
Biophysical Journal Volume 100 
 
Supporting Material 
 
Title: Feed-forward and Feed-backward Amplification Model from Cochlear  
 
Authors: Yong-Jin Yoon, Charles R. Steele, and Sunil Puria 
 



J Biophysics 

Yoon et al. 1  November 9, 2010 

Feed-forward and Feed-backward Amplification Model from Cochlear Cytoarchitecture: An 
Interspecies Comparison 

 
Yong-Jin Yoon†, Charles R. Steele†, and Sunil Puria†, ‡,  

 
†Department of Mechanical Engineering, Stanford University, Durand Building, California 94305-4035, 

USA 
‡Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California 

94305, USA 
 
 
 
 
 

SUPPORTING MATERIAL 
 
This supporting material section describes the methods, parameters, and some results corresponding to 
the passive cochlear model upon which the active push-pull mechanics of the outer hair cell 
amplification is built and described in the main text. In addition, the pressure gain for the passive and 
active cases is reported. 
 
 
METHODS 

Theoretical Background 

Overall features and dimensions of the 3-D hydrodynamic model used in this study are described in 
Figure S1. This is a standard “box” model of the cochlea. Deviations from the actual cochlea include the 
straight walls, drastic simplification of the basal hook region, absence of Reissner’s membrane and the 
organ of Corti, symmetric scalae, and only one significant transverse mode of BM deformation. 
Nevertheless results from an asymptotic WKB solution method for the differential equations describing 
the mechanics of the cochlea, with physical values for the BM and the 3-D viscous fluid, show the 
passive behavior well (1). The current model incorporates the scala areas found in 3-D reconstructions 
of µCT scans. In (2,3) a direct integration of the 3-D equations provides a reduction to a single second-
order wave equation, with the speed dependent on the 3-D details. This is convenient for either 
numerical or asymptotic analysis. However, in (4) better results are found by returning to the method in 
(1) of equating the time-averaged kinetic and potential energies of the conservative system. The 
extension to a viscous-elastic system is validated in (4). The mathematical formulation for just the 
passive model is described next. 
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Figure S1: Schematic drawing of the geometric layout of the biophysical cochlear model. Distances are parameterized 
in Cartesian coordinates {x, y, z} representing the distance from the stapes, the distance across the scala width, and 
the height above the basilar membrane, respectively. (a) Side view; (b) Cross-sectional view (A-A); and (c) top view of 
the cochlear model. 
  

Methods 

Time-averaged Lagrangian for the passive model 

Time-averaged kinetic energy of the cochlear fluid (Tf)  
The fluid velocity vector  in the scala vestibuli and scala tympani can be decomposed 
into the gradient of the scalar potential  and the curl of rotational potential  as 
  
        ,                          (A1) 

 
where the fluid velocities in the x, y, and z directions, respectively, are 

€ 

˙ u , 

€ 

˙ v , and 

€ 

˙ w . The displacement 
components are u, v, and w, and dots above the letters denote differentiation with respect to time. To 
simplify the development process, we assume the displacement profile of the BM in harmonic motion, 
wp, to be  
 
     ,                               (A2) 
 
where the phase  (in which ω is the frequency and n is the wave number) and 

 for simply-supported edges (b is the width of BM). The coordinate ξ is the y co-
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ordinate which has its origin at one edge of the BM. W(x) is the amplitude of the envelope. 
 The continuity condition for an incompressible viscous fluid flow is given by the Laplace’s 
equation on the scalar potential  (with 

€ 

Δφ = 0), which satisfies the rigid wall boundary conditions at y 
= 0, y = L2, and z = L3, where the normal fluid displacements are zero. Thus, for the fluid, the 
appropriate boundary conditions for the upper duct are 
 

v = 0 at y = 0 and y = L2, 

                       w = 0 at z = L3, and                                                                                      (A3) 

w =  at z= 0. 

 
A functional form of  that satisfies the above boundary conditions is 
 

   ,                         (A4) 

 

where . 

 The linearized Navier-Stokes equations for no body force can be combined with Eq. A1 to yield 
 

        ,                                                   (A5) 

 
in which µ is the dynamic viscosity of the fluid and ρf is the mass density of the fluid. 
Due to the low viscosity of the fluid, the boundary layers are localized such that the boundary layers at 
the rigid walls have no significant effects on the partition motion. Hence, only the boundary layer at the 
partition is considered. For exponential decay with distance above the partition, the solution to Eq. A5 
which is significant near the partition (z=0), is 
 

             ,      (A6) 

 

where . 

Note that vector field ψ describes the rotational component of the fluid displacement field due to 
viscosity. A steady-state harmonic excitation with frequency is applied at the stapes.  
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With Eq. A6, the three velocity components given by Eq. A1 become 
 

                ,                         (A7a) 

 

                , and            (A7b) 

 
                 .                  (A7c) 

 
Applying the third boundary condition in Eq. 3 to the normal displacement calculated from Eq. A7c 
yields Rj(x), which allows the fluid to match the arbitrary displacement on the BM. Following the 
Fourier series inversion yields 
 

                  ,        (A8) 

 

where . 

 
With the coefficients Rj(x) known, the pressure distribution in the cochlear fluid, p, can be obtained from 
the linearized Navier-Stokes equations as 
 

                .                     (A9) 

 
Combining Eq. A4, Eq. A6, and Eq. A9 yields the 3-D intracochlear pressure distributions for the 
traveling wave 
 

   .    (A10) 

 
For the pressure acting on the BM, only the first transverse mode of deflection, Eq. A2, and the 
corresponding first mode of the pressure are considered. By setting z=0 in Eq. A10, the normal stress on 
the BM can be written as 

 

              ,              (A11) 

 
where 
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   ,                (A12) 

 
and where Heq is the equivalent fluid thickness. 
 The kinetic energy of the fluid in both ducts averaged over one cycle in time is 
 

       ,                                                    (A13) 

 
which by symmetry is twice that of the upper duct. With the use of Eq. A2, Eq. A13 yields 

 
    .                                               (A14) 

 
Time-averaged kinetic energy of the BM plate (Tp) 
 For the BM plate, the time-averaged kinetic energy density (Tp) is  
 

               ,                            (A15) 

 
which, when combined with Eq. A2, becomes 
 

    ,                  (A16) 

 

where ρp and h are the mass density and thickness of the BM plate, respectively. 

Time-averaged potential energy of the BM plate (Vp) 
For the BM plate, the time-averaged potential energy (Vp) is 
 

              ,          (A17) 

 

in which , where E22 is the Young’s modulus in the transverse direction, h is the 
effective BM thickness, ν is Poisson’s ratio, and f is the fiber volume fraction of the BM, which 
decreases from 3% to 0.7% along the longitudinal direction of the cochlea from the base to the apex (5).

  The BM plate has orthotropic properties since the BM contains transverse fibers in the radial 
direction (6). With consideration for the orthotropic BM, integration of Eq. A17 yields 
 

                 ,                  (A18) 
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where for simply supported edges 
 

                ,                 (A19) 

 
in which kx is the ratio of the effective elastic modulus in the longitudinal direction (E11) to the modulus 
in the transverse direction (E22). 

The stiffness K, which is the static stiffness of the plate under uniform pressure, is 

                .                                         (A20) 

 
Phase relation 
By equating the time-averaged kinetic and potential energies of the system, the time-averaged 
Lagrangian density is obtained: 
 

             ,                  (A21) 

 
which gives the phase relation for the active case, F(n,ω)=0. The amplitude function W(x) is computed 
from 
 

.        (A22) 

 
The total amplitude of Eq. A22 is, of course, highly dependent on the imaginary part of the wave 
number n.  
 

Table S1: Material properties for the cochlear model 
Region Symbol Description Value 

ρp Density of the BM plate 1.0 x 103 kg/m3 
E11 longitudinal 

direction 
1.0 x 10-4 GPa 

E22 radial 
direction 

1.0 GPa 

E12 

Young’s 
modulus  

 

coupling term E12 = 0.0 GPa 

Basilar Membrane 

ν Poisson’s ratio ν = 0.5 
ρf Density of the fluid 1.0 x 103 kg/m3 Scala Fluid 
µ Fluid viscosity 0.7 x 10-3 Pa s 

The input parameters were the nominal material properties in Table S1 (7); the scala vestibuli area, BM 
width, and BM thickness as functions of distance from the stapes (Figure 2); and the length of the 
cochlea, stapes footplate area (Ast), length of OHCs (8), and fiber volume fraction (2) in Table S2, based 
on anatomical measurements for gerbil (9-12), chinchilla (13, 14), cat (15-17), and human (18-21). 
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Table S2: Dimensions of the interspecies cochlear models 
 Gerbil Chinchilla Cat Human 

Length of the cochlea (mm) 12 (9) 18 (14) 25 (16) 35 (18) 

Stapes footplate area (mm2) 0.62 (10) 0.7 (13) 1.26 (17) 3.21 (21) 

Length of outer hair cell (µm) 25-65 (from stapes to apex, (8)) 

Fiber volume fraction (%) 3-0.7 (from stapes to apex, (2)) 

 
   

Forty terms were used in the Fourier expansion across the width of the scala. The calculation of 
the Fourier expansion with eighty terms showed no difference. Running on a laptop Intel Pentium Ⅸ 
(3.40 GHz) processor, the average time taken for a single harmonic excitation simulation was around 
one second. This method provides a fast and efficient solution compared to the only direct numerical 
solution for the 3-D viscous fluid (22), in which computing times on 32 parallel processors for the linear 
solution of a single frequency are measured in hours. Without viscosity the computational problem is 
simplified. A number of laboratories now are computing passive cochlear waves in realistic cochlear 
models based on CT imaging, with the damping placed into the BM and without the organ of Corti.   

 
RESULTS 

 
BF-to-place Map 
 
The passive model calculations of the best frequency (BF) versus place on the basilar membrane (i.e. the 
percentage of the total cochlea length, starting from the stapes) are shown in Figure S2 for four species 
(gerbil, chinchilla, cat, and human), along with corresponding measurements (23, 14, 16, 24). The 
computed and measured BF-to-place maps are in agreement to within 5% for each species except in the 
apical region of the cat cochlea, where the error is as large as 20% (Figure S2). 

 

 
 
 
 
Figure S2: Best frequency 
(BF) versus percentage 
location along the cochlea for 
the interspecies 3-D cochlear 
model (lines) and 
corresponding measurements 
(symbols).  
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Pressure response near the BM 
 
The calculated cochlear pressure PC, near the basilar membrane on the scala tympani side, relative to the 
ear canal pressure Pec is shown in Figure S3 for the passive (thin lines) and the active (thicker lines) 
cases. The simulated probe location is 10 µm, 15 µm, 21 µm and 35 µm from the basilar membrane for 
gerbil, chinchilla, cat and human, respectively. Only measurements for the gerbil cochlea by Olson (25), 
shown in first column, were available for comparison. The peak near the BF (20 kHz in gerbil) is due to 
the slow-wave pressure gain, while the flat portion above the BF is due to the fast-wave pressure. The 
oscillations are due to the interactions between the slow and fast waves. 
 

 
Figure S3: Cochlear pressure (PC) near the basilar membrane on the scala tympani side, relative to ear-canal pressure (Pec). The 
measurements for the gerbil cochlea are from Olson (25, Figure 7) with the probe 22 µm from the BM, and with input pressures of 
50 dB SPL for the active case (*) and 80 dB SPL for the passive case (▽). The thin lines show the calculated PC/Pec transfer 
function for the passive case, while the thicker lines show the active case. The top row shows the magnitude of PC/Pec  for gerbil (1st 
column), chinchilla (2nd column), cat (3rd column) and human (4th column) and the bottom row shows the corresponding phase. 
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