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Phylogenetic Methods. Phylogenetic trees were generated by
Mahler et al. (1). Mahler et al. conducted multiple partitioned
analyses in MrBayes v3.1.2; the consensus tree from these
analyses was then used as the starting tree for the Bayesian re-
laxed clock method implemented in BEAST 1.4.7. All non-
Greater Antillean taxa were then pruned from the trees in the
posterior distribution of the BEAST analysis.

DiversificationAnalyses.Theequationsformodelingstate-dependent
diversification dynamics follow from Maddison et al. (2), and we
used simple modifications of the original equations. The reader is
referred to the original paper for a clear and detailed explanation
of the derivation of the two-state BiSSE model (2). In this
framework, we track—for each character state—two key proba-
bilities:Di(t), the probability that a lineage in state i at time t gives
rise to a clade like that in the observed data; and Ei(t), the prob-
ability that a lineage in state i at time t goes extinct before the
present (alongwith all of its descendants).Here, t is timemeasured
from the present backward in time and Δt is an incremental time
step. Let λi,t and μi,t be the speciation and extinction rates for
a lineage in state i at time t and qij,t represent the rate of transition
from state i to state j at time t. As in Maddison et al. (2) and
FitzJohn et al. (3), we assume that only a single event (speciation,
extinction, or character change) can happen in the intervalΔt. The
differential equation governing Di(t + Δt) is

dDi

dt
¼ −

�
μi;t þ λi;t þ ∑

j≠i

j¼1
qij;t

�
DiðtÞ þ ∑

j≠i

j¼1
qij;tDjðtÞ þ 2λi;tEiðtÞDiðtÞ;

where

−
�
μi;t þ λi;t þ ∑

j≠i

j¼1
qij;t

�

is the rate at which Di(t) decreases due extinction, speciation, or
character change (from state i to all other states) in some in-
finitesimal amount of time Δt as we move backward down the
branch (toward the root), and

qij;tDjðtÞ
is the rate at which Di(t) increases due to character change from
state i to state j [multiplied by the probability that, having un-
dergone character change, the lineage will go on to evolve into
a clade like the observed data, Dj(t)]. This term must be summed
over all n – 1 character states, hence the summation term. Fi-
nally, a lineage at some point in time can undergo a speciation
event and still give rise to the observed data, provided one of the
descendant branches and all of its descendants go extinct before
the present (thus, we would never observe a speciation event in
a reconstructed tree). This process occurs with rate

λi;tEiðtÞDiðtÞ
and it must be multiplied by 2 (as either the left or the right
descendant branches and all their descendants could go extinct, if
there is a speciation event on Δt).
The differential equation governing Ei(t) is

dEi

dt
¼ μi;t −

�
μi;t þ λi;t þ ∑

j≠i

j¼1
qij;t

�
EiðtÞ þ ∑

j≠i

j¼1
qij;tEjðtÞ þ λi;tEiðtÞ2

and includes the rate at which lineages go extinct on Δt, or μi,t.
The equation includes the rate at which lineages undergo no
events on the time interval δt, yet go extinct at some point in the
future, or

μi;t þ λi;t þ ∑
j≠i

j¼1
qij;t

plus the rate at which lineages in state i switch states and sub-
sequently go extinct, or

qij;tEjðtÞ;
which must be summed over all n character states. Finally,
a lineage might undergo speciation on Δt, but for such an event
to occur and yet result in a clade that goes extinct before the
present, both descendant branches and all their descendants
must go extinct. These events occur at rate

λi;tEiðtÞ2:
A total of 2n equations must thus be solved simultaneously to
describe the dynamics of diversification and character change
through time. The initial conditions, for a tree with complete
taxon sampling, are Di(0) = 1 and Ei(0) = 0. The probability that
a lineage existing in the present will give rise to the observed data
—a single lineage—is necessarily 1, unless we are accounting for
incomplete taxon sampling. In this case, the initial state is simply
the probability of sampling the lineage (3). We solved these
systems of equations by numerically integrating backward along
each branch using the Fortran LSODA integrator as im-
plemented in the R package deSolve (4). At each interior node
in the tree, probabilities Di(t) for right and left descendant
branches were combined as in Maddison et al. (2), and these
combined values became the initial conditions for integration
backward down the parent branch. At the root node, we com-
bined root-state probabilities using the weighting scheme from
FitzJohn et al. (3). Virtually identical results were obtained using
alternative weighting methods that assumed equal weights to the
individual probabilities D1, D2, . . . , Dn.

Biogeographic Model Selection. A large number of biogeographic
scenarios could be considered to model transitions between
character states (e.g., dispersal between islands). Under the
simplest model, dispersal (transition) rates between all islands
might be identical. This model would specify a symmetric, one-
rate transition matrix between states. At the most complex end
of the spectrum, each pair of character states might have sepa-
rate asymmetric transition rates (qij ≠ qji), and all rates might
vary linearly through time. This model would have a full 24-
parameter transition matrix between character states (12 initial
rates at the root node and 12 ending rates in the present). Be-
tween these scenarios, a very large number of models are pos-
sible. We used the state-dependent diversification framework
described above and subsequent model-fitting analyses to iden-
tify an appropriate background model for subsequent diversi-
fication analyses, rather than simply assuming the validity of a
one-rate symmetric transition matrix or any other model.
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We assumed that all character states (islands) were associated
with a particular time-constant rate of speciation, with extinction
set to zero. We then used maximum likelihood to fit three bio-
geographic models to the Anolis MCC tree: (i) a model with
time-invariant, equal rates between all islands (1 parameter,
model qsymm1); (ii) a model with time-varying dispersal be-
tween islands, but with a single rate for all islands at any point in
time (2 parameters, model qsymm1_TD); and (iii) a model with
separate asymmetric transition rates between all island pairs,
with rates constant in time (12 parameters, model qasymm12).
Many entries in the 12-parameter transition matrix were esti-
mated as zero with a high degree of confidence, owing to the
clear lack of obvious dispersal events between many island pairs
(e.g., Jamaica and Puerto Rico).
We thus generated a series of secondary “dropped-zero”

transition matrices by dropping all of the estimated zero entries
in the 12-parameter model. Our analyses of the 12-parameter
model recovered two stable solutions that differed in <0.5 log-
likelihood units: (i) a model with two-way dispersal between
Cuba and Hispaniola and one-way dispersal from Cuba to Ja-
maica and from Hispaniola to Puerto Rico, with all other rates
equal to zero (model suffix ch/hc/cj/hp); and (ii) an “out of
Cuba” model with one-way dispersal from Cuba to all other is-
lands, with all other rates equal to zero (model suffix cuba). We
considered a third dropped-zero model by essentially merging
these two models, thus generating (iii) a model that allowed
dispersal from Cuba to all other islands and from Hispaniola to
all other islands (model suffix ch:hc).
For all of these secondary dropped-zero models, we considered

the following scenarios: (i) a one-rate constant, time-invariant
rate for all nonzero rate entries of the rate matrix (1 parameter),
(ii) a k-rate model with separate time-invariant rates between all
nonzero entries of the rate matrix (k parameters), and (iii)
a model with a single rate that varied through time for all non-
zero entries of the matrix (two parameters). All 12 of these
models are illustrated in Fig. S3.
Of all models we considered, the greatest improvement in

model likelihoods came from simply relaxing the assumption of
time-invariant dispersal between islands (Table S1). For example,
the log-likelihood of the 12-parameter time-invariant model
(qasymm12) was −48.78, yet a simple 2-parameter model with
equal rates between all island pairs at any point in time
(qsymm1_TD) had a much higher log-likelihood (−42.68). The
overall best model was the 2-parameter dropped-zero model
allowing only dispersals between Cuba and Hispaniola and from
Cuba to Jamaica and from Hispaniola to Puerto Rico. Results
using this model as a biogeographic background model are
shown in Table 1.
We recognize that our inference about diversification processes

is conditional on the underlying biogeographic model used to
account for transitions between character states. Ideally, one
would consider all possible biogeographic models—of which
there are 12, each with 10 diversification models—leading to
a minimum of 120 diversification/biogeographic model combi-
nations to be considered. Rather than consider all possible
models, we fit the 10 diversification models (Table 1) against two
simpler biogeographic models to verify that our results were not
simply a function of choosing the qsmm.ch/hc/cj/hp_TD model
(Fig. S3). These results, using the poor-fitting one-rate sym-
metric model (qsymm1) and the much better time-varying model
qsymm1_TD provided nearly identical results to those given in
Table 1, indicating that our results are not sensitive to the un-
derlying biogeographic model used for inference. These results
are summarized in Tables S2 and S3.

Ancestral State Reconstruction and Lineage Accumulation Curves.
Ancestral state (island occupancy) probabilities are essentially
computed during the implementation of the model described
above. At each node in the phylogeny, the probabilities Di(t) for
each descendant branch are combined. By normalizing these
state probabilities, we obtain an estimate of the probability that
a given node k was in any of the N possible character states. The
probability that node k is in state i is given by

pk;i ¼ Di;k

∑
N

j¼1
Dj;k

:

We used these node probabilities to estimate lineage accumu-
lation curves for each island (Fig. 2). The approximate number of
lineages in state i at time T is then given by

ΦT;i ¼ ∑
B

j¼1
pj;izj;

where pk,i is the probability of state k at node i and z is an in-
dicator variable; and zi = 0 if node i is younger than node x (e.g.,
t > T) and 1 otherwise (B is the total number of nodes).

Evaluation of Model Adequacy. To assess whether the fitted models
could recover patterns of species richness and branch lengths
consistent with those observed for Anolis, we simulated phylo-
genetic trees and character state data under maximum-likelihood
parameter estimates for GlobalConstant, IslandConstant,
GlobalVariable, and IslandVariable models. We then used three
summary statistics to test whether predictions under the fitted
models match patterns in the observed data. We first simply
tabulated the species richness values for each island at the end of
each simulation and compared these values to the observed data
(Fig. 4 and Table S4).
The remaining statistics we computed assessed patterns of

branch length variation in simulated trees. We aremost interested
in how well branch lengths associated with character state imatch
branch lengths associated with character state i in the Anolis
data. Because we do not know with certainty which internal
branch lengths can be assigned to which character state in Anolis,
we considered only terminal branch lengths. We thus computed
the mean terminal branch length for all terminals with character
state i (Fig. S6), as well as the coefficient of variation in terminal
branch lengths (Fig. S7). These results suggest that the best-fit
model by likelihood analysis (IslandVariable) consistently fits the
observed data for all three summary statistics better than the
alternative models with time-invariant diversification or global
declines in speciation through time.

Model Comparisons. We used Akaike weights to estimate the
conditional probability of each model (5). Given the set of AIC
scores corresponding to the M candidate models, we first com-
puted the difference (ΔAICi) between each AIC score and the
overall best (lowest) AIC score. These quantities are then used
to estimate the probability of model i conditional on the AIC
scores observed in the candidate set. This probability is

Δi ¼
expð− ΔAICi

2

�

∑
M

k¼1
exp

�
− ΔAICk

2

�;

where the term in the numerator is known as the Akaike weight of
the ith model.
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Fig. S1. Maximum clade credibility (MCC) tree resulting from BEAST analyses. Posterior probability (pp) values from the MrBayes analyses used to generate
the starting tree for BEAST are indicated by circles above branches (black, pp > 0.95; gray, 0.95 > pp < 0.70; white, pp < 0.70). Island occupancy is indicated
across the tips of the tree (green, Cuba; blue, Hispaniola; yellow, Puerto Rico; orange, Jamaica).
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Fig. S2. Consensus tree and branch lengths generated from posterior distribution of MrBayes analysis using the sumt command. This tree includes non-
Greater Antillean taxa that were pruned before our analyses. Posterior probability values are indicated by circles above branches (black, pp > 0.95; gray, 0.95 >
pp < 0.70; white, pp < 0.70).
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Fig. S3. Biogeographic dispersal models considered for Anolis. We considered 12 possible transition matrices representing dispersals between island states.
Colored entries denote rate parameters that were free to vary under the model; white entries denote rate parameters that were set equal to zero. Parameters
with identical colors are constrained to have the same value (e.g., qsymm1, Upper Left, with identical dispersal rates between all islands). The Lower three
columns of submatrices (ch/hc/cj/hp, cuba, and ch:hc) were formed by eliminating rate parameters from the fitted qasymm12 model if rates under that model
were estimated as zero (<10−10). Models with time-varying dispersal parameters fitted the datamuch better thanmodels with time-invariant dispersal (Table S1).
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Fig. S4. Robustness of results to phylogenetic uncertainty. Histograms show AIC evidence favoring the IslandVariable model (separate linear change in
speciation rates through time on each island) relative to GlobalConstant, IslandConstant, and GlobalVariable models, where all models were fitted to 400 trees
sampled randomly from the posterior distributions of trees from the BEAST analysis. The IslandVariable model consistently fits better than GlobalVariable.
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Fig. S5. Pearson correlation between log(island area) and the rate decline parameter (−λ0/K) under the best-fit model (IslandVariable) tabulated from 400
trees sampled randomly from the posterior distributions of trees from the BEAST analysis. The rate decline parameter is the slope of the relationship between
the speciation rate and time. A negative correlation implies that larger islands have slower changes in speciation rates with respect to time.
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Fig. S6. Distribution of mean terminal branch lengths (A) and the coefficient of variation in terminal branch lengths (B) for trees simulated under four fitted
diversification models, partitioned by terminal character state (Cuba, Hispaniola, Jamaica, or Puerto Rico). Models are (Top to Bottom) as follows: GC,
GlobalConstant; IC, IslandConstant; GV, GlobalVariable; IV, IslandVariable. Colored lines denote mean values for the Anolis MCC tree; black lines and histo-
grams represent mean values and distributions tabulated from 2,000 datasets simulated under maximum-likelihood parameter estimates for each model. The
IslandVariable model provides a much closer match to the observed data than the three alternative models.
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Table S1. Biogeographic models evaluated (see Fig. S2 for graphical description)

Model Description np LogL AIC ΔAIC

qasymm12 Asymmetric transition rates between all island pairs. 16 −48.78 129.56 35.88
qsymm1 Single transition rate between all islands. 5 −54.9 119.8 26.12
qsymm.ch:hc “Out of Cuba/out of Hispaniola” model. Single rate for all

transitions from Cuba to all other islands and from Hispaniola to
other islands (q12, q13, q14, q21, q23, q24); 0 for all others.

5 −53.9 117.8 24.12

qasymm.ch:hc6 Out of Cuba/out of Hispaniola model. Different rates for q12, q13,
q14, q21, q23, q24; 0 for all others.

10 −48.78 117.56 23.88

qsymm.cuba “Out of Cuba” model. Single rate for q12, q13, q14; 0 for all others. 5 −52.36 114.72 21.04
qasymm.ch/hc/cj/hp.4 Different rates for q12, q21, q13, q24 (between Cuba and Hispaniola

and from Cuba to Jamaica and from Hispaniola to Puerto Rico);
0 for all others.

8 −48.8 113.6 19.92

qasymm.cuba3 Out of Cuba, with different rates for q12, q13, q14; 0 for all others. 7 −49.67 113.34 19.66
qsymm.ch/hc/cj/hp Single rate for q12, q21, q13, q24; all other rates 0. 5 −51.4 112.8 19.12
qsymm.ch:hc_TD Single time-varying transition parameter for all transitions from

Cuba and Hispaniola to all other islands.
6 −43.17 98.34 4.66

qsymm1_TD Single time-varying transition parameter between all islands. 6 −42.68 97.36 3.68
qsymm.cuba_TD Single time-dependent out of Cuba transition parameter (q12, q13,

q14 > 0); all others = 0.
6 −42.67 97.34 3.66

qsymm.ch/hc/cj/hp_TD Shared time-varying parameter for q12, q21, q13, q24. 6 −40.84 93.68 0

All biogeographic scenarios were evaluated against a background diversification model with island-specific differences in speciation, but no rate variation
through time (IslandConstant model). Models with linear time-dependent change in the transition rate (“TD”) fitted the data much better than corresponding
models without time-dependent transition rates. States 1, 2, 3, and 4 correspond to Cuba, Hispaniola, Jamaica, and Puerto Rico, respectively.

Table S2. Model-fitting results under alternative biogeographic background models (Table S1: qsymm_TD and
qsymm)

Diversification model NP (μ = 0) LogL (μ = 0) ΔAIC (μ = 0) NP (μ ≥ 0) LogL (μ ≥ 0) ΔAIC (μ ≥ 0) Δi

Biogeographic model: Symmetric dispersal between all islands, but rate varies through time (qsymm_TD)
IslandConstant 6 −42.68 29.88 10 −42.67 37.86 0
GlobalConstant 3 −46.57 31.66 4 −46.56 33.64 0
GlobalVariable 4 −34.87 10.26 6 −34.63 13.78 0.006
IslandVariableFull 10 −25.97 4.46 18 −22.1 12.72 0.091
IslandVariable 7 −26.74 0 12 −24.3 5.12 0.903

Biogeographic model: Symmetric dispersal between all islands, but rate is constant through time (qsymm)
IslandConstant 5 −54.91 30.04 9 −54.91 38.04 0
GlobalConstant 2 −58.22 30.66 3 −58.19 32.6 0
GlobalVariable 3 −46.58 9.38 5 −45.5 11.22 0.004
IslandVariableFull 9 −38.11 4.44 17 −27.96 0.14 0.460
IslandVariable 6 −38.89 0 11 −35.4 3.02 0.536

All diversification models are identical to those in Table 1. The biogeographic model assumes equal transition rates between all
pairs of islands at any point in time, but with (i) a linear change in the rate of transitions through time (Upper row, Center, in Fig. S3),
or (ii) identical time-invariant rates through time (Upper row, Left, in Fig. S3). Results are shown for models without (μ = 0) and with
(μ ≥ 0) extinction. np, number of parameters; Δi, conditional probability of each model given the candidate set of models. Models
without extinction (μ = 0) fit the data better than the corresponding model with extinction in all cases but one (IslandVariableFull
under qsymm). Models specifying island-specific changes in λ and/or μ account for P = 0.994 of the total probability of the data taken
across all models, and the GlobalVariable model fits much more poorly than the IslandVariable model.
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Table S3. Summary statistics for island species richness in
datasets simulated under maximum-likelihood parameters of
GlobalConstant, IslandConstant, GlobalVariable, and
IslandVariable models (Table 1)

Model Island Observed Mean Median q25 q75

GlobalConstant Cuba 61 6.93 4 0 10
GlobalConstant Hispaniola 40 9.56 6 1 14
GlobalConstant Jamaica 6 4.3 0 0 5
GlobalConstant Puerto Rico 10 6.8 3 0 10
IslandConstant Cuba 61 12.42 7 0 18
IslandConstant Hispaniola 40 9.23 6 1 14
IslandConstant Jamaica 6 2.3735 0 0 4
IslandConstant Puerto Rico 10 2.53 1 0 4
GlobalVariable Cuba 61 23.6 15 4 33.25
GlobalVariable Hispaniola 40 32.17 23 7 47
GlobalVariable Jamaica 6 13.508 4 0 17
GlobalVariable Puerto Rico 10 24.284 13 2 35
IslandVariable Cuba 61 47.8 30 9 69
IslandVariable Hispaniola 40 35.95 26 10 52
IslandVariable Jamaica 6 6.5 2 0 8
IslandVariable Puerto Rico 10 15 9 2 21.5

Observed denotes observed species richness on each island. q25 and q75

denote 0.25 and 0.75 percentiles of the distribution of richness values under
each simulation model.
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