SUPPLEMENTAL FILE 5 MATHEMATICAL NOTATION

In this paper, we consider real variables. We use \mathbb{R} to denote the set of real numbers. Scalars are denoted by lower case letters, e.g., s, t. Vectors in \mathbb{R}^n are denoted by either bold letters and numbers, or lower-case Greek letters, e.g., 1, x, π , where 1 denotes a vector all of whose components are equal to one. \mathbf{x}^{t} denotes the transpose of the vector \mathbf{x} . The notation x_i refers to the *i*th component of the vector \mathbf{x} . Matrices in $\mathbb{R}^{m \times n}$ are denoted by either capital letters or upper-case Greek letters, e.g., C, P, Λ . I stands for the identity matrix. If $P \in \mathbb{R}^{m \times n}$, then vec(P) transforms P into an nm-dimensional vector by stacking the columns. The equality and inequality symbols, $=, \leq$ and \geq denote componentwise equality and inequality, respectively, for arrays of the same size. For example, if C is an $m \times n$ matrix, then $C \ge 0$ denotes the mn inequalities: each element of the matrix C is nonnegative. The curled inequality symbols, $\leq, \prec, \succeq, \succ$, denote generalized matrix inequalities associated with the positive semi-definite cone. That is, if $A, B \in \mathbb{R}^{n \times n}$, then $A \succeq B$ (resp., $A \succeq B$) means that A - B is positive-semi-definite (resp., positive definite); and $A \prec B$ (resp., $A \prec B$) means that A - B is negative-semi-definite (resp., negative definite). We recall that a matrix $A \in \mathbb{R}^{n \times n}$ is called positive-semidefinite (resp., positive definite) if $\mathbf{x}^t A \mathbf{x} \ge 0$ (resp., $\mathbf{x}^t A \mathbf{x} > 0$) for all $\mathbf{x} \in \mathbb{R}^n$ (resp., $\mathbf{x} \neq 0$). If -A is positive semi-definite (resp., positive definite), then A is called negative semi-definite (resp., negative definite).

PROOF OF PROPOSITION 1.

$$\pi_d^t = \pi_0^t (I - CZ_0)^{-1}$$

$$\iff \pi_d^t (I - CZ_0) - \pi_0^t = 0$$

$$\iff [\pi_d^t (I - CZ_0) - \pi_0^t] Z_0^{-1} = 0 \qquad (27)$$

$$\iff \pi_d^t (I - P_0 + P_0^*) - \pi_d^t C - \pi_0^t (I - P_0 + P_0^*) = 0$$

where Eq. (27) follows from the fact that Z_0 is invertible, and Eq. (28) follows from the properties: $\pi_d^t P_0^* = \pi_d^t \mathbf{1} \pi_0^t = \pi_0^t$; $\pi_0^t P_0 = \pi_0^t$; and $\pi_0^t P_0^* = \pi_0^t$.

PROOF OF PROPOSITION 2. It is straightforward to check that the perturbation matrix $C = (\mathbf{1}\pi_d^t - P_0) \in \mathcal{D}$. That is we have $(i) \ \pi_d^t = \pi_d^t(P_0 + C); (ii) \ C\mathbf{1} = \mathbf{0}; (iii) \ P_0 + C \ge 0$. Moreover, the perturbed matrix $P_0 + C = \mathbf{1}\pi_d^t$ is a stochastic matrix with rank one. Therefore, it has a simple eigenvalue 1 corresponding to eigenvector **1**, and eigenvalue 0 with multiplicity n - 1. Hence, its SLEM = 0.

PROOF OF PROPOSITION 3. For any vector \mathbf{f} , we introduce its unique direct sum decomposition $\mathbf{f} = \alpha_f \mathbf{1} + \mathbf{f}^{\perp}$, where $\alpha_f = \pi_d^t \mathbf{f}$ and $\mathbf{f}^{\perp} \perp \pi_d$. It is easy to check that \mathbf{f}^{\perp} is proportional to $\mathbf{1}$ if and only if $\mathbf{f}^{\perp} = \mathbf{0}$.

Let $\psi = \alpha_{\psi} \mathbf{1} + \psi^{\perp}$ be a non-trivial eigenvector (i.e., $\psi^{\perp} \neq \mathbf{0}$) of P_E^* with eigenvalue μ . We will look for a vector ϕ , in the form $\phi = \psi + c\mathbf{1}$, that satisfies $P(s)\phi = (1 - s)\mu\phi$. We have

$$P(s)\phi = P(s)\psi + c\mathbf{1} \tag{29}$$

$$= (1-s)\mu\psi + s\alpha_{\psi}\mathbf{1} + c\mathbf{1} \tag{30}$$

$$= (1-s)\mu\phi + (s\alpha_{\psi} + c - (1-s)\mu c)\mathbf{1}, \quad (31)$$

where Eq. (29) follows from the fact that P(s) is stochastic, i.e., $P(s)\mathbf{1} = \mathbf{1}$, and Eq. (30) is obtained by replacing P(s) by its expression in Eq. (15). Therefore, if we chose $c = \frac{s\alpha_{\psi}}{(1-s)\mu-1}$, we obtain $P(s)\phi = (1-s)\mu\phi$.

Let now $\phi = \alpha_{\phi} \mathbf{1} + \phi^{\perp}$ be a non trivial eigenvector of P(s) with eigenvalue λ . In particular, $\phi^{\perp} \neq \mathbf{0}$. We first show that $\lambda \neq (1-s)$. From Eq. (15), we have

$$P(s)\phi = (1-s)P_E^*\phi + s\alpha_\phi \mathbf{1}$$
(32)

$$= (1-s)P_E^*\phi^{\perp} + (1-s)\alpha_{\phi}\mathbf{1} + s\alpha_{\phi}\mathbf{1}.$$
 (33)

On the other hand, if $\lambda = 1 - s$, then we would have

$$P(s)\phi = (1-s)\phi \tag{34}$$

$$= (1-s)\alpha_{\phi}\mathbf{1} + (1-s)\phi^{\perp}.$$
 (35)

By equating Eqs. (33) and (35), we obtain

$$P_E^* \phi^\perp = \phi^\perp - \frac{s\alpha_\phi}{1-s} \mathbf{1}.$$
 (36)

It follows that, for any positive integer j we have

$$P_E^{*j}\phi^{\perp} = P_E^{*(j-1)}\phi^{\perp} - \frac{s\alpha_{\phi}}{1-s}\mathbf{1}.$$
(37)

Taking the limit as $j \longrightarrow \infty$, and because P_E^* is ergodic, we get

$$P_E^{*\infty}\phi^{\perp} = P_E^{*\infty}\phi^{\perp} - \frac{s\alpha_{\phi}}{1-s}\mathbf{1}.$$
(38)

Thus, $s\alpha_{\phi} = 0$, which implies, from Eq. (36), that $P_E^*\phi^{\perp} = \phi^{\perp}$. Hence, ϕ^{\perp} is an eigenvector of P_E^* corresponding to eigenvalue 1. Therefore, ϕ^{\perp} must be proportional to 1. We recall that ϕ^{\perp} is proportional to 1 if and only if $\phi^{\perp} = 0$. This results in a contradiction because of the fact that $\phi^{\perp} \neq 0$. Therefore, we conclude that $\lambda \neq 1 - s$.

Now, we consider $\lambda \neq 1 - s$, we will find ψ in the form $\psi = \phi + c\mathbf{1}$, that satisfies $P_E^*\psi = \frac{\lambda}{1-s}\psi$. We have

$$P_E^*\psi = P_E^*\phi + c\mathbf{1} \tag{39}$$

$$= \frac{\lambda}{1-s}\phi - \frac{s\alpha_{\phi}}{1-s}\mathbf{1} + c\mathbf{1}$$
(40)

$$= \frac{\lambda}{1-s}\psi + \left(-\frac{\lambda}{1-s}c - \frac{s\alpha_{\phi}}{1-s} + c\right)\mathbf{1}, \quad (41)$$

where Eq. (39) follows from the stochasticity of P_E^* and Eq. (40) is obtained by replacing P_E^* by its expression in Eq. (15) and using the fact that ϕ is an eigenvector of P(s) with eigenvalue λ . Finally, Eq. (41) follows by replacing $\phi = \psi - c\mathbf{1}$. Therefore, if we chose $c = \frac{s\alpha_{\phi}}{1-s-\lambda}$, we obtain $P_E^*\psi = \frac{\lambda}{1-s}\psi$.

PROOF OF PROPOSITION 4. $||C(s)||_2$ is a convex function in s, which reaches its minimum at s = 0. Therefore, it must be increasing for $s \ge 0$ (Boyd and Vandenberghe, 2003).

We also provide an alternative proof as follows: Let $A = P_E^* - P_0$ and $B = \mathbf{1}\pi_d^t - P_E^*$. Then, from Eq. (16),

$$C(s) = A + Bs. \tag{42}$$

By construction, we have for all $s \ge 0$,

$$\|C(s)\|_{2} \ge \|P_{E}^{*} - P_{0}\|_{2} = \|C(0)\|_{2} = \|A\|_{2} \iff (43)$$

$$\max_{\mathbf{x}:\|\mathbf{x}\|=1} < (A + sB)^{t}(A + sB)\mathbf{x}, \mathbf{x} \ge \max_{\mathbf{x}:\|\mathbf{x}\|=1} < A^{t}A\mathbf{x}, \mathbf{x} \ge 0$$

where the right hand side equivalence follows from the definition of the spectral norm given in Eq. (8). Let \mathbf{x}_s be such that $\|\mathbf{x}_s\| = 1$ and

$$\max_{\mathbf{x}:\|\mathbf{x}\|=1} < (A+sB)^t (A+sB)\mathbf{x}, \mathbf{x} > = < (A+sB)^t (A+sB)\mathbf{x}_s, \mathbf{x}_s > .$$
(44)

Then,

$$< (A+sB)^t (A+sB)\mathbf{x}_s, \mathbf{x}_s > \geq < A^t A \mathbf{x}_s, \mathbf{x}_s >,$$
 (45)

which means

$$< (A^{t}B + B^{t}A + sB^{t}B)\mathbf{x}_{s}, \mathbf{x}_{s} \ge 0.$$
(46)

Let $\tilde{s} \geq s$. We need to show that

$$\max_{\mathbf{x}:\|\mathbf{x}\|=1} < (A + \tilde{s}B)^t (A + \tilde{s}B)\mathbf{x}, \mathbf{x} > \ge < (A + sB)^t (A + sB)\mathbf{x}_s, \mathbf{x}_s >$$

$$\tag{47}$$

It is sufficient to show that

$$< (A + \tilde{s}B)^{t}(A + \tilde{s}B)\mathbf{x}_{s}, \mathbf{x}_{s} > \ge < (A + sB)^{t}(A + sB)\mathbf{x}_{s}, \mathbf{x}_{s} > .$$
(48)

But,

$$< (A + \tilde{s}B)^{\iota}(A + \tilde{s}B)\mathbf{x}_{s}, \mathbf{x}_{s} > - < (A + sB)^{\iota}(A + sB)\mathbf{x}_{s}, \mathbf{x}_{s} >$$
$$= (\tilde{s} - s) < (A^{t}B + B^{t}A + sB^{t}B + \tilde{s}B^{t}B)\mathbf{x}_{s}, \mathbf{x}_{s} >,$$

which is positive because of Eq. (46).

PROOF OF PROPOSITION 5. For $0 \leq s \leq 1$, we have the following three properties

$$\pi_d(s)^t Q(s) = \pi_d(s)^t \tag{49}$$

$$\pi_d(s)\mathbf{1} = 1\tag{50}$$

$$\pi_d(s) \ge 0. \tag{51}$$

Because Q(s) is ergodic, we know that such $\pi_d(s)$ exists and is unique. Let

$$\phi = \pi_d(s) - ((1-s)\pi_0 + s\pi_d). \tag{52}$$

Then, we have

$$\phi^t Q(s) = \pi_d(s)^t - (1-s)^2 \pi_0^t -$$
(53)

$$s(1-s)\pi_d^t P_0 - s(1-s)\pi_d^t - s^2 \pi_d^t$$

= $\phi^t + s(1-s)(\pi_0^t - \pi_d^t P_0)$ (54)

$$= \phi' + s(1-s)(\pi_0 - \pi_d P_0) \tag{54}$$

$$= \phi^{\iota} + s(1-s)(\pi_0^{\iota} - \pi_d^{\iota})P_0, \qquad (55)$$

where Eq. (55) follows from the fact that $\pi_0^t P_0 = \pi_0^t$. Next, we notice that $\phi^t \mathbf{1} = 0$. Thus, from Eq. (20), we obtain

$$\phi^t Q(s) = (1 - s)\phi^t P_0.$$
(56)

By equating Eqs. (55) and (56), we obtain

$$\phi^t [I - (1 - s)P_0] = s(1 - s)(\pi_d^t - \pi_0^t)P_0.$$
(57)

Observe that for s > 0, 1 is not an eigenvalue of $(1 - s)P_0$. Hence, $I - (1 - s)P_0$ is invertible, and we have

$$\phi = s(1-s)[I - (1-s)P_0^t]^{-1}P_0^t(\pi_d - \pi_0).$$
(58)

From Eq. (52), we have

$$\pi_d(s) - \pi_d = \phi + (1 - s)(\pi_0 - \pi_d).$$
(59)

Replacing ϕ by its expression in Eq. (58), Eq. (59) can be written as

$$\pi_d(s) - \pi_d = (1-s) \left(I - s(I - (1-s)P_0^t)^{-1} P_0^t \right) (\pi_0 - \pi_d).$$
(60)

That is, by factoring by $(I - (1 - s)P_0^t)^{-1}$,

$$\pi_d(s) - \pi_d = (1-s)(I - (1-s)P_0^t)^{-1}(I - P_0^t)(\pi_0 - \pi_d).$$
(61)

If P_0 is symmetric, then by the spectral theorem we have $||P_0||_2 = \lambda_{\max}(P_0) = 1$, and by the triangle inequality,

$$|(I - (1 - s)P_0^t)^{-1}(I - P_0^t)||_2 \le \frac{2}{2 - s}$$

$$|\pi_d(s) - \pi_d|| \le \frac{2(1-s)}{2-s} ||\pi_0 - \pi_d||.$$

In the case of a non-symmetric matrix P_0 , we use geometric progression:

$$[I - (1 - s)P_0^t]^{-1} = \sum_{k=0}^{\infty} (1 - s)^k P_0^t.$$
 (62)

We note that the last series is convergent for any $0 < s \le 1$ because P_0^k has a limit as $k \to \infty$. Equation (60) becomes then

$$\pi_d(s) - \pi_d = (1-s) \left(I - s \sum_{k=0}^{\infty} (1-s)^k (P_0^t)^{k+1} \right) (\pi_0 - \pi_d).$$
(63)

By noting that $\sup_{k\geq 1} \|P_0^k\|_2 = \sup_{k\geq 1} \|(P_0^t)^k\|_2$ is finite, we have the desired upper bound on $\|\pi_d(s) - \pi_d\|$.