
Supplementary information

Comparing the Poincaré oscillator with the Hopf oscillator

The results presented in Figures 2 and 3 in the paper show generic features of an
oscillator under entrainment. Here, we compare these results with the behaviour
of the standard Hopf oscillator. This oscillator is described by the following equa-
tions:

dr

dt
= λr(A0 − r2)

dφ

dt
=

2π

τ
.

Here, λ is the amplitude relaxation rate, A0 is the amplitude, and τ is the os-
cillator period. In Figure S1 we numerically calculated the entrainment region
(known as the 1:1 Arnold tongue) for the Hopf oscillator as a function of the zeit-
geber strength and zeitgeber period. As zeitgeber we used square pulses, i.e. an
entrainment signal of period T is sculpted as a T/2 h on : T/2 h off square wave.
The magnitude of the “on” state is the zeitgeber strength. Consistent with the
results presented in Figure 2 of the paper, here the weak oscillator, i.e. the one
with smaller λ, has a larger entrainment region whereas the rigid oscillator has a
smaller entrainment region.

Comparing the generic oscillators with a biophysical model of

coupled circadian oscillators

In order to further justify the use of the generic Poincaré oscillator model in the
simulations (and in the analytical treatment below), we wished to assert that
its behavior is consistent with that of a biophysically motivated circadian clock
model. To this end, we followed Bernard et al. (2007), and studied two cou-
pled mammalian circadian oscillators, each one as originally modeled by Becker-
Weimann et al. (2004). To this original model, Bernard et al. (2007) introduced
cell-to-cell coupling via a neurotransmitter, and obtained this system of coupled
ordinary differential equations:
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In all, this model accounts for the mRNA of clock proteins, e.g. Per or Cry (y1),
the corresponding cytosolic (y2), and nuclear proteins (y3). The nuclear clock pro-
teins inhibit the production of their own messages: this is why find the variable
y3 in the denominator of the Hill function that describes the production of y1.
This core negative feedback loop is supplemented by interlocked positive loops,
here modeled as being formed between clock proteins and the bHLH transcrip-
tion factor BMAL: the production of BMAL mRNA (y4) is assumed to be stim-
ulated by nuclear clock protein (y3). This stimulation forms a positive feedback
loop, since cytosolic BMAL (y5) and free nuclear BMAL (y6) finally lead to the
DNA-bound cis-activating form (y7), which activates the transcription of clock
protein mRNA. The activation of BMAL transcription by clock proteins could oc-
cur via clock-protein induced transcriptional repression of inhibitors of BMAL
transcription, such as Rev-erbα (Reppert and Weaver, 2002). However, a great
number of different positive feedback routes are conceivable (Ueda et al., 2005).
The variables y1 to y7 with the interlocked negative and positive feedback loop
represent the core mammalian circadian clock. To the original Becker-Weimann
model, Bernard et al. (2007) added a module that describes cell-to-cell coupling,
assumed to be mediated by a neurotransmitter v (Welsh et al., 2010), modeled to
follow the dynamics of the cytosolic clock protein y2. As elsewhere in the paper,
we considered coupling of two oscillators; j = 1 or 2. If diffusion of neuropeptide
is fast compared to the circadian time scale, the oscillators experience an averaged
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(mean field) concentration Q of the secreted neuropeptides:

Q =
K

2
(v1 + v2) ,

where K is the coupling strength. The mean field Q is modeled to activate an
intracellular two-step cascade, schematized as PKA (x1) and CREB (x2) activation,
which in turn is assumed to activate transcription of clock protein mRNA (y1).

The parameters of the model were exactly as in the original report (Bernard
et al., 2007), namely: v1b = 9.0, k1b = 1.0, k1i = 0.56, p = 3, h = 2, kx1i = 1,
k1d = 0.18, k2b = 0.3, q = 2, k2d = 0.1, k2t = 0.36, k3t = 0.02, k3d = 0.18,
v4b = 1.0, k4b = 2.16, r = 3, k4d = 1.1, k5b = 0.24, k5d = 0.09, k5t = 0.45,
k6t = 0.06, k6d = 0.18, k6a = 0.09, k7a = 0.003, k7d = 0.13, k8 = 1.0, k8d = 4.0,
kx1 = 3.0, x1T = 15.0, kdx1 = 4.0, kx2 = 0.25, x2T = 15.0, kdx2 = 10.0. The unit
of these parameters is h−1, except kx1i (nM(h − 1)); k2b (h−1nM− (q − 1)); k1b, k1i,
and k4b (nM); kx1 and kx2 (h−1nM−1); v1b, v4b, and F (nM h−1); and xT (nM). The
external entrainment signal F is in this model assumed to act on the transcription
of clock proteins. We studied the unforced system (F = 0), as well as the forced
system with F being a square waveform with period T, during which it alternates
between 0 and 0.03 with equal durations. Forcing period T and coupling strength
K were varied, in order to analyze this model’s behaviour in relation to that of the
Poincaré model.

We set out to qualitatively replicate Figure 5 of the paper with this model.
First, we studied the unforced coupled system. This system is damped for low
coupling strengths, producing self-sustained oscillations only for K > 0.4941 h−1.
This is in line with experimental findings that SCN neurons lose their coherent
self-sustained rhythm when coupling is severed (Liu et al., 2007; Webb et al., 2009).
Figure S2A shows how the relative oscillation amplitude of y1 (amplitude divided
by mean) of the unforced system increases as the coupling strength further in-
creases, as is the case for the Poincaré oscillator (Figure 5A in the paper). We pro-
ceeded to calculate the amplitude relaxation rate of the oscillator (i.e. the Floquet
exponent representing the slowest time scale), as a function of coupling strength
(using Cl_MatCont (Dhooge et al., 2008), see the Materials and methods section of
the paper). The result is shown in figure S2B, and demonstrates a strong, depen-
dence of the relaxation rate on the coupling strength, much like for the Poincaré
oscillator (Figure 5B of the paper). Finally, we studied the lower limit of entrain-
ment as a function of the coupling strength, and found that the entrainment range
decreases with increasing coupling strength, again in qualitative agreement with
the results obtained for the Poincaré oscillator (Figure 5C of the paper). The lower
limit of entrainment (a torus bifurcation in this case) takes a dramatic turn and
for low coupling strengths, the system is close to being damped and can entrain
to almost any forcing period T. Such behaviour has been studied earlier, e.g.
in the context of forced coupled Duffing oscillators (Kozlowski et al., 1995). As
for the calculations in Figure 5C, we normalized the lower limit of entrainment
to the period of the unforced system at corresponding coupling strengths, then
multiplying with 24 hours, since coupling somewhat increases the period of the
unforced system itself. This period change otherwise slightly exaggerates the
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effect of the coupling on the lower limit of entrainment. See the Materials and
methods section of the paper for details.

Entrainment: analytical expressions

In this section we outline an analytical approach that captures many of the previ-
ous results and sets a theoretical framework for entrainment studies. Our goal in
this section is to show that the presented results represent generic oscillator prop-
erties. We consider a general oscillator model with minimal assumptions and
study its entrainment properties. The mathematical approach presented here has
successfully been used to study other oscillator models such as the well-known
van der Pol oscillator. For a comprehensive introduction to the study of forced
oscillators, see Balanov et al. (2009), where much of the theory below is outlined.
For clarity the oscillator is described in radial coordinates, with radial evolution
dr
dt = f (r) and phase evolution

dφ
dt = ω0, where f (r) describes the radial dynamics

and ω0 is the oscillator frequency (in all numerical calculations taken to be 2π/24
h−1). The entrainment signal is applied in the x-coordinate direction and is a sinu-
soidal function B sin(Ωt) with the zeitgeber strength B, the zeitgeber frequency
Ω and time t. Note that ω0 = 2π

τ and Ω = 2π
T , where τ is the oscillator intrinsic

period and T the zeitgeber period. The oscillator equations under entrainment
take the form:

dr

dt
= f (r) + B sin(Ωt) cos(φ)

dφ

dt
= ω0 −

B sin(Ωt)

r
sin(φ).

Here, r and φ describe the radius and the phase under periodic forcing. When
an oscillator is entrained, it reaches a stable phase relation with the zeitgeber
and thus their phase difference becomes constant. Therefore, in order to study
entrainment it is convenient to rewrite these equations as phase difference equa-
tions. Thus we define ψ = φ − Ωt as the phase difference between the entrain-
ment signal and the forced oscillators. We have

dr

dt
= f (r) + B sin(Ωt) cos(ψ + Ωt)

dψ

dt
= ∆ −

B

r
sin(Ωt) sin(ψ + Ωt),

where ∆ = ω0 − Ω is defined as detuning. Assuming that the phase difference
ψ(t) and radial dynamics r(t) have a much slower timescale than the entrainment
signal, we can use the averaging method developed by Krylov and Bogoliubov
as used by Balanov et al. (2009). After averaging the phase difference equations
lead to:

dr̄

dt
= f (r̄) +

B

2
cos(ψ̄) (S1)

dψ̄

dt
= ∆ −

B

2r̄
sin(ψ̄). (S2)
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Here, r̄ and ψ̄ describe the forced averaged radial and phase dynamics, respec-
tively. For simplicity, in the following we keep the non-averaged notation r and
ψ. In the entrained state both the entrained amplitude and phase are constant,

i.e.
dψ
dt = 0 and dr

dt = 0. Note that r(t) depends on the specific radial dynam-
ics described by f (r). Nevertheless, without specifying f (r) but assuming that
r(t) ≃ A0 near the borders of the entrainment region (see Figure 2B of the paper)
we obtain an expression for the lower limit of entrainment:

TLow =
τ

1 + Bτ
4πA0

. (S3)

With this equation we can plot the predicted lower limit of entrainment TLow

as a function of the ratio between zeitgeber strength and oscillator amplitude
and compare it to simulations from different oscillator models. In Figure S3 a
good agreement between simulation results from three oscillator models (linear,
i.e. with radial dynamics described by f (r) = λ(A0 − r), Poincaré, and Hopf-
like oscillator) and the theoretically predicted curve is observed. To obtain an
analytical expression that correctly describes the dependence of the lower limit
of entrainment on the ratio zeitgeber strength to oscillator amplitude we used an
averaging method that averages out the dependence on λ. Thus, contrary to the
results presented in the main text of the paper, Equation S3 does not describe the
dependence of the lower limit of entrainment on the radial relaxation rate λ.

Moreover, the phase of entrainment can be deduced from the averaged phase
dynamics, Equation S2. Assuming again that r(t) ≃ A0 near the borders of the
entrainment region (see Figure 2B) we find the stable phase of entrainment as the
solution of ∆ = B

2A0
sin(ψent) that leads to:

ψent = arcsin

(

2A0∆

B

)

.

Furthermore, we can specify in Equation S1 a particular oscillator model and
calculate the entrained amplitude. As an example, for the linear oscillator with
radial dynamics described by f (r) = λ(A0 − r), the entrained amplitude is

Aent =
λ2A0

λ2 + ∆2
+

√

√

√

√

(2λ2A0)
2
− (λ2 + ∆2)

(

4λ2A2
0 − B2

)

4 (λ2 + ∆2)
2

.

In Figure 2B of the paper, we plotted this analytical expression of the entrained
amplitude Aent for a weak and rigid oscillator together with simulations results
and found a good agreement. The entrained amplitude will reach a maximum
when the zeitgeber period equals the oscillator period, i.e. ∆ = 0 , and a mini-
mum at the limits of entrainment.

Note that the approximation r ≃ A0 is valid at the limits of the entrainment
region, for small zeitgeber strength or for large radial relaxation rates (in our
simulations, λ & 0.03).
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Supplementary materials and methods

In vitro tissue culture

We cultured SCN and lung tissues from mice as described elsewhere with a few
modifications (Abe et al., 2002). Briefly, animals were sacrificed via cervical dis-
location and their brains and lungs transferred to chilled Hank’s buffered saline
solution (HBSS, pH 7.2, Sigma) supplemented with 0.01 M HEPES (Sigma), 100
units/ml penicillin and 0.1 mg/ml streptomycin, and 4 mM NaHCO3 (Invitro-
gen, Carlsbad, CA). For tissue culture, 300 µm coronal sections of the brain and
lung were obtained with a tissue chopper (McIllwain, UK). The brain slice con-
taining the SCN was identified, and the bilateral, medial SCN dissected out using
a pair of scalpels. All tissues were cultured individually on a Millicell membrane
(Millipore, Bedford, MA, USA) in a petri dish with 1 ml of Dulbecco’s Modi-
fied Eagle’s Medium (Sigma) supplemented with 10 ml B27 supplement (50x,
Invitrogen, Carlsbad, USA), 10 mM Hepes (Sigma), 2.2 mg/ml NaHCO3 (Invitro-
gen, Carlsbad, USA) and 0.1 mM beetle luciferin (BioThema, Handen, Sweden).
Petri dishes were covered with glass slides, sealed with grease and placed un-
der temperature adjustable photomultiplier tubes (HC135-11MOD, Hamamatsu,
Shizouka, Japan, modified by Technische Werkstätten Charité, Berlin, Germany)
at 37 °C, 5% CO2 in the dark. Bioluminescence was recorded in 5 min bins for
at least 12 days. SCN slices were incubated in 1 ml DMEM at 37 °C, 5% CO2 for
about 3 weeks prior to the start of the bioluminescence recording to allow the
slice culture to consolidate, while recording of lung cultures started 1 to 7 days
after dissection.

Entrainment to different strengths of the temperature zeitgeber

In order to investigate entrainment with different zeitgeber strengths,
PER2::LUCIFERASE SCN and lung slices were recorded at a constant temper-
ature of 37 °C as described. After the second or third peak of PER2::LUC biolu-
minescence temperature was decreased to a final level of 36.25 °C to 29 °C (cold
phase) depending on the respective zeitgeber strength (∆T) applied. The cold
phase lasted for 10 (T = 20 hours) or 11 hours (T = 22 hours) before temperature
increased again to 37 °C for 10 or 11 hours. Temperature entrainment comprised
six cycles before a constant 37 °C was assumed. The first cold phase started at the
minimum of PER2::LUC bioluminescence as determined by online registration.
In order to simulate gradual temperature changes at dusk and dawn, each 10-
hour or 11-hour temperature phase was preluded by a 2-hour gradual increase or
decrease of the temperature.

Forskolin stimulation

To investigate phase changes of SCN and lung slices in response to a chemical
stimulus, cultures received single injections of forskolin (Sigma), an activator of
adenylyl cyclase which increases intracellular cyclic AMP levels. Forskolin has
been shown to perturb clock functions in peripheral and central oscillators before
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(Obrietan et al., 1999; Yagita and Okamura, 2000; Brown et al., 2008). Injections
were performed exactly 6 hours after peak bioluminescence of the respective cul-
ture as determined by online registration. 100 µl of culture medium containing
different forskolin concentration were injected through a small hole in the lid of
the dish to obtain final concentrations of 0.05 µM, 0.2 µM, or 10 µM forskolin,
respectively, in the dishes. During the procedure, the dishes were not removed
from the incubator and the online registration was not disturbed. Each culture
received only a single forskolin stimulus. Cultures were kept at a constant 37 °C
at all times. Phase changes in response to forskolin stimulation were determined
by calculating the differences between predicted (extrapolations using the peak
period before stimulation) and actually measured peak phases following stim-
ulation. Forskolin injections resulted in either phase delays or advances of the
predicted peaks.

Single cell recordings and data evaluation

PER2::LUC mice were sacrificed by cervical dislocation, their brains removed,
collected in chilled HBSS, and sectioned at 300 µm using a McIllwain tissue chop-
per. SCN tissue was dissected out as described above and placed on a piece
of Millicell membrane located on an intact Millicell membrane insert in 1 ml of
DMEM (specifications see above). Slices were incubated at 37 °C/5% CO2 for
about 2 days. Subsequently, SCN on Millicell membrane pieces were inverted and
cultured in 100 µl DMEM on the bottom of poly-D-lysine/5% laminine-coated
35 mm IBIDI tissue culture dishes with grid. Again, slices were incubated at
37 °C/5% CO2 and the culture medium exchanged daily. On day 3–5, the cul-
ture medium was replaced by 500 µl DMEM supplemented with 0.18 mg/ml
NaHCO3 and 0.1 mM beetle luciferin (BioThema, Handen, Sweden), the petri
dish was sealed with grease and placed in a light-tight imaging chamber. Bio-
luminescence imaging was carried out in complete darkness with a 10x objec-
tive and an inverse setup including an intensified digital camera (XR/Mega-10Z,
Stanford Photonics, CA, USA). Temperature was kept constant at 37 °C using thin
transparent glass heaters (Cell Micro Controls, VA, USA) placed on the lid of the
petri dish. Images were stored in 10 min bins over the course of several days. For
MDL-treatment, culture medium was exchanged by DMEM supplemented with
0.1 mM beetle luciferin and 10 µM MDL (Sigma, St. Louis, USA) and imaging
was resumed immediately.

10 min exposures were stacked and resulting movies smoothed using a 15 im-
age running average (Piper 1.3. software, Stanford Photonics, USA) or, alterna-
tively, raw movies were subjected twice to a Kalman filter (ImageJ software, NIH,
USA). Raw time-series data were visually inspected and only cells that displayed
(i) at least x − 2 peaks with a period roughly between 18–30 hours (x = number
of days recorded) and (ii) not more than one double-peak (2 peaks in 24 hours
of recording time) were included in further analysis. Note that due to technical
limitations cells tracked before and after MDL-treatment were not identical.
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Numerical Calculations

The biophysical Becker-Weimann-Bernard model was analyzed using the Matlab
toolbox Cl_MatCont (Dhooge et al., 2008). The phase response curve presented in
Figure S3A was numerically calculated using the Poincaré oscillator described by
Equation 1 of the paper, with A0 = 1 under horizontal square-like perturbations.
Both the weak (λ = 0.03 h−1) and the rigid version (λ = 1 h−1) were perturbed
at 60 different phases with square pulses of 2 h and amplitude 0.5 h−1 and their
phase changes were estimated as described by Granada et al. (2009). In Figure
S5A, the phase of entrainment was calculated for a weak Poincaré oscillator en-
trained to sinusoidal cycles (see Materials and methods in the paper) applied in
the horizontal coordinate. We use a zeitgeber period of 20 h and an increasing
zeitgeber strength from 0 to 0.4 h−1. As phase marker we use the mean value
crossing of the entrained oscillator (after transient time) calculated with the Rob
Clewley’s “getcrossings.m” Matlab function. The phase of entrainment is calcu-
lated here as the stable phase difference between the phase of the zeitgeber and
the phase of the entrained oscillator, i.e. ∆φ = φzeitgeber − φoscillator. Thus a phase
advance result in an earlier crossing time and a phase delay in a later crossing
time. In Figure S8B we calculated the phase of entrainment as a function of the
oscillator radial relaxation rate λ. Here a Poincaré oscillator was entrained to si-
nusoidal cycles of 20 h and amplitude 0.2 h−1 and the phase of entrainment was
calculated as described above.
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Figures S1-S8

Figure S1: Numerically calculated entrainment zone for the Hopf oscillator. The entrainment

region is plotted as a function of the zeitgeber strength and period, also known as the 1:1 Arnold

tongue. Weaker oscillators (smaller λ) exhibit a broader entrainment region. Computational de-

tails are given in the Materials and methods section of the paper.
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Figure S2: Replication of Figure 5 of the paper, for the biophysically motivated Becker-

Weimann-Bernard model (Bernard et al., 2007). Two coupled oscillators were modeled, and the

following dependences on the coupling strength K were studied: (A) the unforced relative ampli-

tude of the variable y1; (B) the unforced relaxation rate; and (C) the lower limit of entrainment of

the forced system.
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Figure S3: A chemical zeitgeber elicits differential responses in weak and strong oscillators. (A)

The amplitude of the phase response curve depends on the oscillator radial relaxation rate. A

phase response curve (PRC) describes how perturbations shift the phase of the oscillator. Weak

oscillators (dots) suffer stronger phase shifts to perturbations than do rigid oscillators (diamonds).

The peak-to-trough amplitude of the weak oscillator PRC (from the maximum phase delay to the

maximum phase advance) is about 10 h whereas the PRC peak-to-trough amplitude of the rigid

oscillator is 8 h. Note that this difference in the PRC peak-to-trough amplitude is consistent with

the entrainment range difference shown in Figure 2A. Both PRCs were numerically calculated

using the Poincaré oscillator described by Equation 1 of the paper, with radius A0 = 1. The

phase changes were estimated as described by Granada et al. (2009). When applying perturbations

in order to calculate the PRC, we used an horizontal square pulse of amplitude 0.5 h-1 and 2

hours length. Computational details are given in Supplementary Material and methods. (B) Lung

and SCN react differently in response to forskolin (an activator of cAMP-dependent signaling

pathways) as a zeitgeber. Injections of either 0.05 µM forskolin to the culture media of SCN and

lung slices resulted in no phase shifts of circadian PER2::LUCIFERASE oscillations in both lung

and SCN, while 0.2 µM resulted in significantly large phase delays in lung slices and small phase

advances in SCN slices (Kruskal-Wallis-statistics, p < 0.001). With reference to (A) these data

confirm experimentally that weak oscillators (lung slices) respond with larger phase shifts than

rigid oscillators (SCN slices). SCN slices are able to respond substantially to forskolin stimulation

as shown by the phase advances in response to the application of 10 µM forskolin. In fact, SCN

phase responses to forskolin stimulation appear to be dose-dependent.
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Figure S4: Lower limit of entrainment (TLow) as a function of the zeitgeber to oscillator ampli-

tude ratio. The theoretically predicted curve (black solid line) is plotted together with numeri-

cally calculated (dots) lower limit of entrainment from a linear, Hopf and Poincaré oscillator with

λ = 0.01 h-1. Further computational details can be found in the Materials and methods section of

the paper.
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Figure S5: Entrainment properties are dependent on zeitgeber strength. (A) Numerically cal-

culated phase of entrainment for a Poincaré oscillator (see Equation 1 of the paper) as a function

of the zeitgeber strength. Stronger zeitgebers advance the phase of entrainment resulting in an

earlier peaking time of the oscillation. For this simulation we study a weak oscillator (λ = 0.03

h−1) of radius A0 = 1 and fixed the zeitgeber period to 20 h. Computational details are given in

Supplementary Material and methods. (B) Entrainment of lung tissue to T = 20 hour zeitgeber

cycles. Peak times of PER2::LUCIFERASE bioluminescence derived from four individual lung

slices and three individual SCN slices. Between days 4 and 9, in vitro cultures were subjected

to 20-hour temperature cycles with 10 hours cold phases (blue boxes) of 36.25 °C (∆T = 0.75 K),

35.5 °C (∆T = 1.5 K, lung only), 34 °C (∆T = 3 K), or 31 °C (∆T = 3 K), respectively, alternating

with 10-h warm phases of 37 °C. Following day 9, cultures were kept at a constant 37 °C. All four

lung tissues fully entrained to the temperature cycles, while none of the SCN tissues did. (C)

Time-series of relative PER2::LUCIFERASE bioluminescence derived from two lung slices shown

in (B). Cultures were subjected to 20-h temperature cycles (blue box = cold phase) with ∆T= 0.75 K

(red) and ∆T = 6 K (orange). Note the different phase angles of entrainment to the zeitgeber: the

tissue subjected to the stronger zeitgeber (∆T = 6 K) peaks earlier than the tissue exposed to the

weaker zeitgeber (∆T = 0.75 K). In addition, the stronger zeitgeber elicits a pronounced amplitude

expansion in PER2::LUCIFERASE during entrainment. (D) Phase angles of entrainment (hours

after onset of the cold phase) of the lung slices shown in (B). Means ± s.e.m. of the last four days

of entrainment show a zeitgeber dose-dependent effect: the stronger the zeitgeber, the earlier the

peak phase.
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Figure S6: The SCN entrains to a T = 22 hour zeitgeber cycle. (A) Peak times of

PER2::LUCIFERASE bioluminescence derived from three individual SCN slices. Between days

3 and 8, in vitro cultures were subjected to 22-hour temperature cycles with 11 hours cold phases

(blue boxes) of 33 °C (∆T = 4 K), 31 °C (∆T = 6 K), and 29 °C (∆T = 8 K), respectively, alternating

with 11 hours warm phases of 37 °C. Following day 8, cultures were kept at a constant 37 °C.

The SCN slices subjected to the two stronger zeitgebers (∆T = 6 K, light green, and ∆T = 8 K,

olive) entrained to the temperature cycles, while the SCN exposed to the weaker zeitgeber (∆T =

4 K, green) assumed a stable phase relationship with the temperature cycles, which, however, did

not transfer when the cultures were released into constant 37 °C. Hence, the SCN with ∆T = 4 K

was “masked” by the temperature cycle, but did not entrain to the T = 22 hour temperature cycle.

(B) Time-series of relative PER2::LUCIFERASE bioluminescence derived from all three SCN slices

shown in (A). Cultures were subjected to 22 hour temperature cycles (blue box = cold phase) with

∆T = 4 K (green), ∆T = 6 K (light green), and ∆T = 8 K (olive). Note the different phase angles

of entrainment to the zeitgeber: the tissue subjected to the stronger zeitgeber (∆T = 8 K) peaks

later than the tissue exposed to the weaker zeitgeber (∆T = 6 K). This is in contrast to the situation

in lung tissue (see Figure S5). As noted in (A), peak bioluminescence of the SCN slice with the

lowest zeitgeber strength (∆T = 4 K) was masked, but not entrained by the temperature cycles.

Compared to lung slices, entrainment did not elicit a pronounced increase in PER2::LUCIFERASE

amplitude, but somehow reduced the damping (as it can be seen in the non-entrained ∆T = 4 K

case) substantially.
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Figure S7: Pharmacological decoupling of SCN cells leads to de-phasing of single cell oscil-

lations. Single cell analyses of three different SCN slices were performed independently, one of

which is also presented in Figure 6C. Polar plots show the peak times of PER2-driven biolumi-

nescence of individual SCN cells during the third day of slice recording. Each dot represents the

phasing of a single cell. Single cell phases in the untreated SCN slice (upper panel) clustered sig-

nificantly (Rayleigh test: SCN1: r = 0.46, p < 0.001, n = 46; SCN2: r = 0.26, p < 0.05, n = 67;

SCN3: r = 0.8, p < 0.0001, n = 49), but were randomly distributed during MDL-treatment (lower

panel; Rayleigh test: SCN1: r = 0.23, p > 0.05, n = 45; SCN2: r = 0.2, p = 0.3, n = 30; SCN3:

r = 0.26, p = 0.07, n = 40). Arrows in polar plots represent the mean vectors; the direction

denotes the mean phase, and length measures the tendency of the data to cluster based upon a

Rayleigh test where r values range from 0 (randomly phased) to 1 (all cells peak at the same time).
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Figure S8: Entrainment phase is dependent on coupling. (A) SCN slices cultured in the pres-

ence of different MDL concentrations show differential entrainment to T = 20 hour temperature

cycles. SCN slices were cultured in medium supplemented with 1.25 µM (dark green), 5 µM (light

green), and 10 µM (olive) MDL, respectively, which are speculated to convey different degrees of

decoupling (high concentration = strong decoupling; low concentration = weak decoupling). In

line with our theory (see panel B), SCN treated with 5 and 10 µM MDL, i.e. presumably strongly

decoupled tissues, are able to entrain their PER2::LUCIFERASE bioluminescence rhythms to a

T = 20 hour temperature cycle (also see Figure 6E), while the presumably less decoupled SCN

(1.25 µM) does not. Also note that the SCN treated with 10 µM MDL peaks later with respect to

the onset of the temperature zeitgeber than the SCN treated with 5 µM MDL. This is consistent

with our experimental findings that stronger zeitgebers result in earlier peak phases (see Supple-

mentary Figure S6), and also with the simulation described in panel (B) (see below). Displayed

are peak times of PER2::LUCIFERASE bioluminescence derived from three individual SCN slices.

Between days 3 and 8, in vitro cultures were subjected to 20-hour temperature cycles with 10-hour

cold phases (blue boxes) of 35.5 °C (∆T = 1.5 K), alternating with 10-hour warm phases of 37 °C.

Following day 8, cultures were kept at a constant 37 °C. (B) Numerically calculated phase of

entrainment for a Poincaré oscillator (see Equation 1 of the paper) as a function of its radial relax-

ation rate λ. Weak oscillators have a later phase of entrainment than rigid oscillators. Note that

in our interpretation, MDL treated SCN slices behave as weak oscillators whereas untreated SCN

slices behave as rigid oscillators. The simulation is thus consistent with the phases of slices treated

with 5 µl and 10 µl respectively, as described in panel (A) above. For this simulation we study a

Poincaré oscillator entrained to a 20 h and 0.2 h−1 zeitgeber period and amplitude, respectively.

Computational details are given in Supplementary Material and methods.

17



Supplementary Movies S1-S4

Pharmacological decoupling of SCN cells leads to de-phasing of single cell
oscillations. Using an ultrasensitive ICCD camera, 10 min exposures of
PER2::LUCIFERASE bioluminescence derived from cultured SCN slices were
sampled over the course of several days. Two representative SCN slices were
individually recorded for about 5 days (untreated; movies S1 and S3) before the
medium was changed to culture medium supplemented with 10 µM MDL (MDL;
movies S2 and S4), and recording was resumed. The movies were analyzed as de-
scribed below and shown in Figure 6A-C.
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Table S1: Periods of PER2::LUCIFERASE bioluminescence rhythms before, during, and after 

temperature entrainment. Convergence of bioluminescence periods with the imposed 

temperature cycle suggests entrainment. Experimental conditions are indicated. 

* SCN tissue showed “masking” in response to the temperature cycle. Hence, periods reflect entrainment , 

while the tissue did not seem to be entrained in the phase analysis (see Fig. S6).

Temperature cycle ǻ T Tissue Drug treatment before entr. during entr. after entr.

T20 1.5 SCN 1 - 23.38 24.04 24.10

1.5 SCN 2 - 23.41 24.03 23.89

1.5 SCN 3 - 24.09 23.92 24.08

1.5 SCN 4 - 23.84 22.46 22.69

1.5 Lung 1 - 22.91 21.62 22.36

1.5 Lung 2 - 23.01 19.90 22.05

1.5 Lung 3 - 22.61 22.51 22.21

1.5 Lung 4 - 22.42 22.96 21.92

T28 1.5 SCN 1 - 23.65 24.08 24.24

1.5 SCN 2 - 23.47 23.52 23.78

1.5 SCN 3 - 23.89 24.1 23.97

1.5 SCN 4 - 23.61 23.71 23.87

1.5 Lung 1 - 24.75 26.77 24.32

1.5 Lung 2 - 24.94 26.79 24.53

1.5 Lung 3 - 24.24 27.05 24.23

1.5 Lung 4 - 24.43 27.3 23.98

T20 0.75 SCN 1 - 24.79 24.55 n/a

3 SCN 2 - 23.69 23.94 n/a

6 SCN 3 - 23.95 25.54 n/a

0.75 Lung 1 - 23.61 21.35 24.12

1.5 Lung 2 - 23.47 21.77 24.49

3 Lung 3 - 22.44 21.02 24.61

6 Lung 4 - 23.07 20.72 24.2

T22 4 SCN 1 * - 26.87 22.93 24.14

6 SCN 2 - 24.15 22.46 24.02

8 SCN 3 - 23.77 22.73 23.76

T20 1.5 SCN 1 MDL (10ȝM) 24.12 20.40 24.00

1.5 SCN 2 MDL (10ȝM) 24.46 20.73 23.99

1.5 SCN 3 MDL (10ȝM) 24.92 24.30 23.17

1.5 SCN 4 MDL (10ȝM) 25.93 19.58 24.00

1.5 SCN 5 MDL (10ȝM) 24.73 24.71 24.33

1.5 SCN 6 MDL (10ȝM) 25.34 19.75 25.61

1.5 SCN 7 MDL (10ȝM) 23.77 19.85 24.00

1.5 SCN 8 MDL (10ȝM) 24.65 20.96 24.00

T20 1.5 SCN 1 MDL (10ȝM) 24.55 22.07 n/a

1.5 SCN 2 MDL (5ȝM) 23.41 21.51 n/a

1.5 SCN 3 MDL (1.25ȝM) 23.94 24.77 n/a

T20 1.5 SCN 1 TTX (2-4ȝM) 22.31 20.77 24.00

1.5 SCN 2 TTX (2-4ȝM) 23.36 18.94 24.04

1.5 SCN 3 TTX (2-4ȝM) 24.03 22.46 23.36

1.5 SCN 4 TTX (2-4ȝM) 22.77 21.95 22.90

1.5 SCN 5 TTX (2-4ȝM) 23.54 20.28 24.70

1.5 SCN 6 TTX (2-4ȝM) 22.88 21.24 24.00

Period (h)


