difficult to identify in

smaller datasets and can be more influential on both the prediction regions and the locus-

level estimates. Furthermore, the simulation of common copy number alterations described

in Section D suggests that the model begins to have difficulty discriminating amplifications

from the noise level of normal copy number when approximately 27% of the subjects have

altered copy number (supplementary Figure 5). In small datasets, the suggested approach

of using posterior probabilities to compute more robust estimates of the within-genotype

median intensities may not be feasible. Note that we advise against attempts to increase

the size of the dataset by post-hoc addition of normal controls from a reference dataset

such as HapMap. The addition of reference samples to the analysis without appropriately

acknowledging that these samples were processed in a different batch can lead to incorrect

inference in both the test and reference subjects. Statistical approaches that cluster similar

batches or borrow-strength across batch are a future direction of this research.

The estimation procedure described in this paper was developed in the context of germline

diseases (e.g., bipolar disease) and apparently normal subjects from HapMap. While crlmm
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provides noninteger estimates of copy number, the performance of this approach on datasets

in which the DNA has been isolated from potentially a mixture of cell populations needs

to be evaluated. Additionally, chromosomal aberrations are often more extreme in diseases

such as cancer, involving entire chromosomes or chromosome arms. The inclusion of normal

controls in each batch will be particularly important in cancer in order to establish a baseline

copy number against which shifts from normal copy number can be measured. In the event

that the phenotype of interest is completely confounded by batch, additional experimentation

will be required to distinguish between batch- and biologically-driven variation in the copy

number estimates.

Priors. The priors used to generate the results reported in this manuscript are the defaults

in the version of crlmm indicated in Section I. In particular, we used 50 degrees of freedom for

priors involving the background and signal variances to provide moderate-heavy smoothing

in batches that typically have 90 - 96 samples. For applications involving more variability in

the batch size, a data-driven approach to estimate the degrees of freedom may be beneficial

(e.g. Smyth (2004)). Having used the same degrees of freedom to smooth the elements

of the covariance matrix, our prior is conceptually similar to the inverse Wishart that has

a single parameter for the degrees of freedom. However, our preference during software

development is to keep the more heavily parameterized implementation that allows more

flexible exploration of shrinkage properties with respect to the prediction regions that these

matrices yield.

F Suggested Bioconductor software downstream of crlmm

The estimates obtained from the R package crlmm serve as a starting point for downstream

analyses that incorporate information from neighboring probes to identify regions with al-

tered copy number. Two common downstream algorithms are segmentation approaches,

such as circular binary segmentation (Olshen et al., 2004), that detect shifts in the mean
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copy number and HMMs that typically assume an integer copy number state. Both of these

approaches rely on estimates of copy number and can incorporate inverse variance estimates

as weights. The R package VanillaICE provides an implementation of a HMM(Scharpf et al.,

2008) and future versions will provide workflows for using crlmm results in conjunction with

both circular binary segmentation (using DNAcopy) and HMMs.

G Alternative methods for pre-processing

Alternative approaches to crlmm for preprocessing the raw intensities are available and could

be explored in conjunction with the procedure described in this paper for removing batch

effects and estimating copy number. For instance, Bengtsson et al. describes a preprocess-

ing methodology in which the raw A and B intensities are adjusted for allelic cross-talk

(Bengtsson et al., 2008). Quantile-normalization is then prescribed as an optional step de-

pending on whether additional normalization is deemed necessary by the analyst. Software

implementing their approach is available in the R package aroma.affymetrix. By contrast,

crlmm estimates optical and nonspecific hybridization following quantile-normalization and

summarization. As aroma.affymetrix does not adjust for batch effects, we compare the

preprocessing approaches on downstream estimates of copy number using the Chakravarti

dataset in which samples were processed in a single batch. Supplementary Figure 6 plots log

ratios of total copy number obtained from aroma.affymetrix against the log ratios of total

copy number obtained from crlmm. The log-transformed ratios from the two approaches are

well correlated in the normal and trisomy samples with Pearson correlation coefficients of

0.861 and 0.854, respectively.
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Figure 1: A set of identical samples was genotyped by two different labs. Left: A scatter
plot of the A versus B allele intensities for a single SNP with plotting symbols denoting the
consensus HapMap genotype. The default genotyping algorithm for this platform provided
by Affymetrix, Birdseed, makes 41 mistakes in Lab B. Right: The crlmm algorithm uses the
log ratio of the A and B allele intensities to call genotypes and makes only 6 mistakes in
Lab B. As the lab-effect is mostly in the direction of the total intensity (x-axis, right panel),
copy number estimates are far more susceptible to batch effects than genotype calls.
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Figure 2: Boxplots of the normalized intensities stratified by the biallelic genotype for
SNP A-1969022 in the trisomy dataset. The slope and intercept parameters for allele-specific
copy number (νA, νB, φA, and φB) are estimated via weighted least squares. Weights are
calculated as the inverse within-genotype median absolute deviation (MAD) of the normal-
ized intensities. As described in Section 4, the within-genotype medians for SNPs with
unobserved genotypes are imputed via regression from a random sample of SNPs for which
complete data was observed (AA, AB, and BB genotypes observed). The assumption that
the relationship between allelic copy number and the median intensity is linear does not
hold for all SNPs. Furthermore, the relationship becomes increasingly nonlinear for higher
intensity values. We see some evidence of this nonlinearity for SNP A-1969022. In partic-
ular, the regression line in panels (a) and (b) overestimates the observed median value for
genotypes AA and BB, respectively. Appropriate modeling of the non-linear relationship at
higher ranges of the intensity scale is a future direction of this work.
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(c) Vanilla HMM fit to crlmm copy number estimates.

Figure 3: We observed plate-effects in both the Birdseye HMM predictions (a) and the
merged canary predictions (b). The chi-square statistic in the 28.4 Mb region is genome-
wide significant for both the Birdseye and Canary algorithms (χ2

24
> 250, p-value < 1.0−8).

(c) An image of HMM predictions from the CRLLM copy number estimates using the default
settings in the R package VanillaICE (χ2

24
= 55.84, p-value = 0.20).
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Figure 4: Five SNPs from chromosome 21 were selected at random from a dataset with
a high proportion of trisomy 21 subjects (row 1: 50% (26/52)) and a dataset with a low
proportion of trisomy 21 subjects (row 2: 1.9% (1/52)). Plotted in each panel is the average
of the log A and log B intensities versus the log ratio. Trisomy subjects are plotted with
triangles and normal controls are plotted with circles. The shading of the plotting symbols
is proportional to the posterior probability of altered copy number. The proportion of black
plotting symbols may be useful for evaluating departures from the assumption that the
typical copy number is two.
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Figure 5: We assessed the impact of our assumption that the median copy number in a batch
is 2 using the Chakravarti dataset. Plotted on the x-axis is the percentage of subjects with
chromosome 21 trisomy. The total number of samples (normal and trisomy) included in the
analysis is 52 for each of the 26 artificial datasets. For each dataset, we report the median
copy number across the 12,579 polymorphic loci in the trisomy subjects. Three methods for
deriving the copy number prediction regions were considered. In one approach, we estimated
copy number at each locus by fitting the linear model using all of the subjects to estimate the
within-genome location and scale statistics (solid blue). The second approach is iterative,
whereby the initial parameter estimates are used to compute posterior probabilities of normal
copy number (dashed blue). An additional iteration is used to refit the linear model after
trimming samples with high posterior probabilities from the within-genotype location/scale
statistics. A third approach (solid black line) provides a baseline for the experiment and is
the median copy number estimated in a model that uses only the normal subjects to estimate
the within-genotype location and scale.
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Figure 6: Log ratios of total copy number from a normal control (left) and a subject
with chromosome 21 trisomy (right). While aroma.affymetrix and crlmm use alternative
methodologies for preprocessing, the downstream estimates of locus-specific copy number are
qualitatively similar for datasets without batch effects. The Pearson correlation coefficient
for the normal and trisomy samples are 0.861 and 0.854, respectively.
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I Computing environment and R package versions

• R version 2.11.0 Under development (unstable) (2009-11-22 r50541),

x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US.iso885915, LC_NUMERIC=C, LC_TIME=en_US.iso885915,

LC_COLLATE=en_US.iso885915, LC_MONETARY=C, LC_MESSAGES=en_US.iso885915,

LC_PAPER=en_US.iso885915, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,

LC_MEASUREMENT=en_US.iso885915, LC_IDENTIFICATION=C

• Base packages: base, datasets, graphics, grDevices, methods, stats, utils

• Other packages: affxparser 1.19.0, aroma.affymetrix 1.3.0, aroma.apd 0.1.7,

aroma.core 1.3.1, aroma.light 1.15.1, Biobase 2.7.3, crlmm 1.5.20,

CrlmmCopyNumber 1.0.4, digest 0.4.2, ellipse 0.3-5, genefilter 1.29.3, IRanges 1.5.21,

lattice 0.17-26, matrixStats 0.1.8, oligoClasses 1.9.24, R.cache 0.2.0,

RColorBrewer 1.0-2, R.filesets 0.6.5, R.huge 0.2.0, R.methodsS3 1.0.3, R.oo 1.6.5,

R.rsp 0.3.6, R.utils 1.2.4, VanillaICE 1.9.1

• Loaded via a namespace (and not attached): affyio 1.15.1, annotate 1.25.0,

AnnotationDbi 1.9.2, Biostrings 2.15.11, DBI 0.2-4, grid 2.11.0, mvtnorm 0.9-8,

preprocessCore 1.9.0, RSQLite 0.7-3, SNPchip 1.11.1, splines 2.11.0, survival 2.35-7,

tools 2.11.0, xtable 1.5-6

• Birdsuite 1.5.3
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