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SI Text
SI Methods. Simulated spike trains were generated from a mod-
ified Morris–Lecar (ML) model of an excitable neural membrane
(1, 2) driven by a fluctuating input current. The voltage V is
governed by the current balance relation between the capacitive
current (left side) and the negative membrane ionic currents
(right side):

C
dV
dt

¼ gcm∞ðV ÞðVc − V Þ þ gkW ðVk − V Þ þ glðV l − V Þ
þ gHHðVH − V Þ þ Im þ gxxðtÞ: [S1]

The first three terms are the familiar spike-initiating sodium
membrane current, the spike-terminating potassium current,
and the passive leak current, respectively, whereW is the propor-
tion of conducting potassium channels. The fourth current is a
slower-to-activate and slower-to-decay voltage-gated adaptation
current (AC). In keeping with its name, the voltage depolariza-
tion of each spike activates this current and produces a postspike
hyperpolarization. The dynamics of H and W are similar in form
and are determined by the equation

τX ðV Þ dX
dt

¼ X∞ðV Þ − X; [S2]

in which X represents W or H. The function X∞ðV Þ is a positive-
sloped sigmoidal shaped function: A spike (V high) thus implies
that X∞ goes into an active phase (X∞ ∼ 1). The activation func-
tions are of the form W∞ðV Þ ¼ 1∕2ð1þ tanh½ðV − γW Þ∕ζW �Þ
[and analogously for m∞ðV Þ], and H∞ðV Þ ¼ 1∕ð1þ exp
½−αHðV − βHÞ�Þ. For W , the activation leads to a quick termina-
tion of spiking on a fast time scale determined by τW ðV Þ ¼
5 cosh½ðV − γZÞ∕ð2ζW Þ�−1, where the factor 5 ms sets the repolar-
ization time scale at the peak of spiking. The activation and decay
of H is slower than W . The H time constant is τHðV Þ ¼
τ þ ðτþ − τÞ∕ð1þ exp½−αHðV − βHÞ�Þ, where τþ ¼ 50∕3 ms is
the time scale of the activation phase when V ≫ βH and
τ ¼ 400 ms is the decay time scale in the nonspiking phase
V ≪ βH , with βH ¼ 12 mV and αH ¼ 20 mV−1. Constant current
input is given by Im ¼ 38 nA∕cm2, and noisy fluctuating current,
representing the input stimulus, is given by xðtÞ with dynamics

τx
dx
dt

¼ −xþ σxξðtÞ; [S3]

where ξðtÞ is uncorrelated Gaussian white noise: hξðtÞi ¼ 0 and
hξðtÞξðt0Þi ¼ δt;t0 . A time scale of τx ¼ 5 ms was chosen to induce
input correlations on the order of fast glutamate AMPA recep-
tors, and σx ¼ 0.3 sets the noise strength. The model and para-
meter choices are similar to those in Rinzel and Ermentrout (2),
not counting the slow process HðtÞ that we have introduced here.
The remaining parameters are C ¼ 20, gc ¼ 4.4, γm ¼ −1.2,
ζm ¼ 18, Vc ¼ 120, gk ¼ 8, γW ¼ 12, ζW ¼ 17.4, Vk ¼ −84,
gl ¼ 2, Vl ¼ −60, and gx ¼ 45.

The parameters of the ML model were selected to generate
standard neuronal dynamics, in which spike generation is deter-
mined through a saddle node bifurcation [type 1 excitability (2)];
however, our results are applicable to type 2 excitability as well.
The constant injected current Im ¼ 38 was selected to set the
membrane potential just slightly below the deterministic bifurca-
tion threshold, so that fluctuations in xðtÞ trigger spiking. The
fluctuating amplitude current strength, set by σx ¼ 0.3 and
gx ¼ 45, generates robust spiking, but the induced voltage pertur-

bations are much smaller than the spike amplitudes and do not
obscure the spike kinetics appreciably, and thus the spike shape
from spike to spike is very uniform. In the next two sections we
explore the modulation of the injected current Im.

Approximation of HðtÞ and Derivation of Qðhjh0Þ. We approximate
HðtÞ with a nonsmooth but continuous curve, cleaved into two
smooth phases that form the interspike interval (ISI) cycle Δt,
starting with the decaying phase of HðtÞ, followed by the activa-
tion phase occurring during the action potential: Δt ¼ Δdecayþ
Δspike. Suppose that Δdecay begins at t ¼ 0, in which the peak
adaptation value is Hð0Þ≡ hi. The decay phase dynamics are
HðtÞ ≈ hie−t∕τ. At the beginning of the activating phase
(t ¼ Δdecay) the AC is HðΔdecayÞ ≈ hie−Δdecay∕τ. Then, the AC expo-
nentially approaches unity with time scale τþ: HðtÞ≈
e−ðt−ΔdecayÞ∕τþ ½HðΔdecayÞ − 1� þ 1 for Δdecay ≤ t ≤ Δti. If Δspike were
very long, the activation would asymptote to unity and the current
would be maximally activated. However, it is reasonable to
assume Δspike is a very small portion of the ISI (Δti ≈ Δdecay),
and so we consider the activation phase to be effectively instan-
taneous. Note further that in Fitting the ML Model (below) we
detail how to account for both the spike duration and absolute
refractory period when the firing rate is so high that they can
no longer be considered small relative to the ISI. Taken together,
the two phases define a linear map from hi to hiþ1:

hiþ1 ¼ Λþ ð1 − ΛÞhi expð−Δti∕τÞ≡ f ðΔti;hiÞ; [S4]

which is Eq. 1 in the main text.
To assess the fit of [S4] to the ML model, we simulated for

many spikes over a wide range of injected current levels
(Im ¼ 34–80). Fig. S1 plots the preactivation of HðtÞ (abscissa)
and the resulting change in activation Δh postspike (ordinate).
By using the approximating model [S4], the preactivation is
predicted to be Hpre ¼ hie−Δt∕τ, and the difference between pre-
and postactivation is Δh ¼ hiþ1 −Hpre ¼ Λ − ΛHpre. Hence,
Eq. S4 predicts a linear relationship with y intercept Λ and slope
−Λ, which is confirmed in Fig. S1.

Here we derive the Markov transition probability Qðhjh0Þ and
the associated limiting density q∞ðhÞ. For a generic emission rate
function λ½HðtÞ�, with HðtÞ ¼ h0e−t∕τ, the ISI density is derived
from a hazard function formalism. Let the hazard function
PðΔtjh0Þ be the proportion of an ensemble, conditioned on h0,
that has not fired a spike in time Δt > 0 from the time 0 where
the systems in the ensemble originally spiked. If λðHÞ is the firing
probability per unit time, then the hazard function is governed by
the differential equation

dP
dΔt

ðΔtjh0Þ ¼ −λ½HðΔtÞ�PðΔtjh0Þ; [S5]

expressing that the reduction in P per unit time is the emission
rate (λ) times the proportion (P). Eq. S5 has the solution
PðΔtjh0Þ ¼ 1 − exp½−∫ Δt

0 λðh0e−u∕τÞdu�. The ISI probability density
then is the negative time derivative of P:

−
dP
dΔt

≡ pðΔtjh0Þ ¼ λðh0e−Δt∕τÞ exp
�
−
Z

Δt

0

λðh0e−u∕τÞdu
�
: [S6]

Using the inverse of the hmap ([S4]),Δt ¼ f−1 ¼ τ lnf½h0ð1 − ΛÞ�∕
ðh − ΛÞg, we perform a change of variable on [S6] from the time
domain to achieve an expression solely in the h domain:
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Qðhjh0Þ≡ −pðf−1jh0Þ ∂f
−1

∂h
ðhÞΘðf−1Þ; [S7]

where the partial derivative is the Jacobian of the change of
variables. For the specific emission rate model

λðHÞ ¼ α expð−βHÞ [S8]

used in the main text and this supplement, [S7] reduces to

Qðhjh0Þ ¼ λ

�
h − Λ

1 − Λ

�
τ

h − Λ
e½−τ

R
f−1ðh;h0 Þ
0

λðh0e−z∕τÞdz�Θðf−1Þ: [S9]

Wemake the substitution u ¼ ð1 − ΛÞe−z∕τ in the integral of Eq. S9
to get

Qðhjh0Þ ¼ λ

�
h − Λ

1 − Λ

�
τ

h − Λ
e½−τ

R
h0 ð1−ΛÞ
h−Λ

λð u
1−ΛÞ1udu�Θðf−1Þ: [S10]

This substitution allows for the convenient description of Qðhjh0Þ
in terms of exponential integral-type functions. We define the
function L as

Lðh;h0Þ≡ τ

Z
h0ð1−ΛÞ

h−Λ
λ

�
u

1 − Λ

�
1

u
du [S11]

so that

Qðhjh0Þ ¼ L0ðh;h0Þe−Lðh;h0ÞΘðf−1Þ; [S12]

where theL prime (L0) indicates differentiation in h. The function
L ([S11]) is in the exponential integral class of functions, diverging
to infinity for h → Λ and limiting to zero as h → h0ð1 − ΛÞ þ Λ.
Alternatively, in the adaptation independence regime the upper
integral limit in [S11] can be replaced with unity and the factor
Θðf−1Þ can be dropped. In this case, the Markov transition
reduces to

Qðhjh0Þ ¼ q∞ðhÞ ¼ L0ðhÞe−LðhÞ: [S13]

Hence, in the adaptation independence regime, q∞ðhÞ is analyti-
cally computable fromL. Outside of the adaptation independence
regime, q∞ðhÞ can only be computed numerically. We defined
a sufficiently refined partition of the h space and represented
the Markov transition Qðhjh0Þ as a Markov matrix. The limiting
density q∞ðhÞ then is the leading eigenvector associated with
the unique unit eigenvalue of the Markov matrix, which we solved
for using ARPACK routines.

Fitting the ML Model. We stated in the main text that the spike
emission rate model λ½HðtÞ� ¼ α exp½−βHðtÞ� coupled with the
hmap ([S4]) provides a good fit to the behavior of the ML model
[and other similar models (3, 4)] over a range of baseline excit-
ability levels. Here we establish this fact. Fig. S2 plots results from
Monte Carlo simulations of the ML model over a range of base-
line injected current levels Im, with parameters as detailed in SI
Methods and shown in Figs. 1 and 2 of the main text. The main
panel shows the h distributions from the ML model, along with
the respective analytic approximations q∞ðhÞ. The distribution of
Im ¼ 38 of Fig. 2 of the main text is shown second from the left
(green). As input current is increased, the q∞ðhÞ broadens and
translates to higher activation states. This translation is concomi-
tant with an increase in the mean firing rate (Upper Left Inset).
Consistent with the results in Fig. 3 of the main text, the coeffi-
cient of variation (CV) and CVZ (Lower Left Inset) exhibit local
minima for distinct current levels where the single ISI and multi-
ple ISI sequences, respectively, show points of maximal regularity

and are fit acceptably by the analytical approximation (see below
for a discussion of the quantitative discrepancies between the two
models).

The autocorrelation coefficients ρk (k ¼ 1;2;3;4) of the ISI
sequence (Fig. S2, Upper Right Inset) exhibit the same qualitative
behavior shown in Fig. 3 of the main text. The emergence of
nonzero correlations in the h sequence indicates a loss of inde-
pendence (Lower Right Inset), which occurs concomitantly with
the point of minimum ISI correlation (ρ1), the emergence of
a significant nonzero secondary eigenvalue η2 of theMarkov tran-
sition Q, and a minimum in the CVZ. The confluence of these
behaviors is precisely the same combination of phenomena exhib-
ited by the loss of adaptation independence in the analytical
model shown in Fig. 3 of the main text.

The divergence between the CVof the ML model and the ana-
lytical approximation is because of variability (noise) in the hmap
([S4]) shown in Fig. S1 and concomitant variability in the repo-
larization currentW . Additionally, for very high inputs with firing
rates approaching 20 Hz, theMLmodel is near the maximal firing
rate. In this regime a variety of conditions that allow the analytical
model to approximate the ML system become weakened. The
first condition is that the spike duration Δspike of the ML model
is very small relative to the ISI. For the parameters that we have
used in this article, Δspike is approximately 5 ms, and the absolute
refractory period is approximately 15 ms. This nonvarying time
interval of 20 ms comprises a large proportion of the overall
50 ms average ISI when firing at 20 Hz. Hence, it must be con-
sidered in the analytical model. Of course, by choosing faster
repolarization kinetics closer to cortical-level spike dynamics, the
spike duration and refractory period would be shorter and the
assumption of an effectively instantaneous spike and refractory
period would not be violated. However, here we demonstrate that
the analytical rate model ([S5]–[S10]) can be modified slightly to
achieve a good fit to the spike statistics even with the violated
assumption and still be consistent with the results in the main
text. To do so, we added in a constant Δspike ¼ 5 ms spike dura-
tion to each ISI and also included an absolute refractory
period Δrefract ¼ 15 ms to the Qðhiþ1jhiÞ transition for the
results in Fig. S2, which is achieved by including Δrefract in the
Heaviside factor of Eq. 7 of the main text: Θ½f−1ðhiþ1;hiÞ� →
Θ½f−1ðhiþ1;hiÞ − Δrefract�. For low firing rates (0–10 Hz), the inclu-
sion of these small time intervals insignificantly affect our main
results but help the model fit better for higher firing rates.

Second, the analytical rate model assumes the input fluctua-
tions that trigger spiking have a fast autocorrelation time scale
relative to the mean ISI. In the ML model we have used input
noise with a correlation time scale of 5 ms. In this regime,
5 ms is only marginally different from the ISI time scale. Conse-
quently, input correlations could induce positive ISI correlations
at these high firing rates, resulting in greater irregularity in
the spike train (higher CV). Of course, such high firing rates,
approaching the absolute refractory period bound, are toxic to
neurons and are therefore considered nonphysiological and will
not be studied further.

To get a quantitative fit over the range of input currents
in Fig. S2, we defined a map from input current Im to the input
conductance level s used in the analytical model approximation:
λðH − sÞ. The input conductance is linearly related to the current
by

s ¼ 1

60
ðIm − 38Þ; [S14]

in which the input level Im ¼ 38 used in the main text (Figs. 1
and 2) sets the zero point for the s input: s ¼ 0. The divisive factor
60 was empirically determined to fit the firing rate and h distribu-
tions of the ML model over a range of input currents.
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Adaptation independence can be understood by visualizing
the Markov transition Qðhiþ1jhiÞ in both the independence and
nonindependence regimes. Fig. S3 shows Qðhiþ1jhiÞ transition
functions represented as 90 × 90 matrices for two of the input
current levels used in the previous Fig. S2. Dark blue coloring
represents values near zero; warmer tones represent positive
values. Fig. S3A shows Q and its associated second eigenvalue
η2 (numerically computed) in the independence regime for
Im ¼ 38, the same input level used in Figs. 1 and 2 of the main
text. Each column of the matrix is effectively identical and pro-
portional to q∞ðhiþ1Þ (see Fig. S2 above at Im ¼ 38), which is the
eigenvector associated with the leading unit eigenvalue η1 ¼ 1 of
the matrix. The numerically computed second eigenvalue η2 is
effectively zero. All eigenvalues of Markov matrices are bounded
by a unit modulus by Perron–Frobenius theory; hence, the mag-
nitude of η2 is meaningful because it measures the degree of
independence by determining the rate of convergence to the lim-
iting distribution q∞—lower η2 values imply faster convergence.
The value η2 defines the rate of contraction of the subspace
orthogonal to q∞ (in the standard L2 inner product space).
Because η2 ∼ 0 in Fig. S3A, the convergence to q∞ occurs in
effectively one spike.

In contrast, Fig. S3B shows Q for the input level I ¼ 72.
Clearly, the columns of the matrix are not all identical as they
were in Fig. S3A, implying nonindependence. Consistent with
this, the secondary spectrum is nonzero: η2 ≈ 0.052, which follows
from the choice of a large baseline level (high firing rate). Hence,
the contraction proceeds as ηðiÞ2 . For even higher input levels Im,
η2 becomes even larger (see Fig. S2), and so the rate of conver-
gence is slower. In Fig. S3B we have drawn the bounding line
hiþ1 ¼ Λþ ð1 − ΛÞhi (dashed black line), which represents the
maximal hiþ1 that is achievable for each hi. In Fig. S3A, which
has a lower input level, the bounding line would be drawn off
the axes and so is not a real constraint on the dynamics. The
bounding line illustrates how the loss of independence is realized.
Low hi values are restricted from mapping to high hiþ1 values that
are achievable for slightly larger hi values, even with very short
ISIs. Note also that the positive matrix values in Fig. S3B do
not exactly border the bounding line. Instead, there is a small
strip of zero values just below the bounding line. This strip exists
because we are using the model parameters used in Fig. S2, which
includes an explicit finite spike duration and an absolute refrac-
tory period, which disallows very short, near-zero ISIs that would
allow hiþ1 values arbitrarily close to the bounding line. These ex-
tra features add realism to the model but do not change the
qualitative results appreciably.

Independence can be modulated by changes in noise intensity
σx. Lower noise levels induce lower-variance q∞ distributions.
Zero noise is the trivial case where the neuron can only encode
information in the firing rate and the hi are constant and so are
trivially independent (or a lack of any firing for low input currents
Im). Conversely, very high noise levels effectively overwhelm the
AC, thereby blocking adaptation independence. To understand
this point in more detail we refer to Nesse et al. (3), where it
was noted that to properly fit the parameter β in the emission
rate model [λðHÞ ¼ α expð−βHÞ] to the ML model, it must be
inversely dependent on the noise strength (i.e., β ∝ 1∕σ2x ). Con-
versely, it was also noted that α is proportional to σ2x . Hence, ad-
justing the noise level has multiple effects on spiking behavior. If
we define α≡ σ2xα0 and β ≡ β0∕σ2x and rearrange λðHÞ to get

λðHÞ ¼ exp
�
−
β0
σ2x

½H − σ2x lnðα0σ2x Þ∕β0�
�
; [S15]

adaptation independence then holds when β0
σ2x
Λ − lnðα0τσ2x Þ ≫ 1

(see Eq. 8 of the main text). Certainly, large enough values of
σx will violate this condition. Conversely, if σx is very small,
the condition will hold even for HðtÞ ∼ 0 ≪ Λ. That is, the adap-

tation activation hi is trivially independent because the hi are
effectively constant (i.e., the cell fires regularly). For intermediate
noise levels, the condition holds only for near-peak values ofHðtÞ,
that is, HðtÞ ≥ Λ. In this zone, adaptation independence is non-
trivial because the hi values are variable. This zone is the main
focus of this article because the hi can encode information only
if they vary.

ISI Correlations. As shown in Fig. S2, and Fig. 3 in the main text,
the ISI correlation structure depends critically on adaptation in-
dependence and input level. The serial ISI covariance can be
computed by using q∞ðhiÞ. The serial covariance between two
ISIs that are k ISIs apart is

CovðΔti;ΔtiþkÞ ¼ hΔtiΔtkþ1i − hΔtii2: [S16]

By inserting f−1ðhiþ1;hiÞ ¼ Δti into this ISI covariance formula
we get

CovðΔti;ΔtiþkÞ ¼ τ2hfln½hið1 − ΛÞ� − lnðhiþ1 − ΛÞg
× fln½hiþkð1 − ΛÞ� − lnðhiþkþ1 − ΛÞgi
− τ2hfln½hið1 − ΛÞ� − lnðhiþ1 − ΛÞgi2: [S17]

To simplify the equation, we define the functions Rk ≡ ln½hiþkð1 −
ΛÞ� and Uk ≡ lnðhiþk − ΛÞ. Expanding [S17] results in seven
distinct terms:

CovðΔti;ΔtiþkÞ∕τ2 ¼ hR0Rki − hR0Ukþ1i − hRkU1i þ hU1Ukþ1i
− hR0i2 þ 2hR0ihU1i − hU1i2

¼ CovðR0;RkÞ þ CovðU1;Ukþ1Þ
− CovðRk;U1Þ − CovðR0;Ukþ1Þ: [S18]

If the hi are nonindependent, then there is no simplification
of [S18]. However, recall that if two random variables a and b
are independent, then habi ¼ haihbi. Therefore, if the hi se-
quence is independent, then there are simplifications. If so, then
for k > 1, all terms cancel, such that CovðΔti;ΔtiþkÞ ¼ 0. If k ¼ 1,
then [S18] reduces to two terms:

CovðΔti;Δtiþ1Þ∕τ2 ¼ −hR1U1i þ hR0ihU1i: [S19]

The equation above ([S19]) is the equality in Eq. 9 in the main
text. Second, note that R0 can be replaced with R1 in [S19] with no
consequence, and so we drop the subscripts for simplicity. We can
then write

CovðΔti;Δtiþ1Þ∕τ2 ¼ −CovðR;UÞ [S20]

¼ −
Z

q∞ðR − hRiÞðU − hUiÞdh: [S21]

Now note that Rk and Uk are both strictly monotonic increasing
functions of hiþk. Hence, by Chebyshev’s algebraic inequality, also
known as the covariance inequality, we have CovðR;UÞ ≥ 0, im-
plying that the covariance between successive ISIs is nonpositive
in the adaptation independence regime, as stated in Eq. 9 of the
main text.

Mutual Information. To compute IAC, a precise definition of the
input stimulus is required. For our model λðHÞ ¼ αe−βH we de-
fine the input variable y ∈ ½0;1�, uniformly distributed, as a prob-
ability of spiking in a small time interval δt (5, 6): If y ≤ λðHÞδt, it
triggers a spike; otherwise, not. This input approximates noisy in-
put currents xðtÞ with short autocorrelation time scales relative to
the mean ISI and δt. In the case of the ML Monte Carlo model,
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the input stimulus was a fast fluctuating current xðtÞ, defined as
Ornstein–Uhlenbeck (OU) noise ([S3]). Without knowledge of
the initial condition, xðtÞ is Gaussian distributed with standard
deviation σx. We start by partitioning the time domain into bins
of δt width. To connect y to the input current xðtÞ, we must assume
there exists a transformation T: ½xðtÞ;δt� → y for each time bin.
We assume that the time scale of OU correlation is short relative
to time discretization: τx ≪ δt. Hence, for a given bin interval δt,
the values of xðtÞ will be effectively independent of those in a sub-
sequent time bin. If we take a particular xðtÞ (e.g., the midpoint
value of the bin or the average over the bin) to be representative
of the interval, then

y ¼ T½xðtÞ�≡ 1ffiffiffiffiffi
2π

p
Z xðtÞ

σx

−∞
e−u

2

du; [S22]

where σx is the standard deviation of x. Each y is uniformly dis-
tributed on the unit interval and independent of subsequent y va-
lues in other bin intervals, and, thus, the stochastic process that
generates the y values is independent and identically distributed.
The variable y in this definition then represents the effect of xðtÞ
on spiking probability over a time interval δt.

We partition the y space ½0;1� into n intervals of width 1∕n. The
input entropy for the time interval δt isHðyÞ ¼ lnðnÞ, measured in
“nats” (7). If the cell does not spike, then the uncertainty about y
is diminished because y > λðHÞδt, and so the conditioned entropy
is reduced and is approximately lnfn½1 − λðHÞδt�g. Conversely, if
it does spike, then the entropy is also reduced to be approximately
ln½nλðHÞδt�. Consider a single ISI that is determined by two h vari-
ables h1 and h2. The ISI Δt ¼ f−1ðh2;h1Þ then is divided into M
intervals of width δt, so thatMδt ≈ Δt. The reduction in entropy of
x that occurs with knowledge of h1 and h2 is

I½x; ðh1;h2Þ�≊ [S23]

I½y; ðh1;h2Þ� ¼ HðyÞ −H½yjðh1;h2Þ� [S24]

¼M lnðnÞ [S25]

− ∑
M−1

i¼0

lnfn½1 − λðh1e−iδt∕τÞδt�g [S26]

− ln½nλðh1e−δtM∕τÞδt�: [S27]

The first term ([S25]) is the input stimulus entropy [HðyÞ] over the
ISI and subsequent spike, and the remaining terms ([S26] and
[S27]) form the conditioned entropy (H½yjðh1;h2Þ�) over the ISI.
The term in [S27] represents the uncertainty of y at the last
(Mth) time interval at the end of the ISI when the cell spikes.
We specify n large enough, so that λðh1e−Δt∕τÞδt ≫ 1∕n for all
likely h1 values. The term in [S25] cancels with equal terms in
[S26] and [S27], so n disappears from the equation. Furthermore,
note that lnð1þ ϵÞ ≈ ϵ for small ϵ so that the sum in [S26] can
be approximated by an integral: −∑M−1

i¼0 ln½1 − λðh1e−iδt∕τÞδt�≊
∑M−1

i¼0 λðh1e−iδt∕τÞδt≊∫ Δt
0 λðh1e−z∕τÞdz. With simplification, the

terms in [S25]–[S27] reduce to

I½y; ðh1;h2Þ�≊ − ln½λðh1e−Δt∕τÞe−
R

Δt
0

λðh1e−z∕τÞdzδt� [S28]

¼ − ln½pðΔtjh1Þδt�; [S29]

where the approximation (≊) in [S28] becomes more precise as δt
becomes smaller.

Themutual information per spike IAC between the stimulus and
the AC states can be computed in two distinct ways: a temporal-

based formulation in which the temporal domain is uniformly
partitioned into fixed intervals δt and an AC-based formulation
with a uniform δh partition. We start with the uniform-δt
resolution.After substitutingΔt ¼ f−1ðh2;h1Þ and thenmultiplying
and dividing the log argument in [S28] by the Jacobian τ∕ðh2 − ΛÞ,
we get

I½y; ðh1;h2Þ�≊ − ln½Qðh2jh1Þ� − ln½ðh2 − ΛÞδt∕τ�: [S30]

The argument of the logarithm of the second term in [S30],
δhðh2Þ≡ ðh2 − ΛÞδt∕τ, is required to achieve a uniform temporal
resolution δt. Note that this uniform temporal resolution defines a
variable h resolution. Themutual information IACðδtÞ is calculated
by averaging [S30] over h2 and h1:

IACðδtÞ≊Hðh2jh1Þ −
Z

1

Λ
q∞ðh2Þ ln½ðh2 − ΛÞδt∕τ�dh2; [S31]

where the first term is the conditional entropyHðh2jh1Þ. If there is
adaptation independence, then IAC is not conditioned on h1, so
thatHðh2Þ ¼ Hðh2jh1Þ, in which case the independent h sequence
possesses all of the stimulus information available in the tempo-
rally correlated spike train. This powerful result enables a simple
coding of input fluctuations by the independent h sequence that
does not require conditional probabilities to decode.

To get the δh-uniform information IACðδhÞ, note that the
second term in [S31] is the information associated with the
change of variables from the uniform time resolution δt to the
nonuniform h resolution. The nonuniform h resolution requires
a very fine partition [small δhðh2Þ] for low h2 values in order
to discriminate long ISIs uniformly well. It is perhaps unrealistic
to expect a biological detector of the AC states to have a highly
nonuniform resolution. Therefore, we consider the second term
in [S31] to be unobtainable information in practice. To obtain a
uniform h-resolution information, we replace the second term in
[S31] with − lnðδhÞ:

IAC ≡ IACðδhÞ≊Hðh2jh1Þ − lnðδhÞ; [S32]

which is equivalently the h-sequence entropy rateHðh2jh1Þ plus a
constant. Eq. S32 above is the mutual information that we refer to
in Eq. 14 of the main text. Furthermore, this approximation (≊)
in [S31] and [S32] becomes more precise as δt and δh, respec-
tively, become smaller (provided τx ≪ δt). Hence, we state [S32]
as an equality in the main text. Note also, to compare [S31] and
[S32] with other information (see main text), we have ignored
the additive constant resolution terms lnðδtÞ and lnðδhÞ in favor
of a nonambiguous universal reference point, as is customary (7).

Information Gain. The Kullback–Leibler (KL) divergence is de-
fined as follows:

DKLðs;ΔsÞ ¼
Z

1

Λ
qsþΔs
∞ ðh0Þ

Z
1

Λ
QsþΔsðhjh0Þ ln

�
QsþΔsðhjh0Þ
Qsðhjh0Þ

�
dhdh0:

[S33]

By using the representation of Qðhjh0Þ defined in Eq. S12 above,
the divergence is calculated to be

DKLðs;ΔsÞ ¼ βΔs − ð1 − e−βΔsÞ ×⋯ [S34]

Z
qsþΔs
∞ ðh0Þ

Z
QsþΔsðhjh0ÞLðh;h0Þdhdh0: [S35]

We find the integral factor in [S35] is equivalent to unity, shown
as follows. For simplicity we drop the sþ Δs superscripts and note
that Θ½f−1ðh;h0Þ� > 0 when h ≤ Λþ ð1 − ΛÞh0, thereby defining
the inner integral upper integration limit:
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Z
1

Λ
q∞ðh0Þ

�Z
Λþð1−ΛÞh0

Λ
L0e−LLdh

�
dh0 [S36]

¼
Z

1

Λ
q∞ðh0Þ

�
½−e−LL�Λþð1−ΛÞh0

Λ þ
Z

Λþð1−ΛÞh0

Λ
Qdh

�
dh0 [S37]

¼
Z

1

Λ
q∞ðh0Þdh0 ¼ 1; [S38]

because LðΛ;h0Þ ¼ ∞ and L½Λþ ð1 − ΛÞh0;h0� ¼ 0. Note that the
divergence is independent of s, depending only on Δs:

DKLðs;ΔsÞ ¼ βΔs − ð1 − e−βΔsÞ: [S39]

Poisson Information Gain. In this section we detail how to compute
the information gain DKLðs;ΔsÞ for a Poisson process. To make
the Poisson process comparable to the AC model, we specify that
the change in the Poisson firing rate is the same as the firing-rate
change of the AC system for a baseline change Δs at a given s.
Note that DKL for a Poisson process of a given rate γðsÞ is

DPoisson
KL ðs;ΔsÞ≡ − ln

�
γðsÞ

γðsþ ΔsÞ
�
− 1þ γðsÞ

γðsþ ΔsÞ : [S40]

The proportional change in firing rate for the AC system is
Δf A∕f A. A Poisson process that undergoes the equivalent propor-
tional firing-rate change can be described by the rate function
γðsÞ, where γðsþ ΔsÞ≡ f A and the difference in firing rate is
Δf A ≡ γðsþ ΔsÞ − γðsÞ. Hence, the proportional rate change is
Δf A∕f A ¼ 1 − γðsÞ∕γðsþ ΔsÞ. Plugging this into [S40], we get

DPoisson
KL ðs;ΔsÞ ¼ − ln

�
1 −

Δf A
fA

�
−
Δf A
fA

: [S41]

A sufficiently small baseline change Δs will produce a small
Δf A∕f A, in which case we can Taylor expand [S41] to the first
nonzero order so that

DPoisson
KL ðs;ΔsÞ ≈ 1

2

�
Δf A
f A

�
2

: [S42]

Dividing [S43] by Δf A∕f A, we get the information gain per
proportional change in firing rate:

DPoisson
KL ðs;ΔsÞf A∕Δf A ≈

1

2

�
Δf A
fA

�
: [S43]

Recall from Information Gain that AC systems have a constant
information gain DKL over s, so the factor f A∕Δf A accounts
for all the variation as a function of s. Hence, the Poisson and
AC-system information gain per proportional change in firing
rate are inversely related to first order, as stated in the main text.
Hence, as the AC information gain per proportional change in
firing rate increases to the optimal input point shown in Fig. 3
of the main text, the Poisson process decreases over the same
input range.

Notes to Numerical Computations. In this section we summarize
briefly the numerical methods used to compute the results in
all the figures of the main text.

Fig. 1. (A and B) Numerical simulations of the ML model with
parameters are listed in SI Methods. The autocorrelation func-
tions (C and D) were computed from 10,000-spike, free-running
simulations.

Fig. 2. (A) From the same simulations as Fig. 1, we measured the
HðtÞ at the local minimum point just prior to spike [HðtÞ preac-
tivation] and the subsequent local maximum point of activated
level hi just after spiking. For visual clarity, we plotted only every
tenth spike of the 10,000 spikes simulated (the same method was
employed in Fig. S1). (B) From the 10,000 Monte Carlo-gener-
ated spikes, we created empirical probability distributions. The
analytical approximation q∞ðhÞ was computed from Eq. S14
above in Approximation of HðtÞ and Derivation of Qðhjh0Þ or,
equivalently, Eq. 7 of the main text with the integral upper limit
set to unity. (C) Conditional ISI distributions were empirically
generated by simulating the ML model for 3,000 spikes for each
value of h. Each spike was simulated with randomized input
initial conditions for xðtÞ, but a fixed initial condition with
h ¼ 0.25, 0.30, and 0.35, respectively, for each example curve.
The variable silent periods listed are approximate. The analytical
conditioned ISI densities were computed as pðΔtjhÞ ¼ λðhe−Δt∕τÞ
exp½−∫ Δt

0 λðhe−u∕τÞdu�, for each h value. (D) Just as in A and B, the
Monte Carlo-generated distribution was constructed from the
10,000 spikes. The unconditioned analytic density was computed
from pðΔtjhÞ and q∞ðhÞ shown in B and C and by using Eq. 5 of
the main text.

Fig. 3. (A) We computed qs∞ðhÞ by constructing the full Qsðh;h0Þ
functions and found the leading eigenvector associated with the
unit eigenvalue (by using ARPACK routines), which is guaran-
teed by Frobenius–Perron theory to be the limiting density
qs∞ðhÞ. Note that the analytical derivation of qs∞ðhÞ in Eq. S14
of Approximation of HðtÞ and Derivation of Qðhjh0Þ is identical
to the leading eigenvector only in the adaptation independence
regime. (B) The CV, CVZ, ρ1, ρ2, and the firing rate were com-
puted from Monte Carlo simulations of the analytic model. The
second eigenvalue η2 was computed from the matricesQsðh;h0Þ by
using ARPACK routines. Note that the CVZ was computed from
moments of Z (Eq. 10 of the main text) and not from the analytic
reduction of Eq. 13 of the main text, which is valid only in the
independent regime. (C) For s ≥ −0.06, both the mutual informa-
tion of h and the renewal ISI process were computed from qs∞ðhÞ
and pðΔtjhÞ, as described in A. For input values s < −0.06 the
computation of qs∞ðhÞ becomes singular and is thus inaccurate.
For these inputs we have instead constructed empirical h distri-
butions from Monte Carlo simulations of the analytic model.
Note that because the ISI distribution (Eq. 5 of the main text)
approaches Poisson statistics for these low inputs we have
omitted them because they would be redundant. The mutual
information of the equivalent-rate Poisson process was computed
from the empirically obtained firing rate in B. (D) The DKL for
the h process is computed to be a constant for fixed Δs and β
(Eq. 16 of the main text and Eq. S39 of Information Gain)
and is divided by the proportional change in firing rate obtained
from the firing rate in B. For the ISI renewal process, as in C,
the lower input levels (s < −0.06) required computation of
DKL from distributions constructed from Monte Carlo simula-
tions; however, for larger input levels s ≥ −0.06, we used the
analytically derived ISI distributions as in Eq. 5 of the main text.
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Fig. S1. Monte Carlo-generated data of the ML model ([S1]) plotting the preactivation HðtÞ level (the level just prior to spiking) and the postspike activation
change Δh over a large range of input currents Im ¼ 34–80 (see Fig. S2).
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Fig. S2. Monte Carlo-generated h distributions (dot-dashed lines) from the ML model ([S1]) plotted with respective analytical approximations (q∞, solid lines)
over a range of injected currents Im ¼ 34–80 ðnA∕cm2Þ. The mean firing rate (Upper Left Inset) and the CV and CVZ (Lower Left Inset) are well fit by the
analytical approximation. The autocorrelation coefficients ρk (k ¼ 1;2;3;4) of the ISI sequence (Upper Right Inset) and autocorrelation of h sequence (Lower
Right Inset) exhibit the same qualitative behavior shown in Fig. 3 of the main text. The minimum point of the first-order ISI correlation (ρ1) coincides with the
emergence of a significant nonzero secondary eigenvalue η2 of the Markov operator Q (Lower Right Inset) and the minimum point of the CVZ , which is also
consistent with Fig. 3 of the main text.
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Fig. S3. Color renderings of the transition functionsQðhiþ1jhiÞ, represented as 90 by 90matrices, for an input level in the independent regime (A) and an input
level in the nonindependent regime (B). Also listed is the secondary spectrum η2 in both panels. The blue color indicates matrix values at or very near zero.
Warmer colors indicate positive values. In the nonindependent regime in B, we have drawn the bounding line hiþ1 ¼ Λþ ð1 − ΛÞhi (dashed black line), which
represents the maximal hiþ1 that is achievable for each hi . In A, which has a lower input level, the bounding line would be drawn off the axes.
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