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Comparison of spatiotemporal patterns in timing of rotavirus epidemics, climate 

indicators, and birth rates  

 

Since climatic factors have sometimes been hypothesized to drive the traveling wave of 

rotavirus epidemics across the United States, we explored the statistical association 

between spatial and temporal variation in timing of rotavirus epidemics and environmental 

covariates. For comparative purposes, we conducted a similar analysis between timing of 

rotavirus epidemics and birth rates.  

 

Definition of climate indicators 

We compiled data on a variety of environmental factors, including solar radiation, 

precipitation, vapor pressure, and temperature, and derived summary environmental 

indicators for each winter season and state. To obtain a comparable rotavirus season in each 

state, we average climate indicators for December and January of each winter. Since 

rotavirus epidemic patterns appeared to change around the late 1990s, we compared climate 

indicators for two time periods: early years (1995-97) when the rotavirus traveling wave 

was most pronounced, and recent years when it was less pronounced (2000-2002). A 

description of the sources of the climate data is given below. 

 

a) Solar radiation data 

We compiled measurements of the amount of electromagnetic energy (solar radiation) 

incident on the surface of the earth across the U.S.  Because measurement systems and 

processing of solar radiation data have changed in the last decades and may have affected 
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overall trends in observations (1), we considered two independent datasets, derived from 

ground observations and satellites. Since both datasets were highly correlated, we only 

present statistical results for ground observation exclusively.  

  

Ground observations were obtained from the National Solar Radiation Database (NSRDB) 

of the National Renewable Energy Laboratory 

(http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/hourly/list_by_USAFN.html). We 

used data for the station closest to the more populated area in each state.  The units are 

expressed in Wh/m2/hour (energy by square meter averaged by hours - including night 

hours) (Fig. S1). 

 

Satellite-derived solar surface irradiance data were obtained from NASA GEWEX Surface 

Radiation Budget (SRB, http://eosweb.larc.nasa.gov/PRODOCS/sse/table_sse.html). Units 

in Wh/m2 /day (daily total irradiance by square meter averaged by hours) (Fig. S2). 

 

b) Data on precipitation, vapor pressure and temperature  

Monthly climatic data were obtained from worldwide climate maps generated by the 

interpolation of climatic information from ground-based meteorological stations with a 

monthly temporal resolution and 0.5º (latitude) by 0.5º (longitude) spatial resolution (2). 

The climatic variables used were precipitation, monthly average of daily minimum and 

maximum temperatures, and vapor pressure. 

 

These monthly climatic variables were extracted from the pixels with more than 10,000 

inhabitants within each U.S. state and averaged for the two periods of interest (1995-97 and 
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2000-02). Average daily maximum temperatures (TMX) and minimum temperatures (TMN) 

are expressed in degrees Celsius, vapor pressure (VAP) in hecta-Pascals, and precipitation 

(PRE) in millimeters.  Maps in Fig. S3-S6 show spatial and temporal patterns in 

precipitation, vapor pressure and temperature across the U.S.   

 

c) Birth rate data 

We used the on-line tool from the National Center for Health Statistics to retrieve annual 

birth rates for each state, 1992-2006 

(http://www.cdc.gov/nchs/datawh/vitalstats/VitalStatsbirths.htm).  Maps of average birth 

rates are presented in the main text (Fig. 1B). 

 

Statistical approach 

We conducted univariate and multivariate regression analyses to explore the relative 

contribution of climate and birth rates on the timing of rotavirus epidemics in U.S. states. 

Timing of epidemics (T) was defined by the mean week of rotavirus activity for each 

season and epidemic year, as follows: 
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Here Ts,y is the mean timing of rotavirus activity for state s and epidemic year y, w is an 

index for the week of year running from 1 to 52, where week 1 indicates the first week of 

July and week 52 is the last week of June, casess,y,w is the number of cases of rotavirus 

hospitalizations reported in state s, epidemic year y and week w. Hence T is the mean week 

of the epidemic, where each week is weighted by the number of rotavirus cases. 
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If there is an association between rotavirus epidemic timing, climate indicators, and/or birth 

rates, this relationship is expected to explain spatial variations in epidemic timing each 

winter, as well as time trends in each state (e.g. California). To test the association, we first 

conducted an analysis of spatial variation in mean rotavirus timing stratified by two periods 

of interest, focusing on early years of the study when the geographic differences in timing 

of rotavirus epidemics was most pronounced (1993-1998), and in recent years when it was 

less pronounced (2001-2006). Second, we conducted an analysis of temporal trends in 

mean rotavirus timing in each state between 1993 and 2006. Given that each exploratory 

analysis involved multiple testing for 6 covariates (5 climate indicators + birth rate), we 

focused on factors with a P-value below 0.05/6=0.0083, using Bonferroni correction. 

 

Results 

The results of the univariate and multivariate statistical analyses are presented in table S1. 

Birth rate was the covariate most strongly associated with rotavirus timing in all univariate 

analyses, and it was the only factor associated both with temporal and spatial patterns in 

rotavirus epidemic timing across states and epidemic years (all P<0.008). The association 

was quite strong and results were significant despite the small sample size in the analyses 

of early years (11 states due to data availability issues). Stepwise multivariate regression 

identified birth rate as the only predictor of rotavirus timing explaining spatial variations in 

early years as well as temporal changes, while the best model predicting spatial variations 

in recent years included birth rates and vapor pressure (Table S1). We note that in the latter 

analysis, birth rate had a stronger association with rotavirus timing than vapor pressure. 

Overall, birth rate alone explained 65-71% of the spatial variation in rotavirus epidemic 
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timing across U.S. states in the early and recent period, and 61% of temporal trends in 

rotavirus timing observed in 10 states with long-term records. Further, a separate analysis 

of monthly variations in climate indicators suggests that the timing of maximum and 

minimum indicators have not changed over the study period (Fig. S7). 

 

In conclusion, this statistical analysis identifies birth rates as a strong predictor of spatial 

and temporal patterns in rotavirus epidemics across the U.S., and suggests that more 

homogeneous birth rates across the U.S. in recent years (mostly due to declining birth rates 

in southwestern states, Fig. 1B) have driven rotavirus epidemics to become more 

synchronized across the country. 

 

 

Geographic spread of infection: evidence for local persistence 

 

Another possible explanation for the apparent southwest-to-northeast spread of rotavirus is 

that antigenically novel strains are introduced each year from endemic regions with high 

year-round rotavirus activity, such as Central America, and spread geographically across 

the U.S.  This hypothesis is reminiscent of the geographical spread of another acute viral 

infection, influenza, which has also been characterized in the U.S.  (3).  However, the 

pattern of spread exhibited by rotavirus differs considerably from that of influenza, for 

which epidemics tend to begin relatively synchronously in major population centers then 

spread hierarchically to more rural areas (3).  Such patterns of spread inherently assume 

local extinction followed by annual reinvasion from outside of the U.S., which has been 

confirmed by phylogenetic analysis of influenza virus sequences (4).   
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In the case of rotavirus, a variety of epidemiologic and genetic evidence suggests that 

infection persists in the population during epidemic troughs.  Studies focusing on rotavirus 

infections in adults have found relatively little seasonal variability in the occurrence of 

infection, as evidenced by both IgM titres and viral isolation (5, 6).  Furthermore, a study 

noted that certain G1 electropherotypes persisted in the population for more than a year in 

Australia; also, there was no consistent direction of spread of individual strains from city to 

city, despite epidemics peaking 1-2 months earlier in Western Australia compared to 

eastern cities (7).  In the U.S., the distribution of rotavirus strains differs considerably from 

state to state in a given season, even within neighboring states (8, 9), suggesting that 

geographic diffusion of novel strains plays a limited role in the overall dynamics.   

 

Thus, hierarchical spread of infection seems an unlikely explanation for the observed 

spatiotemporal pattern of rotavirus epidemics.  While there may be some local fadeout of 

rotavirus infection during epidemic troughs in less populous regions, rotavirus cases are 

reported throughout the year at state and national levels.  We conclude that geographic 

spread of strains may occur, but cannot explain the overall patterning of rotavirus 

epidemics in the U.S. 

 

 

Transmission model details 

 

We used a compartmental model to describe the dynamics of rotavirus infection using a 

series of differential equations (Fig. S8).  The model structure is similar to that developed 
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for other imperfectly immunizing infections, e.g. (10), but is specifically tailored to the 

epidemiology of rotavirus.  Briefly, individuals are born into compartment M, during which 

they are protected from infection by the presence of maternal antibodies.  These maternal 

antibodies wane at a rate ω0, leaving the individual susceptible to primary infection (S0), 

which occurs at a rate λ.  Individuals with primary rotavirus infection (I1) recover at a rate 

γ1 into the R1 state, during which they are temporarily immune to re-infection.  This 

immunity wanes at a rate ω1 and individuals enter the S1 state, from which they can be re-

infected at a reduced rate σ1λ.  Secondary infections (I2) are assumed to have infectiousness 

reduced by a factor ρ2 and a faster recovery rate γ2.  After recovering from secondary 

rotavirus infection, individuals are again assumed to be temporarily immune (R2), and this 

immunity wanes at a rate ω1, upon which individuals enter the partially-immune S2 class.  

Once in S2, individuals can be re-infected at a rate σ2λ, but subsequent infections (IA) are 

assumed to be asymptomatic (or only mildly symptomatic) and have infectiousness that is 

reduced by a factor ρA.  Recovery from asymptomatic infection is again assumed to occur at 

an increased rate γ2 and lead to a state of temporary immunity (RA) that wanes at a rate ω2.  

 

Parameter estimates are given in Table S2.  We based our estimates of the relative rate of 

infection and the probability of developing severe diarrhea given infection on a study by 

Velazquez et al (11), but the results from other cohort studies conducted in Argentina, 

Guinea Bissau, India, the U.S., and the U.K. (12-16) have for the most part been in 

agreement.  Other studies (17, 18) suggest that there is a short-lived period of homotypic 

immunity following infection, which may be linked to rotavirus-specific T-cell responses 

(19).  However, the role that serum antibodies versus cell-mediated immune responses play 

in protection again rotavirus infection is still not entirely understood (20).  Studies of 
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household transmission of rotavirus stress the important role of children as sources of 

infection (21).  Furthermore, there is evidence to suggest that viral loads tend to be higher 

in children with more severe disease (22), which may indicate greater infectiousness. 

 

We included age structure in the model so as to keep track of the age-specific incidence of 

disease in accordance with the level of detail in our data (see below).  The population was 

divided into 21 age classes, with 1 month age classes from 0-11 months of age, 1 year age 

classes from 1-4 years of age, then 5-9 year, 10-19 year, 20-39 year, 40-59 year, and 60+ 

year age groups.  The rate of aging into the next age class was equal to 1/(width of the age 

class).  Individuals were born into the first age class at a rate B(t) equal to the annual mean 

crude birth rate for each state in our dataset from 1998 to 2004 (23).  The rate of aging out 

of the last age class was chosen to be consistent with the median age of individuals in the 

U.S. over this time period.  

 

The force of infection is given by λ = β(I1 + ρ2I2 + ρAIA), where β(t) is the seasonally-

varying transmission parameter.  Seasonality in the rate of transmission is modeled using a 

simple sinusoidal function, such that β(t) = β0(1 + acos(2π(t – φ))), where β0 is the baseline 

transmission rate, a is the amplitude of seasonality, and φ is the seasonal offset parameter.  

Note that the transmission rate depends on the density of infectious individuals, which is 

typical of directly transmitted infections (24) and previously-developed models for 

rotavirus (25-27).  Thus, the number of potentially infectious contacts will scale with the 

population size.  We initially assumed that mixing is homogeneous with respect to age, 

such that all individuals have an equal probability of contacting any other individual in the 

population and of being infected given contact with an infectious individual.  We estimated 
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the parameters of β(t) by fitting the model output D (the number of cases of severe 

rotavirus-related diarrhea) to age-specific rotavirus hospitalization data.  Individuals with 

primary rotavirus infection (I1) have a probability d1 of developing severe diarrhea, while 

those with secondary rotavirus infection (I2) develop severe diarrhea with probability d2 < 

d1, where d1 and d2 are equal to 11% and 2.9%, respectively, consistent with data from 

Velazquez, et al (11).  We assume that only a proportion hD of diarrhea cases are 

hospitalized, where h is estimated to be consistent with the best-fitting model.   

 

The model fit was assessed by calculating the log-likelihood of the data under the 

assumption that the number of hospitalizations in each age class i at time t (Hi,t) follows a 

Poisson distribution with mean hDi,t as follows: 
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The best-fitting model was the one for which the set of estimated parameters {β0, a, φ, h} 

yielded the maximum log-likelihood.  We fit the model after an initial burn-in period of 25 

years to allow the model to reach equilibrium. 

 

Rotavirus hospitalization data 

We fit our model to age-specific hospitalization data available from the State Inpatient 

Databases (SID) of the Healthcare Cost and Utilization Project (HCUP) (http://www.hcup-

us.ahrq.gov/databases.jsp) maintained by the Agency for Healthcare Research and Quality 

(AHRQ).  This database includes all hospital discharge records from community hospitals 
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in participating states.  HCUP databases bring together the data collection efforts of State 

data organizations, hospital associations, private data organizations, and the Federal 

government to create a national information resource of patient-level health care data (28).  

We extracted all records of hospital discharges that listed the specific code for rotavirus 

[008.61] from the International Classification of Diseases 9th revision (ICD9-CM), in any 

position among the up to 15 discharge diagnoses. For each record, we noted the child’s age, 

the state, year and month of admission. 

 

We analyzed a subset of all available SIDs from January 1993 to December 2004.  The 16 

states with monthly hospital discharge data for all study years were: Arizona (AZ), 

California (CA), Colorado (CO), Connecticut (CT), Iowa (IA), Illinois (IL), Kansas (KS), 

Massachusetts (MA), Maryland (MD), New Jersey (NJ), New York (NY), Oregon (OR), 

Pennsylvania (PA), South Carolina (SC), Washington (WA), and Wisconsin (WI).  Age 

was recorded in monthly age categories from 0 to 11 months of age, then in 1 year age 

categories from 1 to 4 years of age.  It is known that the use of the rotavirus ICD-9-CM 

discharge code increased during the period from 1993 to 1999 (29).  Thus, we only focused 

on the period from July 1998 to December 2004.   

 

Mixing assumptions 

We explored four possible assumptions about how individuals belonging to different age 

classes mix with one another in ways relevant to rotavirus transmission.  The simplest 

assumption is that mixing is homogeneous, such that individuals of all age groups have 

equal probability of contacting a member of any other age group and of becoming infected 

given an infectious contact.  Since the primary means of transmission of rotavirus is fecal-

  11



oral, we also explored the possibility that individuals <1 year of age, 1-year-olds, and 2-

year-olds have unique (and presumably elevated) rates of transmission to them, since 

infants tend to be more inclined to stick their hands and other objects in their mouth and 

exhibit other behaviors that could lead to an increased rate of infection.  Another possibility 

is that mixing is assortative, such that individuals are more likely to contact other 

individuals belonging to the same age class as opposed to those of a different age; again, 

we allowed for unique rates of contact among those <1 year, 1 year, and 2 years of age, as 

well as a unique rate for within-age-class mixing among older individuals.  Finally, since 

there has been some speculation that airborne transmission of rotavirus may occur (30), we 

explored the possibility that age-related mixing is proportional to self-reported 

conversational data (31). 

 

We fit our model to the age-specific hospitalization data from California (the state with the 

greatest number of cases) under each of the four mixing assumptions and estimated the 

relevant parameters, including the four baseline parameters {β0, a, φ, h}, plus whatever 

additional age-specific parameters were necessary.  We compared the model fits using 

Akaike information criterion (AIC).   

 

We found that the model which allows for unique rates of transmission to <3 year olds 

provides the best fit to the data (Table S3).  When we assume mixing is homogeneous, the 

model tends to overestimate the proportion of cases in the <1 year age classes while 

underestimating the proportion of cases in 1 year olds (Fig. S9).  However, if we assume 

that there are age-related differences in contact rates, such that children <3 years of age 
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have 1.5-2.5 times as many infectious contacts compared to other individuals, then the age 

distribution of cases predicted by the model more closely resembles the data (Fig. S9). 

 

After determining the most appropriate mixing assumption, we then fit this model to 

remaining 15 states, independently estimating four baseline parameters plus three age-

specific contact rates for <3 year olds for each state.  State-specific estimates for R0 for 

primary infections (calculated as the maximum eigenvalue of the Rij matrix), the amplitude 

of seasonality, seasonal offset parameter, and proportion of cases hospitalized and reported 

are presented in Fig. S10.  We also calculated R0 for the average infectious individual ( 0R ) 

from the equilibrium distribution of infection using the following formula: 

 ( ) ( )AAAA IIIIIIR ++++= 212221100 /γργργβ . 

We then estimated the mean and 95% confidence interval for each parameter for the best-

fitting model from each state for each of the four census regions and the U.S. as a whole 

(Table S2).   

 

The variation in state-specific estimates of fitted parameters observed in Fig. S10 is 

possibly related to other demographic parameters such as population density and/or the 

number of children attending day care centers.  Estimates of R0 tended to be higher in more 

densely populated states; however, this relationship was not significant (P>0.05).  There 

was a significant positive correlation between the estimated proportion of cases 

hospitalized in a given state and the number of child care centers per 1,000 children 

(P=0.014).  Day care attendance has been found to be a significant risk factor for rotavirus-
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associated diarrhea (32).  It is possible that there is a dose effect leading to more severe 

rotavirus cases in children in states with high rates of day care attendance. 

 

Relationship between birth rates and the timing of epidemics as predicted by the 

transmission model 

 

We also had data on the number of weekly rotavirus-positive specimens voluntarily 

reported by laboratories throughout the U.S. to the Centers for Disease Control and 

Prevention (CDC) through the National Respiratory and Enteric Virus Surveillance System 

(NREVSS) (http://www.cdc.gov/surveillance/nrevss/) for the period from July (calendar 

week 27) 1991 to June (calendar week 26) 2006.  Reporting for some states was poor 

and/or intermittent over the study period.  Thus, we only included 23 states with “good” 

surveillance (defined as at least 40 positive specimens reported each season) in our analysis, 

as follows: Alabama, Arkansas, California, Delaware, Georgia, Illinois, Indiana, Kentucky, 

Louisiana, Massachusetts, Missouri, Nebraska, New York, North Dakota, Ohio, Oklahoma, 

South Carolina, Tennessee, Texas, Virginia, Washington, West Virginia, and Wisconsin.  

In some cases, multiple positive tests for the same patient are reported.  A comparison of 

the weekly laboratory-confirmed detections to the monthly hospitalization rates in seven 

states for which we had both types of data suggests that the rate at which rotavirus cases are 

laboratory-confirmed and reported through NREVSS varies considerably by state, and that 

at most 6-75% of hospitalizations with an ICD-9-CM discharge code for rotavirus receive 

laboratory confirmation. .   
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When fitting our model to the NREVSS data, we assumed that R0 and the age-specific rates 

of transmission varied by region in accordance with the mean values for the best-fitting 

models to the age-specific hospitalization data from 16 states (Fig. S10A).  Thus, only three 

parameters were estimated for each state—the amplitude of seasonality (a), seasonal offset 

parameter (φ), and proportion of cases reported (i.e. lab-confirmed) (h).  We first fit the 

model to the data from each state assuming that the birth rate, B(t), was constant over the 

interval from 1991 to 2006 and equal to the mean crude birth rate for the U.S. during this 

time period (constant in both time and space).  We then fit the model allowing the birth rate 

to vary both temporally and geographically in accordance with the yearly crude birth rates 

for each state.  The log-likelihoods of the best-fitting models for each state were compared 

to determine whether allowing for geographical and temporal variation in the birth rate 

improved the model fit.  

 

The model with constant birth rate was not able to capture the observed variability in 

epidemic timing as well (Fig. S11A), and led to a worse fit (lower log-likelihood) for 18 of 

the 23 states, and for the 23 states combined (P < 0.001).  The state-to-state variance in the 

seasonal offset parameter (φ) of the best-fitting model was approximately the same for both 

models; accounting for variability in the birth rate in the model led to a positive correlation 

between the seasonal offset parameter and the mean state-specific birth rate (ρ = 0.599, P = 

0.0025) rather than a negative correlation when a constant birth rate was used (ρ = -0.609, 

P = 0.002) (Fig. S11B). 

 

We attempted to correlate the residual variability in seasonality between states, including 

variation in the seasonal amplitude (a) and offset parameter (φ), to variability in other 
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demographic or environmental variables.  Birth rates in the U.S. tend to vary seasonal with 

a small (2-7%) amplitude and peak in the late summer/early fall.  However, the residual 

variability in seasonality does not appear to be related to state-to-state variation in birth rate 

seasonality.  Furthermore, such variation in the birth rate is not comparable to similar 

amplitudes of seasonal forcing estimated for the transmission parameter (i.e. the observed 

variation in birth rate not sufficient to drive the strong epidemic patterns observed), as has 

been previously noted (33, 34).  Population density may have some effect on the variation 

in seasonality parameters, but the correlations tended to be weak and non-significant.  

There were no significant correlations between any of the climatic variables we examined 

and the residual variability in seasonality.  Thus, while factors such as increased virus 

survival in low relative humidity may help explain why transmissibility tends to peak in the 

winter (35), environmental factors do not explain the residual seasonality in our model.  

This small residual seasonality may not of itself be biologically meaningful; instead it may 

simply reflect the fact that we are fitting a necessarily approximate, nonlinear model to real 

data.  

 

Relationship between birth rate and rotavirus dynamics in other countries 

Qualitatively similar relationships between rotavirus seasonality and secular changes in 

birth rate have been observed in other countries, as well.  For example, the incidence of 

rotavirus in the Basque region of Spain went from having a relatively high incidence of 

rotavirus cases year-round during the period from 1984-90 to strongly seasonal winter 

outbreaks in 1991-97; the authors hypothesized that this could be linked to a large decline 

in the birth rate during the preceding decade (36), and our model is able to reproduce this 

general pattern if we assume transmission rates are somewhat higher than in the U.S.  
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Rotavirus epidemics also occurred increasingly later in Japan throughout the 1990s (37), 

while birth rates declined considerably between 1975 and 1985 in this country (38).  Thus, 

while the epidemiology of rotavirus may vary slightly between countries, demography may 

be a universally important driver of patterns in rotavirus incidence.  

 

 

Vaccination impact 

 

We modeled the effect of vaccination by assuming vaccinated individuals in the M and S0 

compartments who are successfully immunized bypass the I1 compartment and enter the R1 

state.  Studies have shown that vaccine efficacy is comparable in breastfed infants, 

compared to non-breastfed infants (39), so we assume vaccinated infants can be 

successfully immunized prior to the waning of maternal antibodies.  We assume that 96% 

of vaccinated individuals are successfully immunized, consistent with the proportion of 

individuals who seroconverted following two doses of the Rotarix vaccine in phase II 

clinical trials (40).  This yields a vaccine efficacy of 36.5% (=0.96*(1-0.62)) against 

infection and 80.3% (=0.96*(1-0.62*0.029/0.11)) against severe diarrhea, similar to that 

estimated for the Rotarix vaccine during two years follow-up in Latin American infants 

(41).  Efficacy estimates have been slightly higher for the Rotateq vaccine (42), which is 

the only one currently licensed in the U.S., but the differences may be explained by the use 

of different classifications of disease severity and differences in the populations studies in 

vaccine trials (43).  Since our model does not explicitly incorporate information on the 

different serotypes of rotavirus, it seems more appropriate to model the impact of a human-
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derived monovalent vaccine such as Rotarix rather than a reassortant pentavalent vaccine 

such as Rotateq.   

 

We validated our model against the weekly NREVSS data from 2006-2008; note that we 

did not fit our model to the vaccine era data.  We examined the effect of vaccination 

administered at 3 months of age.  Estimates of 1-dose vaccination coverage were derived 

from health insurance claims data gathered by Surveillance Data Inc. (SDI) 

(www.sdihealth.com).  The number of Rotateq doses administered during the first 3 months 

of life was used as an estimate of the numerator, while denominators were estimated as the 

total number of physician visits in which any standard childhood vaccine was administered 

prior to 4 months of age.  A similar method was shown to produce reliable estimates of 

vaccination coverage using health insurance data from Germany (44).  Furthermore, 

estimates showed good agreement with coverage estimates from 8 immunization 

information system (IIS) sentinel sites and the Vaccine Safety Datalink (VSD) (45).  Both 

the relative efficacy of 1 dose of the vaccine and the proportion of children who go on to 

receive the full dose are both somewhat uncertain; thus, we explored estimates of the 

relative effectiveness of the 1-dose coverage estimates (compared to the full 3-dose 

protective effect) between 50-100%.  We found that our model predictions were in close 

agreement with the data given a relative effectiveness of 70-80%.  This seems reasonable, 

given that current estimates of 1-dose efficacy have varied between 29-83% (46), and 

~50% of individuals go on to receive ≥3 doses of the vaccine (45).   

 

Since vaccination primarily protects against the development of symptoms given infection 

rather than infection itself, it is not obvious that vaccination should affect the timing of 
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epidemics.  If the force of infection were mostly dependent on the large number of 

asymptomatic infections in the population, one would expect to see smaller epidemics 

occurring around the same time of year in response to vaccination.  However, by preventing 

the more infectious primary infections that tend to drive the epidemics, vaccination has 

non-linear effects on both the size and timing of epidemics.  Thus, the dynamics that drive 

the observed response to vaccination are the same that lead to the association between birth 

rates and the spatiotemporal pattern of epidemics. 

 

Vaccination provides both direct protection for those who are successfully immunized with 

the vaccine and indirect protection (also known as herd immunity) for those who are not 

immunized, by decreasing the likelihood that they will come into contact with an infectious 

individual.  To explore the relative contributions of direct and indirect protection in 

determining the long-term impact of rotavirus vaccination, we assumed that a proportion 

of all individuals are fully immunized by the vaccine at a certain age.  The 

recommended protocol is to vaccinate at 2 and 4 months of age for the two-dose Rotarix 

vaccine and at 2, 4, and 6 months of age for the three-dose Rotateq vaccine, although both 

vaccines may be administered up to 8 months of age; neither vaccine is not recommended 

for children over the age of 8 months, as the risk of intussusception associated with 

vaccination has not been assessed in older infants (47).  High levels of maternal antibodies 

may interfere with the vaccine in individuals <2 months of age, despite evidence which 

suggests that breastfeeding does not interfere with vaccination under the current vaccine 

schedule (39).  Furthermore, multiple doses of the vaccine may be required to achieve the 

full immunological effect (46).  Thus, we examined three possible ages at immunization—

]1,0[∈c
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(1) a “best-case” scenario in which individuals are immunized at birth (i.e. upon first dose 

of the vaccine, prior to the waning of maternal immunity), (2) a “realistic” scenario in 

which a proportion c of susceptible (M and S0) individuals are immunized at 4 months of 

age (i.e. following 2 doses of the vaccine according to the recommended schedule), and (2) 

a “pessimistic” scenario in which a proportion c are fully immunized at 8 months of age (i.e. 

following last dose of the vaccine at the oldest recommended age). 

 

To estimate the degree of indirect protection afforded by vaccination, we compared the 

reduction in both the incidence in severe diarrhea and the overall prevalence of infection 

predicted by the model 10 years after the vaccine is introduced at coverage c to the direct 

effect of vaccination.  The direct effect of vaccination is estimated as 1-0.803*c for the 

incidence of severe diarrhea and 1-0.365*c for the prevalence of infection.  This calculation 

assumes all individuals who receive the vaccine are protected from birth. 

 

Effect of Repeat Vaccination 

We explored the potential effect of a booster vaccine that could mimic secondary infection 

in previously vaccinated (or infected) infants.  Alternatively, if secondary infections are 

primarily caused by a different serotype, this could represent full protection against 

multiple serotypes.  To model this effect, we assume that individuals in the R1 and S1 

compartments who receive a second dose of the vaccine by-pass the I2 state and enter the R2 

compartment.  We assume that the booster dose is administered 2 months after the initial 

age at immunization, and that coverage is equal to that with the first dose.  Again, we 

assume that 96% of individuals who receive the booster vaccine are effectively immunized.  

Thus, the vaccine efficacy is 59.9% against infection (=0.96*0.96*(1-0.35)) and 92.2% 
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against severe diarrhea (=0.96*0.96*(1-0.35*0/0.11)).  The results suggest that such a 

vaccine could lead to the elimination of rotavirus from the population, but only at very high 

levels of coverage (≥99% when the first dose is administered at birth) (Fig. S12). 

 

 

Sensitivity analyses 

 

We examined the sensitivity of our results to the initial parameter estimates for four 

parameters about which there was some uncertainty, including the duration of 

infectiousness (1/γ1 and 1/γ2), the relative infectiousness of secondary and subsequent 

infections (ρ2 and ρA), the duration of complete immunity following infection (1/ω1 and 

1/ω2), and the possible waning of partial immunity in adults (in which we assume 

individuals move from the S2 to the S1 class at a rate ψ).  For each of the four parameters, 

we re-fit our model (again assuming unique rates of transmission to <3 year olds) to the 

age-specific hospitalization data from the California HCUP SID under two different sets of 

parameter values; generally, one set of parameters was less than the initial estimate while 

the other was greater, except for the duration of infectiousness and the rate of waning 

partial immunity, for which we had reason to believe that our initial parameter values are 

on the lower end of the reasonable parameter range.  We compared the model fits to our 

original model by comparing the negative log-likelihoods (with lower negative log-

likelihoods indicating a better fit to the data).  In all cases, our original model yielded the 

best fit (Table S4). 
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We then analyzed the maximum possible impact of vaccination for each of the parameter 

sets by assuming a coverage c of 100% at birth and examining the equilibrium prevalence 

of infection and incidence of severe diarrhea. Overall, the relative incidence of severe 

diarrhea given 100% vaccine coverage varied between 0 (when we assume the relative 

infectiousness of secondary and subsequent infections are 0.1 and 0.05, respectively) and 

0.23 (when we assume secondary and subsequent infections are as infectious as primary 

infections) (Table S4).  The relative prevalence of infection at equilibrium varied between 0 

and 0.73, and was again most sensitive to our assumptions about the relative infectiousness 

of secondary and subsequent infections (Table S4).  Note that the parameter values that 

predicted the highest relative rates of severe diarrhea (and thus the smallest impact of 

vaccination) also tended to be the ones that provided the worst fit to the age-specific 

hospitalization data.  However, the models that included waning of partial immunity among 

adults, for which the fit to the data was only slightly worse, also predicted slightly elevated 

rates of infection and severe diarrhea at equilibrium.   

 

Thus, the potential population-level impact of rotavirus vaccination we present in the main 

text is relatively robust to our parameterization of the model.  However, predicting the true 

impact of vaccination may require a better understanding of the relative infectiousness and 

nature of immunity to rotavirus infection in adults. 

 

There is some evidence to suggest that further refinement of our model may be necessary.  

For instance, an examination of laboratory-confirmed reports of rotavirus from Utah, which 

was excluded from our analysis since detections were only reported for the first 10 years of 

the study period, reveals that epidemics occurred later in this state beginning in 1996-1997 
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despite the fact that birth rates remained consistently high over the past two decades.  Thus, 

it may be necessary to account for some spatial spread of infection from more populous 

regions or other factors to explain this pattern.  Furthermore, our model suggests that a 

decline in birth rate should not only affect the timing of epidemics, but will also lead to a 

decrease in the mean incidence of infection over time.  While there has been some year-to-

year variability in the incidence of rotavirus, there is no evidence to suggest that rates of 

hospitalization and detection are declining along with birth rates in states such as California 

prior to the introduction of the vaccine.  Nevertheless, the current formulation is able to 

capture many of the relevant features of the epidemiology of rotavirus in the U.S.A using a 

relatively simplified representation of the dynamics of infection. 
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Figure S1:  Map of average amount of solar radiation in December- January, based on 
ground observations. (A) 1995-97, (B) 2000-02, (C) difference between the two periods. 
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Figure S2:  Map of average amount of solar radiation in December- January, based on 
satellite observations. (A) 1995-97, (B) 2000-02, (C) difference between the two periods. 
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Figure S3:  Map of average amount of precipitation in December-January. (A) 1995-97, (B) 
2000-02, (C) difference between the two periods. 
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Figure S4:  Map of average minimum temperature in December-January. (A) 1995-97, (B) 
2000-02, (C) difference between the two periods. 
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Figure S5:  Map of average maximum temperature in December-January. (A) 1995-97, (B) 
2000-02, (C) difference between the two periods. 
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Figure S6:  Map of average amount of vapor pressure in December-January. (A) 1995-97, 
(B) 2000-02, (C) difference between the two periods. 
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Figure S7:  Maps of month of minimum climate indicators for 1995-97 (left panels) and 
2000-02 (right panels). From top to bottom: precipitation (PRE), average daily maximum 
temperature (TMX), average daily minimum temperature (TMN), vapor pressure (VAP). 
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Figure S8:  Detailed compartmental diagram illustrating transmission model.  Parameter 
values are defined in Table S2. 
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Figure S9:  Age distribution of severe diarrhea cases predicted by the model assuming 
homogeneous mixing (blue) versus unique rates of transmission to <1, 1, and 2-year olds 
(green), compared to the age distribution of hospitalized cases from the California HCUP 
SID (red). 
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Figure S10:  Estimated parameters for model fit to age-specific hospitalization data from HCUP SIDs for 16 states. (A) R0 for primary 
infection, (B) amplitude of seasonality (a), (C) seasonal offset parameter (φ), and (D) proportion of severe diarrhea cases hospitalized 
and reported (h).  Data is color-coded by U.S. census region (West=red, Midwest=blue, South=purple, Northeast=green). 
 

 



Figure S11:  Comparison of model with constant birth rate to model incorporating state-
specific estimates of annual birth rate. (A) Relationship between mean timing of rotavirus 
activity and birth rate in the preceding year. NREVSS data for 23 states from 1991 to 
2006 is plotted in blue, while the red dots represent data for the fitted model with variable 
birth rate and the green dots represent data for the fitted model with constant birth rate. 
(B) Estimates of seasonal offset parameter for best-fitting model to data from 23 states, 
assuming variable birth rate (red) and constant birth rate (green). 
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Figure S12:  Effect of repeat vaccination at increasing levels of vaccine coverage on (A) 
the relative incidence of severe diarrhea and (B) the relative prevalence of infection after 
vaccination.  Age at first immunization is at birth (blue), 4 months (green), or 8 months 
of age (red), while a booster dose is administered 2 months later.  The dotted black line 
represents the direct effect of vaccination assuming full immunization at birth. 
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Table S1: Statistical association between spatial and temporal patterns in rotavirus 
epidemic timing and climate indicators and birth rates, U.S. states, 1993-2006. Results 
indicate regression coefficients and standard errors (se) of univariate and multivariate 
linear models, where the mean timing of rotavirus activity is the outcome and climate and 
birth rate indicators are explanatory covariates. Multivariate models are based on 
stepwise selection procedures.  
 
Covariate Univariate analysis :  

regression coefficient (se) § 
Multivariate analysis:  
regression coefficient (se) § 

Spatial patterns in early years: 1993-98 (n=11 states) 

Birth rate -2.05 (0.43) *** -2.05 (0.43) *** 

Solar radiation -0.07 (0.04)   

Precipitation -0.006 (0.03)  

Min temperature -0.23 (0.21)  

Max temperature -0.28 (0.16)  

Vapor pressure 0.46 (0.31)  

Spatial patterns in recent years: 2001-06 (n=32 states) 

Birth rate -1.24 (0.16) **** -0.98 (0.19) **** 

Solar radiation -0.04 (0.02) *  

Precipitation 0.03 (0.01) *  

Min temperature -0.02 (0.09)  

Max temperature -0.12 (0.08)  

Vapor pressure 0.55 (0.11) **** 0.25 (0.10) * 

Temporal trends, 1993-2006 (n=10 states) 

Birth rate -1.93 (0.54) ** -1.93 (0.54) **  

Solar radiation -0.11 (0.30)  

Precipitation -0.06 (0.03)  

Min temperature -1.13 (0.80)  

Max temperature -0.81 (0.69)  

Vapor pressure -1.02 (0.68)  

§ Stars highlight regression coefficients that have significant P-values (* : <0.05; 
**:≤0.01; ***≤0.001;**** ≤0.0001) 
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Table S2: Model parameter values. 
Parameter Value Source  
Estimated from data   
ω0 rate of waning maternal antibodies 

 
0.333 mo-1 (48) 

ω1 rate of waning immunity following primary 
and secondary infection 

0.111 mo-1 (18) 

ω2 rate of waning immunity following 
asymptomatic infection 

0.083 mo-1 (49) 

γ1 rate of recovery from primary infection 
 

4.3 mo-1 (50) 

γ2 rate of recovery from secondary and 
asymptomatic infection 

8.6 mo-1 (49, 51, 52) 

σ1 relative susceptibility following first 
infection 

0.62 (11) 

σ2 relative susceptibility following second 
infection 

0.35 (11) 

ρ2 relative infectiousness of secondary 
infection 

0.5 Assumption, (21) 
 

ρA relative infectiousness of asymptomatic 
infection 

0.1 Assumption, (21) 
 

d1 proportion of first infections with severe 
diarrhea 

0.11 (11) 

d2 proportion of second infections with severe 
diarrhea 

0.029 (11) 

Estimated from model fit to age-specific hospitalization data from HCUP for 16 states 
R0 (=β0γ) basic reproductive number 

   for primary infection 
   for average infectious individual 

a amplitude of seasonality 
φ seasonal offset parameter 
h proportion of severe diarrhea cases 

hospitalized 

 
24.6 (22.3, 26.9) 
3.72 (3.43, 4.02) 
0.055 (0.048, 0.061) 
0.68 (0.66, 0.70) 
0.047 (0.036, 0.057) 
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Table S3: Fit of model to age-specific hospitalization data from the California HCUP SID 
under various population mixing assumptions 
 
Mixing assumption  Additional 

estimated 
parameters 

R0 (primary, 
average 
infection) 

AIC 

Homogeneous  
 

 -- 29.9, 
4.76 

8766.3 

Higher rates of transmission to 0, 1, 
and 2 year olds 

 c0 = 1.58 
c1 = 2.34 
c2 = 1.77 

21.3, 
3.44 

7728.3 

Assortative with unique rates of 
transmission among 0, 1, and 2 year 
olds 
 

 c0 = 0.31 
c1 = 3.47 
c2 = 1.89 
cA = 1.06 

27.6, 
4.60 

8230.3 

Mixing proportional to self-reported 
conversational data 

 -- 12.5, 
3.99 

8750.9 
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Table S4: Sensitivity analysis of model parameters (fit to California HCUP SID age-
specific hospitalization data)  
 
Parameter Value Negative 

log-
likelihood 

Relative 
incidence 
of severe 
diarrhea 
given 
100% 
vaccination 
coverage 

Relative 
prevalence 
of infection 
given 
100% 
vaccination 
coverage 

Duration of 
infectiousness 
 

1/γ1 = 1 wk, 1/γ2 = 0.5 wk 
1/γ1 = 2 wk, 1/γ2 = 1 wk 
1/γ1 = 4 wk, 1/γ2 = 2 wk 

3857.1 
4269.1 
4366.1 

0.107 
0.197 
0.219 

0.209 
0.410 
0.459 

Relative infectiousness 
of secondary and 
subsequent  infections 

ρ2 = 0.5, ρA = 0.1 
ρ2 = 1, ρA = 1 
ρ2 = 0.1, ρA = 0.05 

3857.1 
4175.5 
4308.4 

0.107 
0.227 
0 

0.209 
0.730 
0 

Duration of complete 
immunity 
 

1/ω1 = 9 mo, 1/ω2 = 12 mo 
1/ω1 = 1 mo, 1/ω2 = 1 mo 
1/ω1 = 18 mo, 1/ω2 = 24 mo 

3857.1 
4077.3 
3966.3 

0.107 
0.149 
0.100 

0.209 
0.203 
0.246 

Waning of partial 
immunity 
 

ψ = 0 (no waning) 
ψ = 1/10 yr-1 
ψ = 1/5 yr-1 

3857.1 
3896.0 
3912.4 

0.107 
0.191 
0.209 

0.209 
0.494 
0.570 
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