A Light Controlled Cavitand Wall Regulates Guest Binding

Orion B. Berryman, Aaron C. Sather and Julius Rebek, Jr.

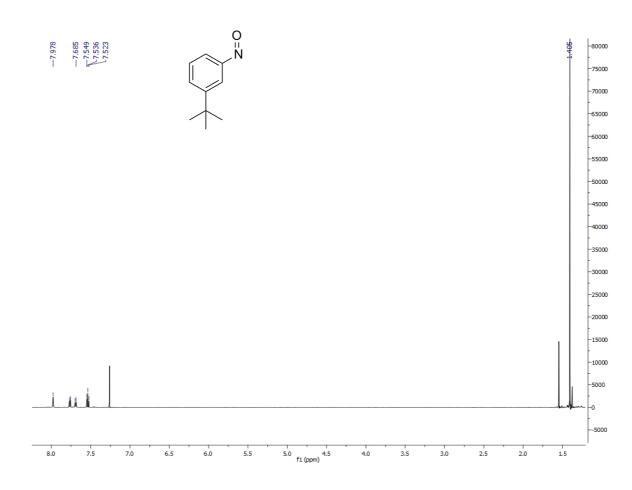
The Skaggs Institute for Chemical Biology and the Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037 jrebek@scripps.edu

Electronic Supplementary Information

1. General Information	S2
2. Syntheses and Characterization Data	S2-S10
3. Kinetics of Photo-isomerization Without Guest	S11-S15
4. Binding and Guest Release Studies	S16-S41
5. Kinetics of Photo-isomerization With Guest	S42-S45
6. Computational Studies	S46
6. References	S46

1. General Information

All materials were obtained from TCI-America, Sigma-Aldrich, Acros and Strem and used as received unless otherwise noted. All glassware was dried in an oven at 150 °C or flame dried immediately prior to use. Nuclear Magnetic Resonance ¹H NMR spectra were recorded on a Bruker DRX 600 spectrometer with a 5 mm QNP probe. Chemical shifts (δ) are expressed as ppm downfield from tetramethylsilane using either the residual solvent peak as an internal standard (CDCl₃ ¹H: 7.26 ppm), or using CDCl₃ spiked with 1% trimethylsilane for the ¹H NMR spectra. Deuterated NMR solvents were obtained from Cambridge Isotope Laboratories, Inc., Andover, MA, and used without further purification. Signal patterns are indicated as b, broad; s, singlet; d, doublet; t, triplet; m, multiplet. Coupling constants (J) are given in hertz. Photo-isomerization to the *cis* cavitands was performed with a Blak-Ray Long Wave Ultraviolet Lamp, Model B-100 AP after passing filtering out all light above 400 nm with a filter obtained from Andover Corporation. For the reverse isomerization process a High Intensity Discharge – Quartz Metal Halide light was used (GE Multi-Vapor Quartz Metal Halide ED37) after filtering all light below 450 nm with a filter obtained from Andover Corporation.

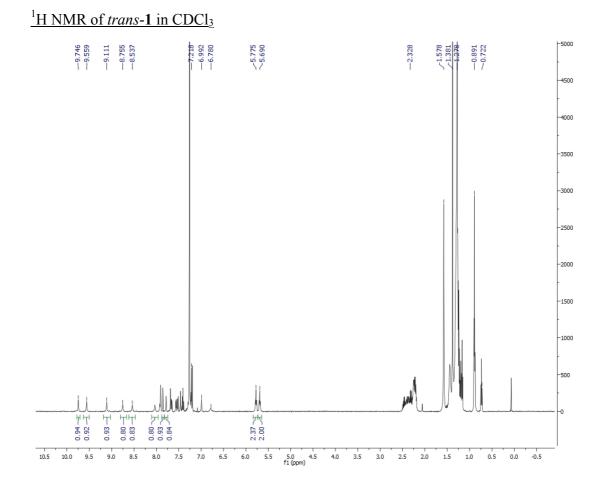

2. Syntheses and Characterization Data

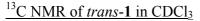
2.1 Nitroso Arene synthesis

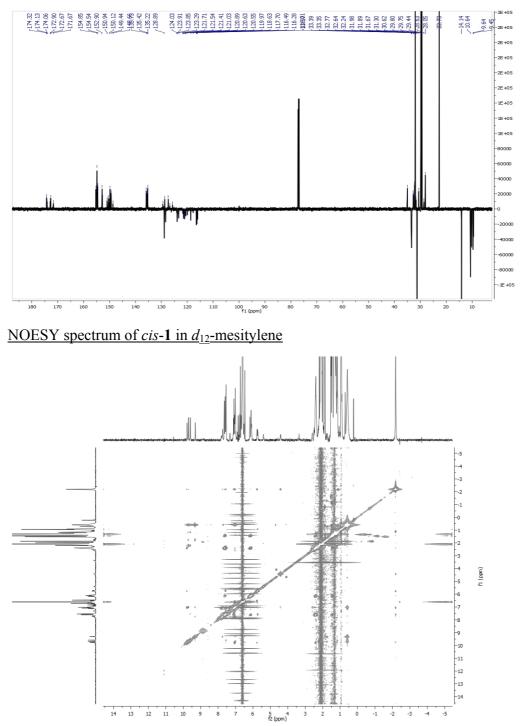
3-tert-butyl nitrosobenzene

Procedure adapted from known literature preparation of 2-methyl nitrosobenzene.ⁱ To a round bottom flask was added 3-*tert*-butylaniline (0.200 ml, 1.340 mmol) and MeOH (2.00 ml). H₂O (0.600 ml) was added to the reaction flask followed by 30% H₂O₂ (0.600 ml). The resulting orange solution was cooled to 0 °C and MoO₃ (0.0203 g, 0.141 mmol) was added resulting in a gray suspension. NaOH (2M, 0.100 ml) was added and the reaction was stirred at 5 °C for 1 day. A 1:1 mixture of DCM:H₂O (60 ml) was added and the aqueous layer was extracted 3 × with DCM. The organic layer was dried with Na₂SO₄ and concentrated down to a brown/green oil which solidified in the freezer overnight. The

crude reaction mixture was purified by column chromatography through silica gel (95:5 hexanes:DCM). The green fractions were collected and concentrated down to a green oil/yellow solid (0.112 g, 49% yield). ¹H NMR (CDCl₃, 600 MHz) δ 7.98 (s, 1H), 7.76 (d, *J* = 6.7 Hz, 1H), 7.69 (d, *J* = 8.8 Hz, 1H) 7.53 (t, *J* = 7.8 Hz, 1H), 1.40 (s, 9H).

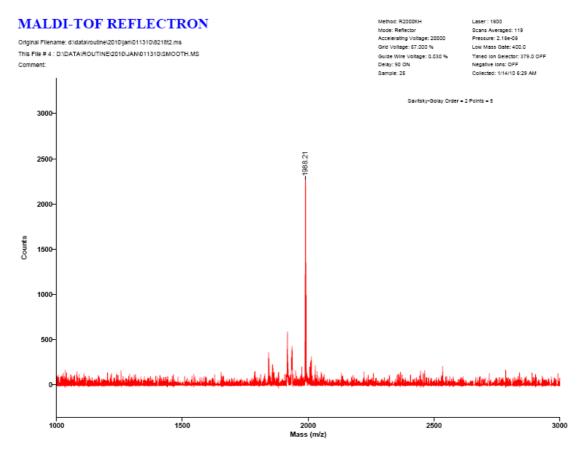



2.2 Cavitand Synthesis


Cavitand 1

3-*tert*-butyl nitrosobenzene (0.075 g, 0.460 mmol) was dissolved in glacial acetic acid (3 ml). The resulting green solution was transferred to an oven dried round bottom flask (50 ml) and stored under a blanked of N₂. In a separate flask hexa-amido C₁₁ monoamine cavitand **3**ⁱⁱ (0.175 g, 0.0923 mmol) was dissolved in glacial acetic acid (10 ml). This solution was transferred to the reaction vessel and stirred at room temperature under N₂. After stirring for 6 days pure product was filtered off as an orange solid (0.103 g, 56% yield) after filtering and washing with minimal glacial acetic acid. For *trans*-**1** ¹H NMR (CDCl₃, 600 MHz) δ 9.75 (b, 1H), 9.56 (b, 1H), 9.11 (b, 1H) 8.75 (b, 1H) 8.54 (b, 1H), 8.04 (b, 1H), 7.91 (b, 2H), 7.86 (s, 1H), 7.78 (s, 1H), 7.66 (m, 2H), 7.56 (d, *J* = 7.2 Hz, 1H), 7.52 (d, *J* = 6.6 Hz, 1H), 7.46 (s, 1H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 13.8 Hz, 2H), 6.99 (b, 1H), 6.782 (b), 5.77 (t, *J* = 8.4 Hz, 2H), 5.69 (t, *J* = 8.4 Hz, 2H) 2.35 (m), 1.58 (m), 1.38 (s, 9H), 1.28 (m), 0.89 (t, *J* = 5.4 Hz, 14H), 0.734 (t, *J* = 7.8 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ = 174.32, 174.13, 174.06, 172.90, 172.67, 171.67, 155.28, 155.17, 154.98, 154.85, 154.57, 154.54, 154.52, 152.90, 152.79, 150.94, 150.45, 150.12, 149.84, 149.44, 149.36, 148.66, 135.85, 135.73, 135.61, 135.42, 135.37, 135.22, 129.41, 128.89, 128.71, 128.36, 127.35, 126.71, 126.15, 125.71, 124.03, 123.91, 123.85, 123.29, 121.71, 121.54, 121.41, 121.03, 120.89, 120.63, 120.55, 119.97, 118.63, 117.70, 116.49, 116.28, 116.01, 34.97, 33.57, 33.39, 33.35, 32.77, 32.64, 32.24, 31.98, 31.89, 31.67, 31.30, 30.62, 29.80, 29.75, 29.44, 28.63, 28.05, 22.73, 14.14, 10.64, 10.19, 10.11, 9.64, 9.45. MALDI-TOF (THAP): m/z: 1988.21 ([MH]⁺, C₁₂₄H₁₆₃N₈O₁₄⁺, calc. 1988.23)

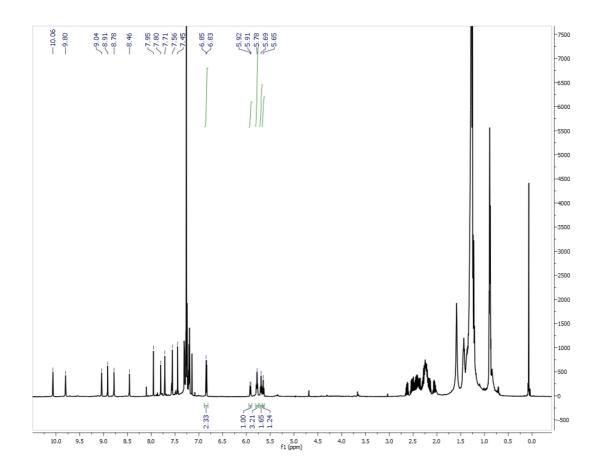


NOESY NMR studies corroborate the self-contained configuration of *cis*-1. NOE's are observed between the *tert*-butyl signals and the aromatic H's of the cavitand while no enhancement is seen with the externally directed methine protons

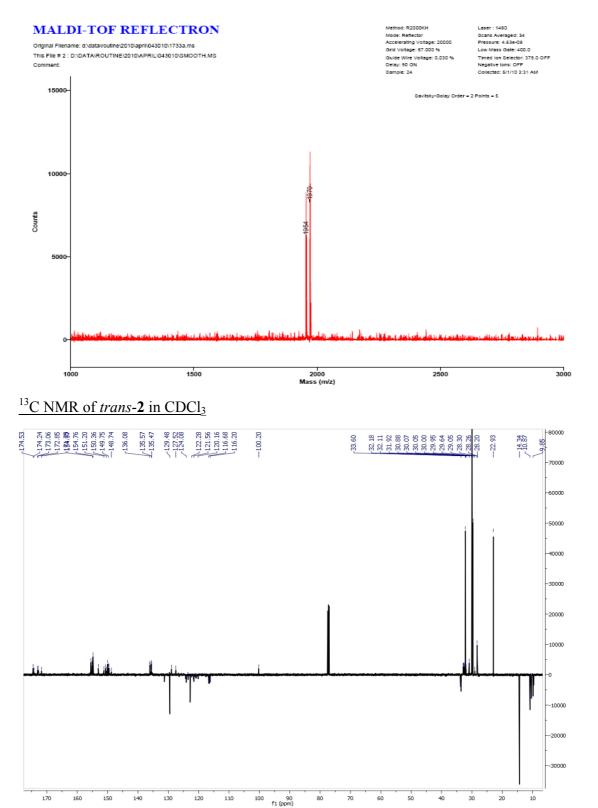
MALDI-TOF of 1

Cavitand 2

nitrosobenzene (0.078 g, 0.728 mmol) was dissolved in glacial acetic acid (2 ml) and filtered. The resulting green solution was transferred to an oven dried round bottom flask (50 ml) and stored under a blanked of N₂. In a separate flask hexa-amido C₁₁ monoamine cavitand $\mathbf{3}^{ii}$ (0.132 g, 0.0694 mmol) was dissolved in glacial acetic acid (3 ml). This solution was transferred to the reaction vessel and stirred at room temperature under N₂. After stirring for 8 days pure product was isolated as an orange solid after filtering and washing with glacial acetic acid. Additional product could be obtained by concentrating down the acetic acid from the reaction and purifying the resulting red oil by silica gel column chromatography (6:1 toluene:EtOAc) (0.0460 g for a combined yield of 34%). For *trans*-**2** ¹H NMR (CDCl₃, 600 MHz) δ 9.72 (b), 9.55 (b), 9.11 (b) 8.73 (b) 8.54 (b), 8.06 (b), 7.94 (m, 1H), 7.87 (s, 1H), 7.89 (b, 2H), 7.77 (s, 2H), 7.77 (s, 1H), 7.65 (dd, *J* =

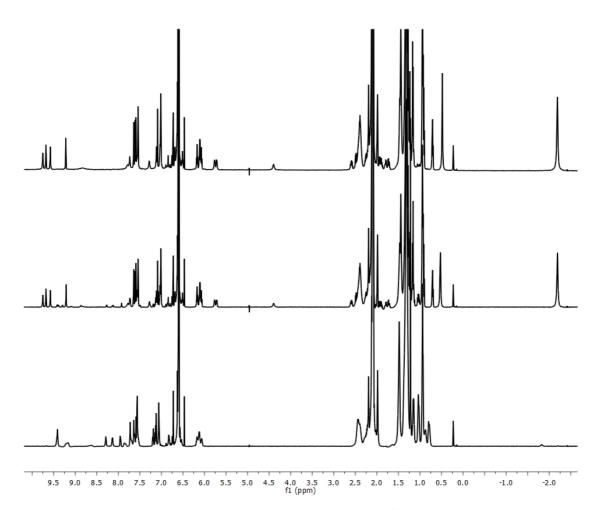

6.6 Hz, 1H), 7.49 (m, 4H), 7.00 (b), 6.87 (b), 5.78 (m, 2H), 5.69 (t, *J* = 8.4 Hz, 2H), 2.37 (m), 1.60 (b), 1.28 (m), 0.89 (m), 0.78 (m).

¹³C NMR (151 MHz, CDCl3) δ = 174.53, 174.30, 174.24, 173.06, 172.85, 171.75, 155.49, 155.46, 155.13, 155.04, 154.97, 154.79, 154.76, 153.05, 151.20, 150.66, 150.36, 149.99, 149.75, 149.52, 148.74, 136.08, 135.98, 135.74, 135.57, 135.47, 131.27, 129.48, 128.95, 127.52, 124.27, 124.08, 124.01, 123.52, 122.82, 122.28, 121.69, 121.56, 120.86, 120.16, 117.60, 116.68, 116.46, 116.20, 100.20, 33.74, 33.60, 33.55, 32.89, 32.74, 32.59, 32.46, 32.18, 32.11, 31.92, 30.88, 30.07, 30.05, 30.00, 29.95, 29.64, 29.05, 28.30, 28.26, 28.20, 22.93, 14.34, 10.87, 10.39, 10.32, 9.85, 9.65. MALDI-TOF (THAP): m/z: 1954 ([MNa]⁺, C₁₂₀H₁₅₄N₈O₁₄K⁺, calc. 1954); m/z: 1970 ([MK]⁺, C₁₂₀H₁₅₄N₈O₁₄K⁺, calc. 1970).


¹H NMR of trans-2 in CDCl₃

¹H NMR of *cis*-2 in CDCl₃

MALDI-TOF of 2



3. Kinetics of Photo-isomerization Without Guest

Cis-1 and *cis*-2 can be converted back to their *trans* configurations by applying heat or light. For example, heating the *cis*-1 sample to 164 °C for 5 minutes reverts it to exclusively *trans*-1. Similarly, irradiating *cis*-1 with 450+ nm light for 20 minutes converts it to *trans*-1 and it reaches a photo-stationary state of 69% *trans*-1 under these conditions. This switching cycle was repeated 5 times without degradation of the system.

Trans to cis photo-isomerization of cavitand 1

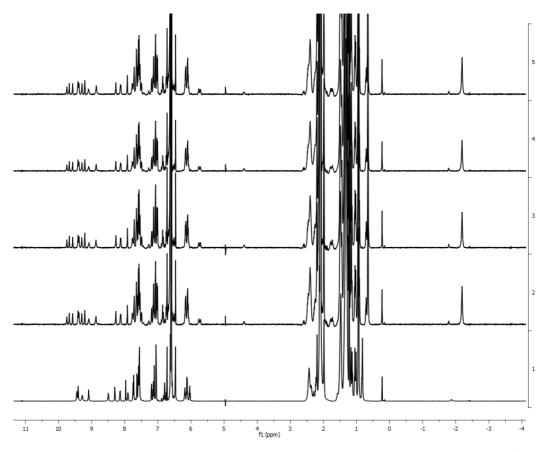

Cavitand 1 (0.003 g, 0.00151 mmol) was dissolved in d_{12} -mesitylene (0.600 ml) and transferred to a NMR tube. The sample was heated to reflux with a heat gun for 5 minutes and allowed to cool after wrapping the sample in aluminum foil. A ¹H NMR spectrum was acquired after 3 hours. The sample was subsequently subjected to UV light for 10 minutes and another spectrum was acquired. To complete the isomerization process the sample was subjected to UV light for 5 additional minutes and monitored by ¹H NMR spectroscopy. Complete isomerization was determined by the disappearance of the *trans*-1 amide signals at approx. 8.2 ppm.

Figure S1. *Trans* to *cis* photo-isomerization of cavitand **1**; ¹H NMR spectra after heating to reflux for 5 minutes and cooling in the dark (bottom), after irradiating with UV light for 10 minutes (middle) and after irradiating with UV light for 15 minutes (top).

Cis to trans photo-isomerization of cavitand 1

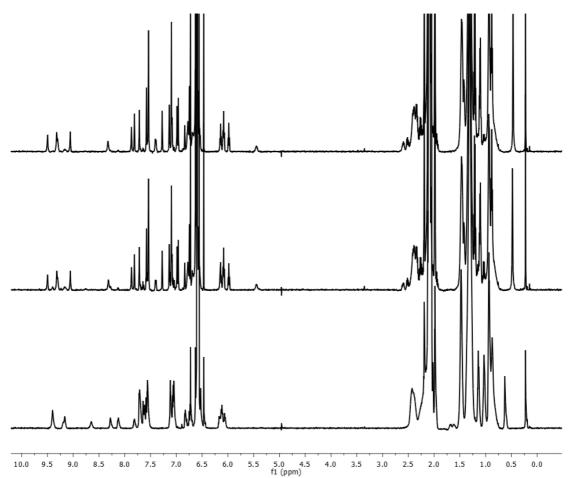

Cavitand 1 (0.003 g, 0.00151 mmol) was dissolved in d_{12} -mesitylene (0.600 ml) and transferred to a NMR tube. The sample was irradiated with UV light for 30 minutes. The sample was subsequently subjected to visible light and ¹H NMR spectra were acquired after 20, 40, 80 and 120 minutes. The completion of the isomerization was determined by comparing the integration of the methine signals at 6.23 to 6.04 ppm versus the *cis-tert*-butyl signal at -2.2 ppm. Photostationary state = 79% *trans*-1 after 20 minutes.

Figure S2. *Cis* to *trans* photo-isomerization of cavitand **1** without guest present; ¹H NMR spectra after dissolving **1** and heating to reflux for 5 min (bottom, 1), after irradiating with visible light for 20 minutes (middle, 2), after irradiating with visible light for 40 minutes (middle, 3), after irradiating with visible light for 80 minutes (middle, 4) and after irradiating with visible light for a total of 120 minutes (top, 5).

Trans to cis photo-isomerization of cavitand 2

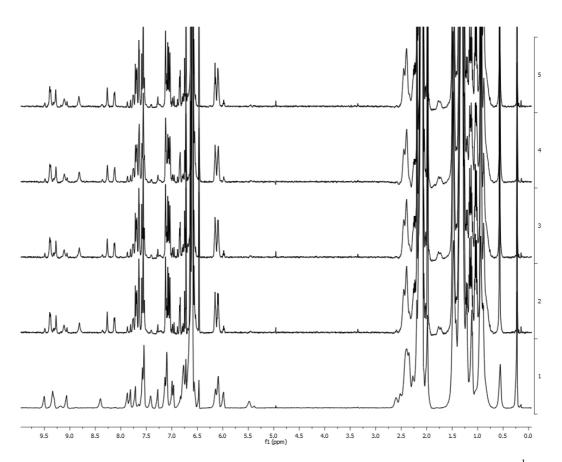

Cavitand 2 (0.0036 g, 0.00186 mmol) was dissolved in d_{12} -mesitylene (1.075 ml) and transferred to a NMR tube. The sample was heated to reflux with a heat gun for 5 minutes and allowed to cool after wrapping the sample in aluminum foil. A ¹H NMR spectrum was acquired after 3 hours. The sample was subsequently subjected to UV light for 10 minutes and another spectrum was acquired. To complete the isomerization process the sample was subjected to UV light for 5 additional minutes and monitored by ¹H NMR spectroscopy. Complete isomerization was determined from the disappearance of the *trans*-2 amide signal at 8.6 ppm.

Figure S3. Kinetics of photo-isomerization of cavitand **2**; ¹H NMR spectra after heating to reflux for 5 minutes and cooling in the dark (bottom), after irradiating with UV light for 10 minutes (middle) and after irradiating with UV light for 15 minutes (top).

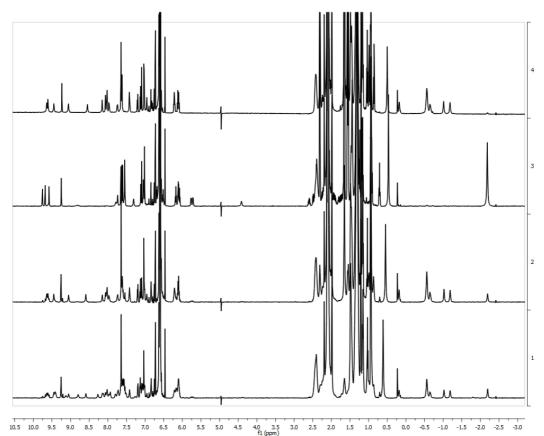
Cis to trans photo-isomerization of cavitand 2

Cavitand **2** (0.0036 g, 0.00186 mmol) was dissolved in d_{12} -mesitylene (1.075 ml) and transferred to a NMR tube. The sample was irradiated with UV light for 30 minutes. The sample was subsequently subjected to visible light and ¹H NMR spectra were acquired after 20, 40, 80 and 120 minutes. The completion of the isomerization was determined by comparing the integration of the methine signals at 6.20 to 6.05 ppm versus the *cis* methine signal at 5.98 ppm. Photostationary state = 70% *trans*-**2** after 20 minutes.

Figure S4. *Cis* to *trans* photo-isomerization of cavitand **2** without guest present; ¹H NMR spectra after irradiating with UV light for 30 minutes (bottom, 1) after irradiating with visible light for 20 minutes (middle, 2), after irradiating with visible light for 40 minutes (middle, 3), after irradiating with visible light for 80 minutes (middle, 4) and after irradiating with visible light for a total of 120 minutes (top, 5).

4. Binding and Guest Release Studies

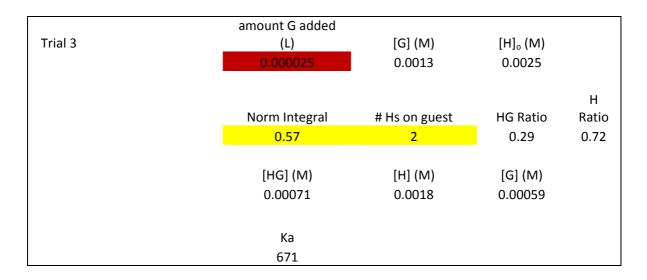
Guests	1	2 K _a (M ⁻¹)
1-adamantanemethanol (4)	5	6
1-chloroadamantane (5)	37	45
1-adamantaneamine (6)	166	145
1-adamantanecarbonitrile (7)	311	226
2-adamantanone (8)	653	703


Table. Association constants of 1 and 2 with guests 4-8.^{a,b}

[a] Reported K_a (M⁻¹) values are the average of 3-6 experiments with errors estimated at 20% see discussion below. [b] All experiments were performed in d_{12} -mesitylene at 300 K, with initial [1] or [2] = 2.3 to 5.8 mM.

General: Cavitand **1** or **2** (~0.003 g) was dissolved in d_{12} -mesitylene (0.600 ml) and transferred to a NMR tube. A guest stock solution was prepared by dissolving adamantane guest (**4-8**) (0.005 g) in d_{12} -mesitylene (1 ml). ¹H NMR spectra were recorded after adding aliquots from the guest stock solution (0.025 to 0.100 ml) to the NMR tube and mixing for 30 seconds. One to three spectra were recorded for each sample and the average association constants were reported. Association constants were determined using the following equation; $K_a = [cavitand•guest]/[cavitand][guest]$. To determine the concentrations of each species in solution the methine protons on the host were integrated relative to the (upfield) guest signals. The free cavitand concentration was determined by subtracting the quantity of bound guest (cavitand•guest) from the total amount of cavitand in solution. Similarly, the free guest was determined by subtracting the amount of bound guest from the total guest added to the solution. It was observed that changing pulse delay from the default of 1 second did not affect the integration of bound guest.

<u>Error Estimation</u>: The most significant source of error for the determination of K_a values in this system is the integration of the NMR spectra. To estimate the magnitude of error in the experiment 10 integrations of the bound guest region were performed on a representative spectrum (cavitand 1 + 2-adamantanone (8)). These values ranged from 0.53 to 0.58. An association constant was determined for each integration and the variability of the calculated K_a values is reported as the estimated error, 20% (lowest value = 560 M⁻¹, highest value = 702 M⁻¹).



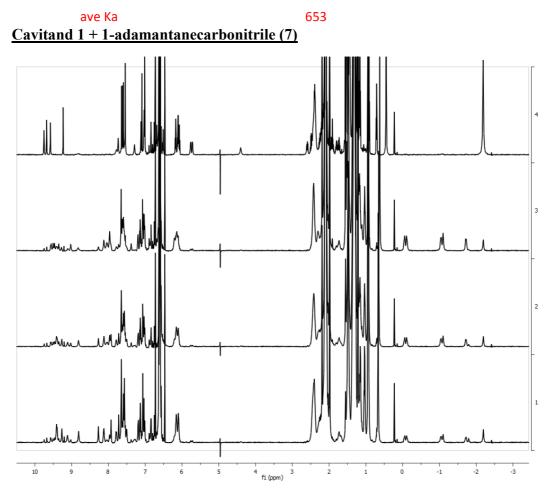
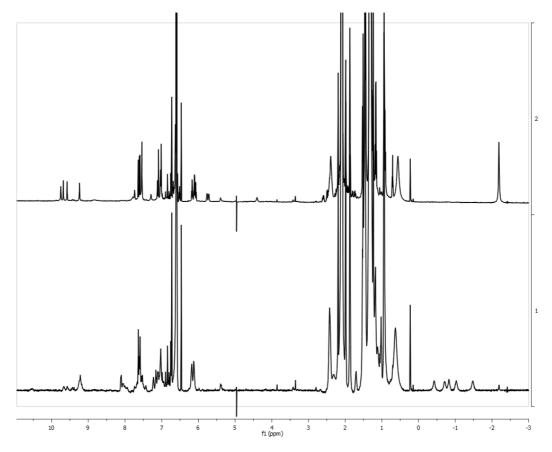


Figure S5. Titration of 2-adamantanone into cavitand **1** and subsequent guest release and uptake; ¹H NMR spectra after adding 0.025 ml guest stock (1), after adding 0.075 ml guest stock (2), after adding 0.375 ml guest stock solution and irradiating with UV light for 1 hour and 10 minutes (3), after refluxing for 5 minutes (4).

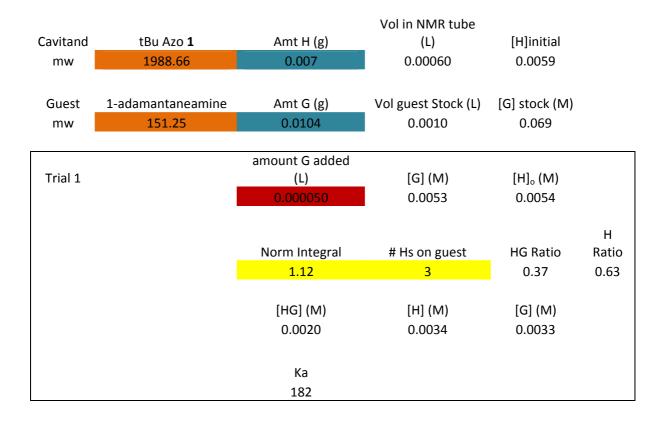
Cavitand mw	tBu Azo 1 1988.66	Amt H (g) 0.0031	Vol in NMR tube (L) 0.00060	[H]initial 0.0026	
Guest mw	2-adamantanone 150.22	Amt G (g) 0.0049	Vol guest Stock (L) 0.0010	[G] stock (M) 0.033	
Trial 1		amount G added (L) 0.000025	[G] (M) 0.0013	[H] _o (M) 0.0025	
		Norm Integral 0.6	# Hs on guest 2	HG Ratio 0.3	H Ratio 0.7
		[HG] (M) 0.00075	[H] (M) 0.0017	[G] (M) 0.00056	
		Ka 770			
Trial 2		amount G added (L) 0.000075	[G] (M) 0.0036	[H] _o (M) 0.0023	
		Norm Integral 1.1	# Hs on guest 2	HG Ratio 0.55	H Ratio 0.45
		[HG] (M)	[H] (M)	[G] (M)	

0.0013	0.0010	0.0024
Ка		
520		

Figure S6. Titration of 1-adamantanecarbonitrile into cavitand **1** and subsequent guest release and uptake; ¹H NMR spectra after adding 0.020 ml guest stock (1), after adding 0.040 ml guest stock (2), after adding 0.090 ml guest stock solution (3), after adding 0.190 ml guest stock and irradiating with UV light for 20 minutes (4).


			Vol in NMR tube		
Cavitand	tBu Azo 1	Amt H (g)	(L)	[H]initial	
mw	1988.66	0.0029	0.00060	0.0024	
Guest	1-adamantanecarbonitrile	Amt G (g)	Vol guest Stock (L)	[G] stock (M)	
mw	161.24	0.0045	0.0010	0.028	
11100	101.24	0.0045	0.0010	0.028	
		amount G added			
Trial 1		(L)	[G] (M)	[H] _o (M)	
		0.000020	0.00090	0.0024	
					Н
		Norm Integral	# Hs on guest	HG Ratio	Ratio
		0.94	6	0.16	0.84
		[HG] (M)	[H] (M)	[G] (M)	
		0.00037	0.0020	0.00053	
		Ка			
		349			
		amount G added]
Trial 2		(L)	[G] (M)	[H] _o (M)	
111012		0.000040	0.0017	0.0023	
		0.000010	0.001/		
					н
		Norm Integral	# Hs on guest	HG Ratio	Ratio
		1.63	6	0.27	0.73
		[HG] (M)	[H] (M)	[G] (M)	
		0.00062	0.0017	0.0011	
		Ка			
		331			

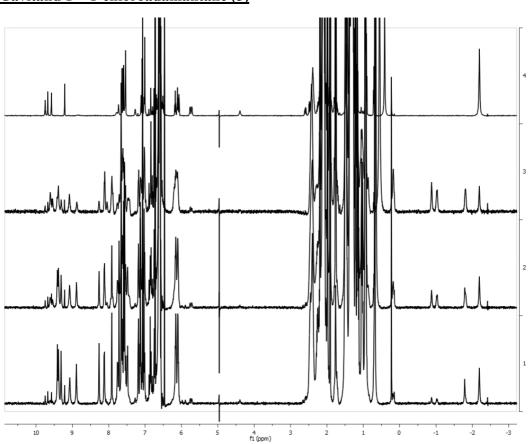
Trial 3	amount G added (L) 0.000090	[G] (M) 0.0036	[H]₀ (M) 0.0021	
	Norm Integral	# Hs on guest	HG Ratio	H Ratio
	2.47	6	0.41	0.59
	[HG] (M) 0.00087	[H] (M) 0.0012	[G] (M) 0.0028	
	Ка 253			


ave Ka

311

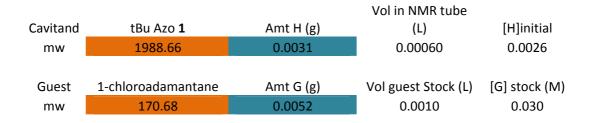
Cavitand 1 + 1-adamantaneamine (6)

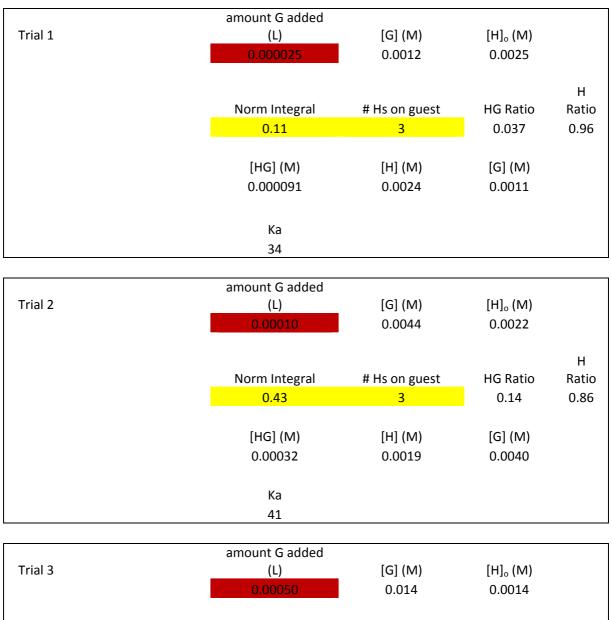
Figure S7. Addition of 1-adamantaneamine into cavitand **1** and subsequent guest release; ¹H NMR spectra after adding 0.050 ml guest stock (1), after irradiating with UV light for 1 hour and 50 minutes (2).



Cavitand	tBu Azo	Amt H (g)	Vol in NMR tube (L)	[H]initial	
mw	1988.66	0.0038	0.0006	0.003184724	
Guest	1-adamantaneamine	Amt G (g)	Vol guest Stock (L)	[G] stock (M)	
mw	151.25	0.0053	0.0010	0.035	
		amount G added			
Trial 2		(L)	[G] (M)	$[H]_{o}(M)$	
		0.00010	0.0050	0.0027	
					Н
		Norm Integral	# Hs on guest	HG Ratio	Ratio
		1.17	3	0.39	0.61
		[HG] (M)	[H] (M)	[G] (M)	
		0.0011	0.0017	0.0039	
		Ка			
		162			

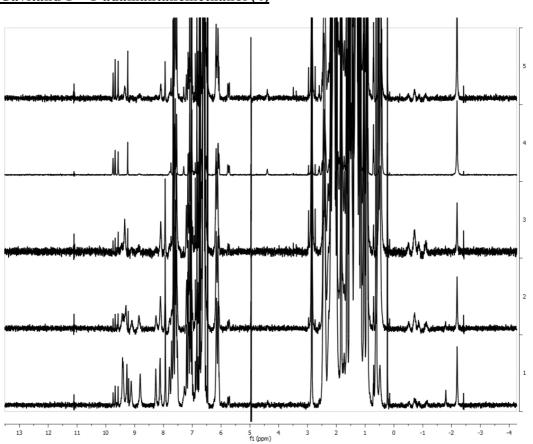
Trial 3	amount G added (L) 0.00020	[G] (M) 0.0088	[H] _o (M) 0.0024	
	Norm Integral	# Hs on guest	HG Ratio	H Ratio
	3.2	6	0.53	0.47
	[HG] (M)	[H] (M)	[G] (M)	
	0.0013	0.0011	0.0075	
	Ка			
	153			


ave Ka


166

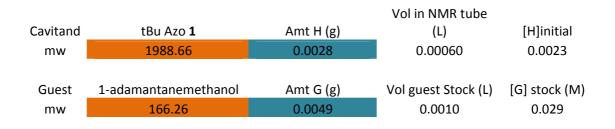
Cavitand 1 + 1-chloroadamantane (5)

Figure S8. Titration of 1-chloroadamantane into cavitand **1** and subsequent guest release; ¹H NMR spectra after adding 0.025 ml guest stock (1), after adding 0.075 ml guest stock (2), after adding 0.500 ml guest stock solution (3), after irradiating with UV light for 1 hour (4).



Norm Integral 0.95	# Hs on guest 3	HG Ratio 0.32	H Ratio 0.68
[HG] (M) 0.00045	[H] (M) 0.00097	[G] (M) 0.014	
Ka 35			

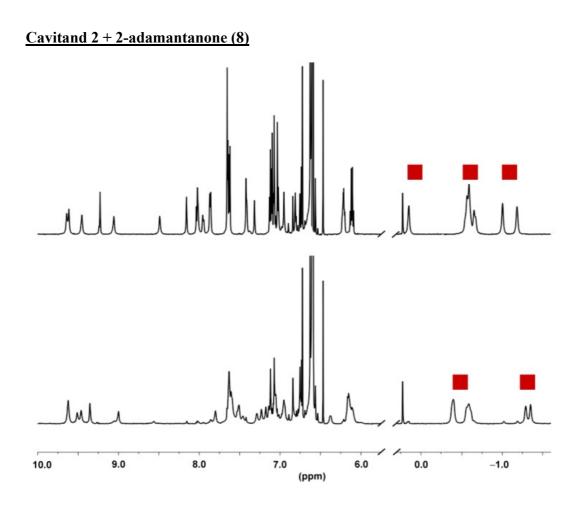
37


ave Ka

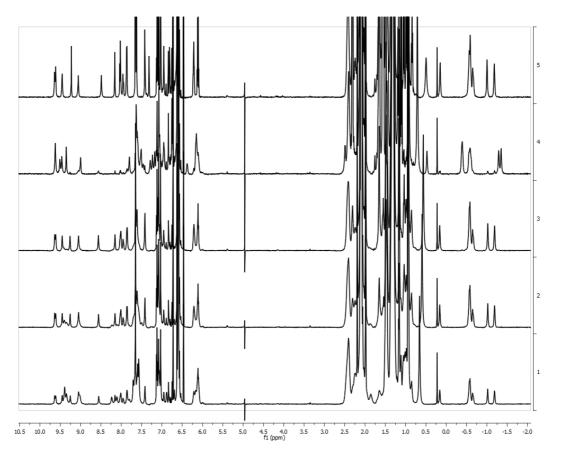
S-26

Cavitand 1 + 1-adamantanemethanol (4)

Figure S9. Titration of 1-adamantanemethanol into cavitand **1** and subsequent guest release and uptake; ¹H NMR spectra after adding 0.075 ml guest stock (1), after adding 0.275 ml guest stock (2), after adding 0.775 ml guest stock solution (3), after irradiating with UV light for 1 hour and 10 minutes (4); after irradiating with visible light for 1 hour and 20 minutes (5).



Trial 1	amount G added (L) 0.000075	[G] (M) 0.0032	[H] _o (M) 0.0021	
	Norm Integral 0.07	# Hs on guest 3.0	HG Ratio 0.023	H Ratio 0.98
	[HG] (M) 0.000049	[H] (M) 0.0020	[G] (M) 0.0032	
	Ka 7.4			
Trial 2	amount G added (L) 0.000275	[G] (M) 0.0093	[H]₀ (M) 0.0016	
	Norm Integral 0.10	# Hs on guest 3.0	HG Ratio 0.033	H Ratio 0.97
	[HG] (M) 0.000053	[H] (M) 0.0016	[G] (M) 0.0092	
	Ka 3.7			
Trial 3	amount G added (L) 0.000775	[G] (M) 0.017	[H]₀ (M) 0.0010	
	Norm Integral 0.17	# Hs on guest 3.0	HG Ratio 0.057	H Ratio 0.94
	[HG] (M) 0.000058	[H] (M) 0.00097	[G] (M) 0.017	
	Ka 3.6			


4.9

ave Ka

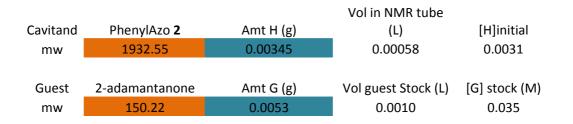

S-28

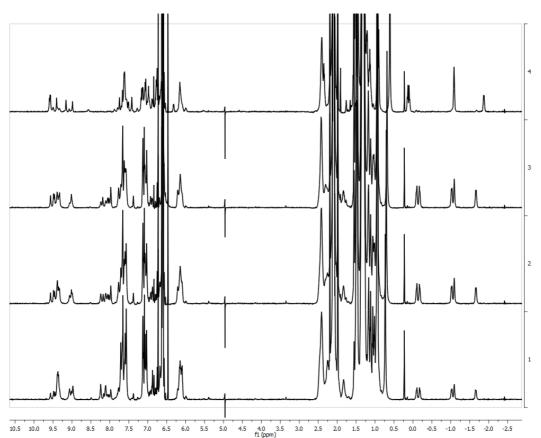


Figure S10. ¹H NMR spectra in d_{12} -mesitylene showing cavitand **2** binding 2adamantanone (**8**, 9.3 eq.) both in the *trans* configuration (top) and *cis* configuration (bottom). The guest remains bound when cavitand **2** is in either configuration and the guest signals are marked with red squares. The broadened ¹H NMR spectrum observed for *cis*-**2** is due to the multiple *cis* conformations that cavitand **2** can adopt when a guest molecule is present. The rate of the switching process is nearly independent of the presence of guest molecules although it is slightly retarded and can be achieved by heating or application of light. UV light converts *trans*-**2** adamantane complexes to the *cis*-**2** complexes after 30 minutes. The reverse *cis* to *trans* process with heat is fast (<5 minutes), while visible light reverses this process in 20 minutes reaching a photostationary state of 95% *trans*-**2**.

Figure S11. Titration of 2-adamantanone into cavitand **2** and subsequent isomerization; ¹H NMR spectra after adding 0.025 ml guest stock (1), after adding 0.050 ml guest stock (2), after adding 0.075 ml guest stock solution (3), after adding 0.475 ml guest stock solution and irradiating with UV light for 1 hour and 25 minutes (4); after heating to 164.7 °C for 5 minutes (5).

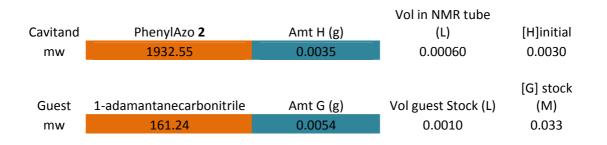
	amount G added			
Trial 2	(L)	[G] (M)	$[H]_{o}(M)$	
	0.000050	0.0028	0.0028	
				Н
	Norm Integral	# Hs on guest	HG Ratio	Ratio
	1.0	2.0	0.51	0.50
	[HG] (M)	[H] (M)	[G] (M)	
	0.0014	0.0014	0.0014	
	Ка			
	745			

Trial 3	amount G added (L) 0.000075	[G] (M) 0.0040	[H]₀ (M) 0.0027	
				Н
	Norm Integral	# Hs on guest	HG Ratio	Ratio
	1.2	2.0	0.60	0.40
	[HG] (M)	[H] (M)	[G] (M)	
	0.0016	0.0011	0.0024	
	Ка			
	623			


			Vol in NMR tube		
Cavitand	tBu Azo	Amt H (g)	(L)	[H]initial	
mw	1932.55	0.0031	0.0006	0.0027	
	2-			[G] stock	
Guest	adamantanone	Amt G (g)	Vol guest Stock (L)	(M)	
mw	150.22	0.0049	0.001	0.033	
		amount G added			
Trial 4		(L)	[G] (M)	$[H]_{o}(M)$	
		0.000025	0.0013	0.0026	
					Н
		Norm Integral	# Hs on guest	HG Ratio	Ratio
		0.59	2	0.30	0.71
		[HG] (M)	[H] (M)	[G] (M)	
		0.00076	0.0018	0.00055	
		Ка			
		764			

	amount G added			
Trial 5	(L)	[G] (M)	$[H]_{o}(M)$	
	0.00005	0.0025	0.0025	
				н
	Norm Integral	# Hs on guest	HG Ratio	Ratio
	1	2	0.50	0.50
	[HG] (M)	[H] (M)	[G] (M)	
	0.0012	0.0012	0.0013	
	Ка			
	784			

amount G added (L) 0.000075	[G] (M) 0.0036	[H] _o (M) 0.0024	
.	<i>и</i>		Н
Norm Integral	# Hs on guest	HG Ratio	Ratio
1.12	2	0.56	0.44
[HG] (M)	[H] (M)	[G] (M)	
0.0013	0.0010	0.0023	
Ка			
555			
	(L) 0.000075 Norm Integral 1.12 [HG] (M) 0.0013 Ka	(L) [G] (M) 0.000075 0.0036 Norm Integral # Hs on guest 1.12 2 [HG] (M) [H] (M) 0.0013 0.0010 Ka Ka	(L) [G] (M) [H]. (M) 0.000075 0.0036 0.0024 Norm Integral # Hs on guest HG Ratio 1.12 2 0.56 [HG] (M) [H] (M) [G] (M) 0.0013 0.0010 0.0023 Ka Ka Ka Ka


ave Ka

703

Cavitand 2 + 1-adamantanecarbonitrile (7)

Figure S12. Titration of 1-adamantanecarbonitrile into cavitand **2** and subsequent isomerization; ¹H NMR spectra after adding 0.025 ml guest stock (1), after adding 0.050 ml guest stock (2), after adding 0.075 ml guest stock solution (3), after adding 0.575 ml guest stock and irradiating with UV light for 1 hour and 25 minutes (4).

Trial 1	amount G added		[L] (NA)	
	(L) 0.000025	[G] (M)	[H] _o (M)	
	0.000025	0.0013	0.0029	
	Norm Integral	# He on quest	HG Ratio	H Ratio
	Norm Integral 0.50	# Hs on guest 3.0	0.17	0.83
	0.50	5.0	0.17	0.85
		[11] (54)		
	[HG] (M)	[H] (M)	[G] (M)	
	0.00048	0.0024	0.00086	
	Ка			
	232			
	amount G added			
Trial 2	(L)	[G] (M)	$[H]_{o}$ (M)	
	0.000050	0.0026	0.0027	
				н
	Norm Integral	# Hs on guest	HG Ratio	Ratio
	0.87	3.0	0.29	0.71
	[HG] (M)	[H] (M)	[G] (M)	
	0.00080	0.0019	0.0018	
	Ка			
	230			
	amount G added			
Trial 3	(L)	[G] (M)	$[H]_{\circ}$ (M)	
	0.000075	0.0037	0.0026	
				н
	Norm Integral	# Hs on guest	HG Ratio	Ratio
	1.1	3.0	0.37	0.63
	[HG] (M)	[H] (M)	[G] (M)	
	0.00099	0.0017	0.0027	
	0.00000	0.001/	0.0027	
	Ka			
	Ka 218			

226

ave Ka

S-35

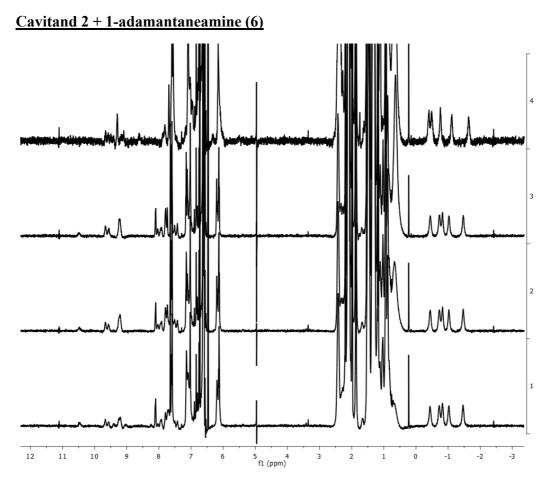
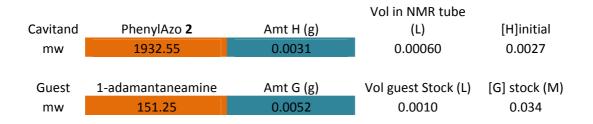
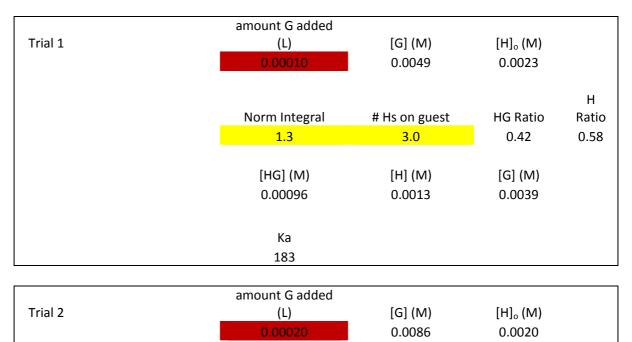




Figure S13. Titration of 1-adamantaneamine into cavitand 2 and subsequent isomerization; ¹H NMR spectra after adding 0.100 ml guest stock (1), after adding 0.200 ml guest stock (2), after adding 0.300 ml guest stock solution (3), after irradiating with UV light for 35 minutes (4).

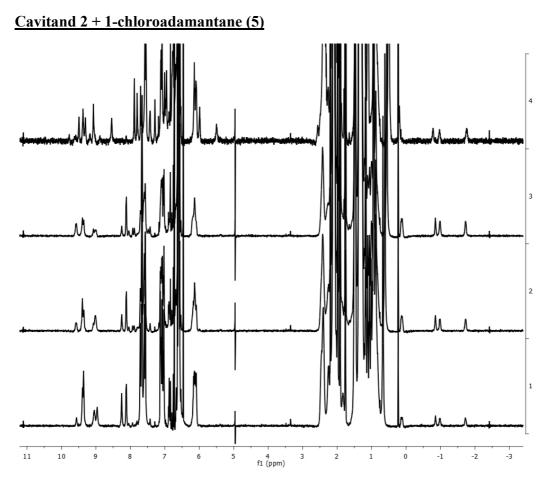
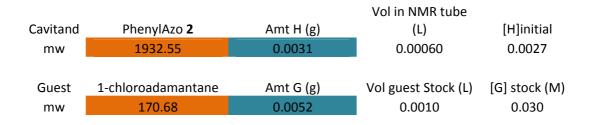
Norm Integral	# Hs on guest	HG Ratio	H Ratio
1.5	3.0	0.51	0.49
[HG] (M)	[H] (M)	[G] (M)	
0.0010	0.00098	0.0076	
Ка			
139			

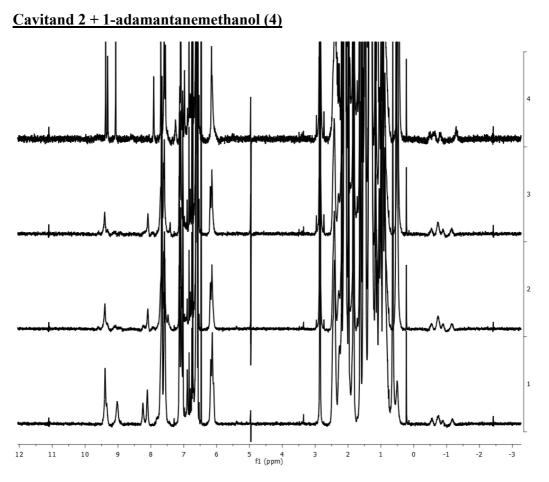
	amount G added			
Trial 3	(L)	[G] (M)	$[H]_{o}$ (M)	
	0.00030	0.011	0.0018	
				Н
	Norm Integral	# Hs on guest	HG Ratio	Ratio
	1.6	3.0	0.54	0.46
	[HG] (M)	[H] (M)	[G] (M)	
	0.00097	0.00081	0.010	
	Ка			
	113			

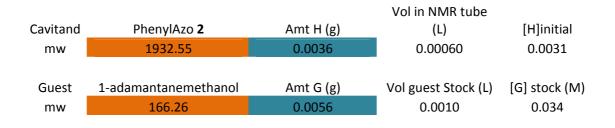
145

ave Ka

S-37


Figure S14. Titration of 1-chloroadamantane into cavitand 2 and subsequent isomerization; ¹H NMR spectra after adding 0.050 ml guest stock (1), after adding 0.150 ml guest stock (2), after adding 0.350 ml guest stock solution (3), after irradiating with UV light for 35 minutes (4).


	amount G added			
Trial 1	(L)	[G] (M)	[H] _o (M)	
	0.000050	0.0023	0.0025	
				н
	Norm Integral	# Hs on guest	HG Ratio	Ratio
	0.28	3.0	0.093	0.91
	[HG] (M)	[H] (M)	[G] (M)	
	0.00023	0.0022	0.0021	
	Ка			
	Ka 49			
	49			
	amount G added			
Trial 2	(L)	[G] (M)	[H] _o (M)	
	0.00015	0.0061	0.0021	
	0.00015	0.0001	0.0021	
				н
	Norm Integral	# Hs on guest	HG Ratio	Ratio
	0.60	3.0	0.20	0.80
	0.00	3.0	0.20	0.00
	[HG] (M)	[H] (M)	[G] (M)	
	0.00043	0.0017	0.0057	
	0.00045	0.0017	0.0057	
	Ка			
	44			
	amount G added			
Trial 3		[G] (M)	[H] _o (M)	
	(L)			
	0.00035	0.011	0.0017	
				Ц
	Norm Integral	# Hs on guest	HG Ratio	H Ratio
	0.91	3.0	0.30	0.70
	0.91	5.0	0.30	0.70
	[HG] (M)	[H] (M)	[G] (M)	
	0.00051	0.0012	0.011	

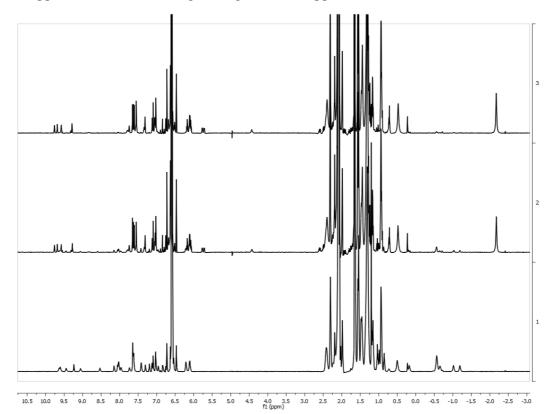
ave Ka

45

Figure S15. Titration of 1-adamantanemethanol into cavitand **2** and subsequent isomerization; ¹H NMR spectra after adding 0.100 ml guest stock (1), after adding 0.400 ml guest stock (2), after adding 0.700 ml guest stock solution (3), after irradiating with UV light for 35 minutes (4).

Trial 1	amount G added (L) 0.00010	[G] (M) 0.0048	[H] _o (M) 0.0027	
	Norm Integral 0.080	# Hs on guest 3.0	HG Ratio 0.027	H Ratio 0.97
	[HG] (M) 0.000071	[H] (M) 0.0026	[G] (M) 0.0047	
	Ka 5.8			
Trial 2	amount G added (L) 0.00040	[G] (M) 0.013	[H]₀ (M) 0.0019	
	Norm Integral 0.20	# Hs on guest 3.0	HG Ratio 0.067	H Ratio 0.93
	[HG] (M) 0.00012	[H] (M) 0.0017	[G] (M) 0.013	
	Ка 5.4			
Trial 3	amount G added (L) 0.00070	[G] (M) 0.018	[H] _o (M) 0.0014	
	Norm Integral 0.29	# Hs on guest 3.0	HG Ratio 0.097	H Ratio 0.90
	[HG] (M) 0.00014	[H] (M) 0.0013	[G] (M) 0.018	
	Ka 5.9			

5.7


ave Ka

S-41

5. Kinetics of Photo-isomerization With Guests

Trans to cis photo-isomerization of cavitand 1 in the presence of 2-adamantanone (8)

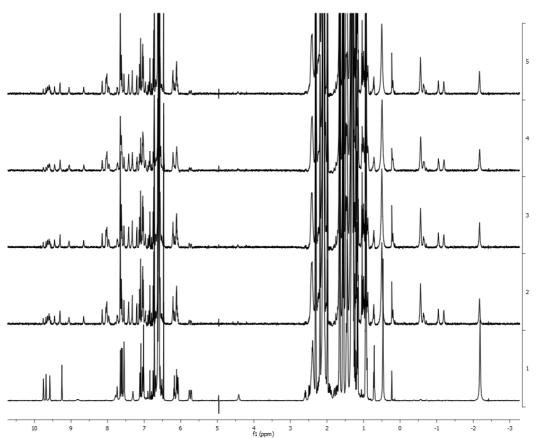

Cavitand 1 (0.0031 g, 0.00156 mmol) was dissolved in d_{12} -mesitylene (0.600 ml) and transferred to a NMR tube. A stock solution of 2-adamantanone (0.0046 g, 0.0306 mmol) in d_{12} -mesitylene (1 ml) was prepared and 0.375 ml of this stock solution were transferred to the NMR tube and mixed. The sample was heated to reflux with a heat gun for 5 minutes and allowed to cool after wrapping the sample in aluminum foil. A ¹H NMR spectrum was acquired after 3 hours. The sample was subsequently subjected to UV light for 10 minutes and another spectrum was acquired. To complete the isomerization process the sample was subjected to UV light for 5 additional minutes and monitored by ¹H NMR spectroscopy. Complete isomerization was determined by the disappearance of the bound guest signals at -1.0 ppm.

Figure S16. *Trans* to *cis* photo-isomerization of cavitand **1** in the presence of 2-adamantanone; ¹H NMR spectrum after heating to reflux for 5 minutes and cooling in the dark (bottom), after irradiating with UV light for 10 minutes (middle) and after irradiating with UV light for 15 minutes (top).

Cis to trans photo-isomerization of cavitand 1 in the presence of 2-adamantanone (8)

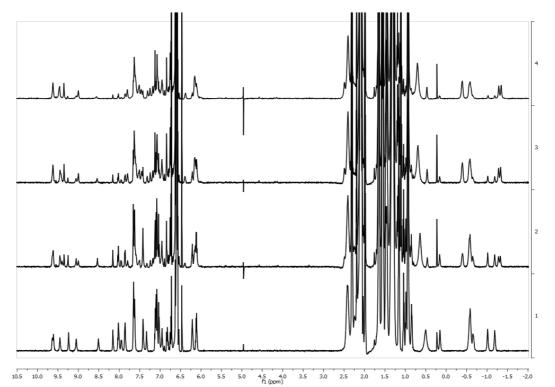

Cavitand 1 (0.0031 g, 0.00156 mmol) was dissolved in d_{12} -mesitylene (0.600 ml) and transferred to a NMR tube. A stock solution of 2-adamantanone (0.0046 g, 0.0306 mmol) in d_{12} -mesitylene (1 ml) was prepared and 0.375 ml of this stock solution was transferred to the NMR tube and mixed. The sample was irradiated with UV light for 30 minutes. The sample was subsequently subjected to visible light and ¹H NMR spectra were acquired after 20, 40, 80 and 120 minutes. The completion of the isomerization was determined by comparing the integration of the methine signals at 6.23 to 6.04 ppm versus the *cis-tert*-butyl signal at -2.2 ppm. Photostationary state = 80% *trans*-1 after 20 minutes.

Figure S17. *Cis* to *trans* photo-isomerization of cavitand **1** in the presence of 2-adamantanone; ¹H NMR spectra after irradiating with UV light for 30 minutes (bottom, 1) after irradiating with visible light for 20 minutes (middle, 2), after irradiating with visible light for 40 minutes (middle, 3), after irradiating with visible light for 80 minutes (middle, 4) and after irradiating with visible light for a total of 120 minutes (top, 5).

Trans to cis photo-isomerization of cavitand 2 in the presence of 2-adamantanone (8)

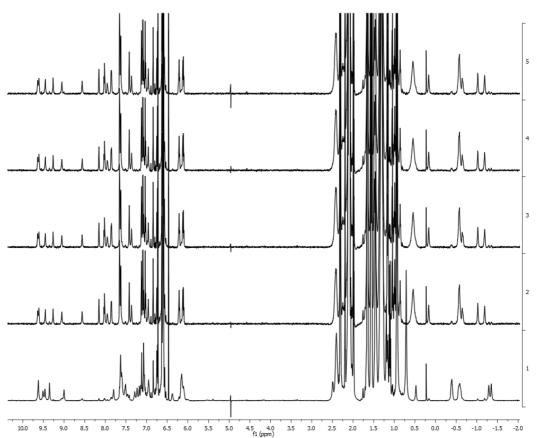

Cavitand **2** (0.0035 g, 0.00181 mmol) was dissolved in d_{12} -mesitylene (0.600 ml) and transferred to a NMR tube. A stock solution of 2-adamantanone (0.0053 g, 0.0353 mmol) in d_{12} -mesitylene (1 ml) was prepared and 0.475 ml of this stock solution was transferred to the NMR tube and mixed. The sample was heated to reflux with a heat gun for 5 minutes and allowed to cool after wrapping the sample in aluminum foil. A ¹H NMR spectrum was acquired after 3 hours. The sample was subsequently subjected to UV light for 10 minutes and another spectrum was acquired. Another spectrum was acquired after 15 minutes and to complete the isomerization process the sample was subjected to UV light for 5 additional minutes and monitored by ¹H NMR spectroscopy. Complete isomerization was determined by the disappearance of the *cis*-**2** bound guest signals at -1.01 ppm.

Figure S18. Kinetics of photo-isomerization of cavitand **2** in the presence of 2-adamantanone; ¹H NMR spectra after heating to reflux for 5 minutes and cooling in the dark (bottom), after irradiating with UV light for 10 minutes (middle, 2), after irradiating with UV light for 15 minutes (middle, 3) and after irradiating with UV light for 20 minutes (top).

Cis to trans photo-isomerization of cavitand 2 in the presence of 2-adamantanone (8)

Cavitand 2 (0.0035 g, 0.00181 mmol) was dissolved in d_{12} -mesitylene (0.600 ml) and transferred to a NMR tube. A stock solution of 2-adamantanone (0.0053 g, 0.0353 mmol) in d_{12} -mesitylene (1 ml) was prepared and 0.475 ml of this stock solution was transferred to the NMR tube and mixed. The sample was irradiated with UV light for 30 minutes. The sample was subsequently subjected to visible light and ¹H NMR spectra were acquired after 20, 40, 80 and 120 minutes. The completion of the isomerization was determined by comparing the integration of the methine signals at 6.21 and 6.11 ppm versus the *cis*-bound guest signals at -1.29 and -1.35 ppm. Photostationary state = 95% trans-2 after 20 minutes.

Figure S19. *Cis* to *trans* photo-isomerization of cavitand **2** in the presence of 2-adamantanone; ¹H NMR spectra after irradiating with UV light for 30 minutes (bottom, 1), after irradiating with visible light for 20 minutes (middle, 2), after irradiating with visible light for 40 minutes (middle, 3), after irradiating with visible light for 80 minutes (middle, 4) and after irradiating with visible light for a total of 120 minutes (top, 5).

6. Computational Studies

AM1 minimizations were performed with the CAChe software package.ⁱⁱⁱ

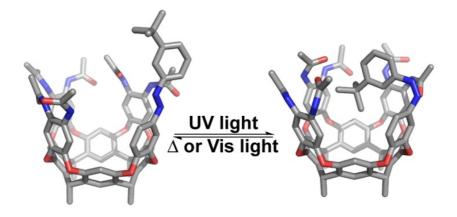


Figure S20. AM1 minimizations of azo-cavitand 1 illustrating the open configuration of *trans-1* (left) and the self-contained configuration *cis-1* (right). Hydrogens and alkyl chains have been removed.

7. References

- ⁱ A. Defoin, *Synthesis*, **2004**, *5*, 706-710. ⁱⁱ A. Lledo, J. Rebek Jr. *Chem. Commun.* **2010**, *46*, 1637-1639.
- ⁱⁱⁱ CAChe, version 6.1.12.33, Fujitsu Limited, USA, 2000-2004.