Supplemental Material for

THE V-MYC-INDUCED Q83 LIPOCALIN IS A SIDEROCALIN

Nicolas Coudevylle, Leonhard Geist, Matthias Hötzinger, Markus Hartl, Georg Kontaxis, Klaus Bister and Robert Konrat.

Supplemental Table S1. Primers used for site directed mutagenesis.

Supplemental Data S2. Doubly ¹⁵N/¹³C-filtered ¹H-¹H NOESY experiment

Supplemental Table S3. List of the Q83-[Ga^{III}(Ent)]³⁻ intermolecular contacts

Supplemental Figure S4. Ionic strength dependency of Q83 affinity for $[Fe^{III}(Ent)]^{3-}$

Mutation	Primers
K83A	Sense: 5'-CTCAGAGGAAGCCAAGAAAGCGGTGGAGGTGCTGGACACTGAC-3'
	Antisense: 5'-GTCAGTGTCCAGCACCTCCACCGCTTTCTTGGCTTCCTCTGAG-3'
D102A	Sense: 5'-CAGTAATCTATGCAACTGCGGTGAAGGACGGAAGGACCC-3'
RIUZA	Antisense: 5'-GGGTCCTTCCGTCCTTCACCGCAGTTGCATAGATTACTG-3'
D112A	Sense: 5'-GCTGGACACTGACTTCAAGAGCTATGC-3'
RIIJA	Antisense: 5'-GCTGTAGAGCGCCATCATGTGCAGGGTCC-3'

Supplemental Table S1. List of primers used for site directed mutagenesis.

Supplemental Data S2. Doubly ¹⁵N/¹³C-filtered ¹H-¹H NOESY experiment.

In order to measure intermolecular NOE correlation between Q83 and [Ga^{III}(Ent)]³⁻, we designed a new doubly ¹⁵N/¹³C-filtered ¹H-¹H NOESY experiment. This experiment is based on already described methodologies used for the simultaneous observation of intramolecular and intermolecular NOEs between an unlabeled ligand and a ¹³C,¹⁵N-labeled protein. These methods are 1) the use of an adiabatic ¹³C inversion pulse optimized to selectively invert the protein protons (Zwahlen *at al.*, Eichmüller *et al.*); 2) the acquisition of 4 sub spectra and their subsequent addition/subtraction leading to 4 datasets containing distinct information (Slijper *et al.*). The experiment is detailed in Fig. S1-I.

Figure S1-I. Pulse scheme for the simultaneous recording of intra-and intermolecular NOEs in protein ligand complexes. The half filters applied on the ¹³C and ¹⁵N are within brackets. Narrow and wide pulses indicate 90° and 180° pulses respectively. Unless indicated, all pulses are applied along the x-axis. Broadband ¹³C inversion (during Δ) is achieved using a WURST adiabatic pulse with a peak $\gamma B_1 = 4.5$ kHz and with apodization of the first and last 30 % using a sine function, a 60 kHz frequency sweep, and a duration of 2.8 ms. ¹³C and ¹⁵N decoupling during acquisition were achieved with WALTZ16 ($\gamma B_1 = 0.8$ kHz) and GARP ($\gamma B_1 = 0.66$ kHz) decoupling scheme. The value for Δ was 5.2 ms and the NOE mixing time was set to 150 ms. Gradient levels were as follows: g1=1.0 ms, 2.6 Gcm⁻¹; g2=1.2 ms, 2 Gcm⁻¹; g3=2.4 ms, 7 Gcm⁻¹; g4=2.0 ms, 8 Gcm⁻¹; g5=1.0 ms, 8 Gcm⁻¹. The phase cycling was $\varphi_1=(x,-x,-x,x,y,-y,-y,y)$; $\varphi_2=(x,x,-x,-x,y,y,-y,-y)$ and receiver was (x,-x). Quadrature detection in F1 is achieved by States-TPPI of φ_1 .

Four sub spectra are recorded depending if the half filters are applied ([+]) or not ([-]) :S1 : [-], [-]; S1 : [+], [-]; S1 : [-], [+]; S1 : [+], [+].

The linear combinations of this four sub spectra lead to four datasets. 2 datasets exhibiting either protein-protein $(P \rightarrow P)$ or ligand-ligand $(L \rightarrow L)$ intramolecular NOE, the 2 others carrying either protein-ligand $(P \rightarrow L)$ or ligand-protein $(L \rightarrow P)$ intermolecular NOE. The linear combinations are as follows:

S1 ·	+	S2 +	-S3	+	S4	:	L	\rightarrow	L	(intra)
S1 -	-	S2 -	S3	+	S4	:	Ρ	\rightarrow	Ρ	(intra)
S1 -	-	S2 +	-S3	-	S4	:	Ρ	→	L	(inter)
S1 ·	+	S2 -	S3	-	S4	:	L	→	Ρ	(inter)

Figure S1-II. Doubly ¹⁵N/¹³C-filtered ¹H-¹H NOESY experiment recorded on a ${^{13}C, ^{15}N}-Q83/[Ga^{III}(Ent)]^{3-}$ sample. Top frame: close-up of the P \rightarrow L intermolecular dataset. Bottom frame: close up on the L \rightarrow L intramolecular dataset.

Poo	cket I	Poo	ket II	Pocket III		
$Ala_{100} H^{\beta}$	\rightarrow H ₁ ^{Para}	$Val_{15}H^{\gamma_1}$	\rightarrow H ₂ ^{Para}	$\text{Trp}_{62} \text{H}^{\epsilon} \rightarrow \text{H}_3^{\text{Meta}}$		
Leu ₁₀₉ H ^N	\rightarrow H ₁ ^{Meta}	$Val_{15}H^{\gamma_1}$	\rightarrow H ₂ ^{Meta}	$Trp_{62}H^{\zeta} \rightarrow H_3^{Meta}$		
Leu ₁₀₉ H ^N	\rightarrow H ₁ ^{Orth}	$Ala_{35} H^{\beta}$	\rightarrow H ₂ ^{Para}	$Ala_{81} H^{\beta} \rightarrow H_3^{Orth}$		
$Leu_{109}H^{\beta_1}$	\rightarrow H ₁ ^{Orth}	$Ala_{35} H^{\beta}$	\rightarrow H ₂ ^{Meta}			
$Leu_{109}H^{\beta_2}$	\rightarrow H ₁ ^{Orth}	Met ₃₆ H ^N	\rightarrow H ₂ ^{Para}			
$Leu_{109}H^{\delta_1}$	\rightarrow H ₁ ^{Orth}	Met ₃₆ H ^N	\rightarrow H ₂ ^{Meta}			
$Leu_{109}H^{\delta_1}$	\rightarrow H ₁ ^{Meta}	$Ala_{52} H^N$	\rightarrow H ₂ ^{Meta}			
$Leu_{109}H^{\delta_2}$	\rightarrow H ₁ ^{Orth}	$Val_{53}H^{\gamma_2}$	\rightarrow H ₂ ^{Para}			
$Leu_{109}H^{\delta_2}$	\rightarrow H ₁ ^{Meta}	$Val_{53}H^{\gamma_2}$	\rightarrow H ₂ ^{Meta}			
$His_{110} H^N$	\rightarrow H_1^{Orth}	$Val_{53}H^{\gamma_2}$	\rightarrow H ₂ ^{Orth}			
Met ₁₁₁ H ^N	→ H ₁ ^{Meta}					
Met ₁₁₁ H ^N	\rightarrow H_1^{Orth}					
$Met_{111} H^{\epsilon}$	\rightarrow H ₁ ^{Meta}					
$Met_{111} H^{\epsilon}$	\rightarrow H_1^{Orth}					

Supplement Table S3. List of the Q83-[Ga^{III}(Ent)]³⁻ intermolecular contacts.

Supplemental Figure S4. Ionic strength dependency of Q83 affinity for [Fe^{III}(Ent)]³⁻. The affinity of Q83 for was measure by fluorescence quenching at different ionic strength (20 mM, 0.5 M, 1 M, 1.5 M and 2 M).

REFERENCES TO SUPPLEMENTAL MATERIAL

Zwahlen, C., Legault, P., Vincent, S., Greenblatt, J., Konrat, R., and Kay, L. E. (1997) *J. Am. Chem. Soc.* **119**, 6711-6721

Eichmuller, C., Schuler, W., Konrat, R., and Krautler, B. (2001) *J. Biomol. NMR* **21**, 107-116

Slijper, M., Kaptein, R., and Boelens, R. (1996) *J. Magn. Reson. B* **111**, 199-203