Craig-Schapiro et al.

Supplemental Information

2-D DIGE LC-MS/MS Proteomic Analysis

Samples were processed and analyzed as described previously (1, 2). Briefly, discovery cohort CSF samples and a pooled reference sample were immunodepleted of six highly abundant proteins (albumin, IgG, α 1-antitrypsin, IgA, haptoglobin, transferrin). Samples were randomly paired (CDR 0 and CDR 1), labeled with one of three cyanine dyes, and loaded with the labeled reference sample onto the same 2-D gel. Protein spot quantification and between-gel spot matching were performed on digitized images. To focus efforts on candidate biomarkers more likely to be measurable in the CSF of a majority of individuals, only gel features with significant intensity differences between CDR 0 and CDR 1 groups (Student's t-test, $\alpha = 0.05$) that were present in >50% of gels were excised, trypsinized, and subjected to LC-MS/MS. Proteins were identified from peptide fragmentation spectra using MASCOT (v2.8, Matrix Sciences) and the NCBI non-redundant protein database (downloaded 11/11/2008).

	YKL-40/Aβ42				tau/Aβ42		ptau/Aβ42			
	HR	95% CI	p value H		95% CI	p value	HR 95% CI		p value	
Biomarker- continuous	1.78	1.31-2.44	.0003	1.54	1.24-1.93	.0001	1.61	1.28-2.02	<.0001	
Age, yr	1.05	0.99-1.10	.0844	1.07	1.01-1.12	.0177	1.06	1.01-1.12	.0181	
Women	0.53	0.24-1.18	.1196	0.50 0.22-1.14 .100		.1003	0.56	0.25-1.26	.1596	
	YKL-40/Aβ42			tau/Aβ42			ptau/Aβ42			
	HR	95% CI	p value	HR	95% CI	p value	HR	95% CI	p value	
Biomarker- categorical	3.35	1.42-7.90	.0057	5.76	2.35-14.09	.0001	3.42	1.50-7.79	.0035	
Age, yr	1.05	0.99-1.10	.0950	1.07	1.02-1.13	.0116	1.06	1.01-1.12	.0194	
Women	0.71	0.31-1.63	.4181	0.66	0.29-1.49	.3123	0.65	0.28-1.50	.3110	

Table S1 A. Utility of CSF Biomarkers In Predicting Conversion from CDR 0 to CDR>0

Table S1 B. Utility of CSF Biomarkers In Predicting Progression from CDR 0.5 to CDR>0.5

	YKL-40/Aβ42				tau/Aβ42		ptau/Aβ42				
	HR 95% CI		<i>p</i> value	HR	95% CI	p value	HR	HR 95% CI			
Biomarker-	4.07	0.00.0.04	4474	4 45	4 07 4 07	0407	4.00	0.07.4.70	0000		
continuous	1.37	0.92-2.04	.1171	1.45	1.07-1.97	.0167	1.29	0.97-1.73	.0803		
Age, yr	1.01	0.95-1.08	.7218	1.01	0.95-1.07	.8311	1.01	0.95-1.08	.7509		
Women	0.55	0.23-1.33	.1837	0.51	0.51 0.21-1.24 .134		0.55	0.23-1.32	.1797		
	YKL-40/Αβ42				tau/Aβ42			ptau/Aβ42			
	HR	95% CI	<i>p</i> value	HR	95% CI	p value	HR	95% CI	<i>p</i> value		
Biomarker-											
categorical	2.63	1.10-6.32	.0305	3.64	1.51-8.80	.0041	4.25	1.76-10.26	.0013		
Age, yr	1.02	0.96-1.08	.5786	1.02	0.96-1.09	.4909	1.03	0.97-1.09	.4241		
Women	0.59	0.25-1.37	.2157	0.50	0.21-1.21	.1242	0.47	0.19-1.16	.1000		

Table S1. Cox proportional hazards models were used to assess the ability of CSF YKL-40/Aβ42, tau/Aβ42, and ptau/Aβ42 to predict **(A)** conversion from cognitive normalcy (CDR 0) to cognitive impairment (CDR>0) and **(B)** progression from very mild dementia (CDR 0.5) to mild or moderate dementia (CDR>0.5). Biomarker measures were analyzed as both continuous and categorical variables, and were converted to standard Z-scores to allow comparison of hazard ratios between different biomarkers. In evaluating risk, "Biomarker" analyses (YKL-40/Aβ42, tau/Aβ42, ptau/Aβ42) were adjusted for age and gender. Likewise, analyses for "Age" were adjusted for biomarker and gender, and analyses for "Women" were adjusted for biomarker and gender, and analyses for "Women" were adjusted for biomarker and gender. HR, hazard ratio; CI, confidence interval.

Figure S1. CSF YKL-40, tau, p-tau, and Aβ42 as predictors of conversion from CDR 0 to CDR>0. Kaplan-Meier estimates of rates of conversion are shown with red curves representing the upper tertile and black curves representing the lower two tertiles.

	YKL-40				tau			ptau			Αβ42		
	HR	95% CI	р value	HR	95% CI	р value	HR	95% CI	<i>p</i> value	HR	95% CI	р value	
Biomarker- continuous	0.95	0.61-1.47	.8081	1.45	1.11-1.90	.0072	1.47	1.14-1.91	.0036	0.41	0.23-0.73	.0021	
Age, yr	1.06	1.01-1.12	.0211	1.07	1.01-1.12	.0170	1.07	1.01-1.12	.0148	1.05	1.00-1.10	.0672	
Women	0.50	0.22-1.12	.0919	0.50	0.22-1.12	.0914	0.51	0.23-1.13	.0981	0.50	0.23-1.12	.0923	
	YKL-40			tau				ptau			Αβ42		
	HR	95% CI	<i>p</i> value	HR	95% CI	р value	HR	95% CI	р value	HR	95% CI	р value	
Biomarker- categorical	1.00	0.42-2.33	.9901	1.88	0.86-4.09	.1114	2.69	1.22-5.93	.0139	0.34	0.10-1.16	.0841	
Age, yr	1.06	1.01-1.11	.0225	1.06	1.01-1.12	.0211	1.07	1.01-1.13	.0105	1.05	1.00-1.11	.0429	
Women	0.51	0.23-1.13	.0968	0.52	0.24-1.16	.1097	0.55	0.25-1.23	.1449	0.49	0.22-1.08	.0754	

Table S2. Utility of CSF Biomarkers In Predicting Conversion from CDR 0 to CDR>0

Table S2. Cox proportional hazards models were used to assess the ability of CSF YKL-40, tau, ptau, and Aβ42 to predict conversion from cognitive normalcy (CDR 0) to cognitive impairment (CDR>0). Biomarker measures were analyzed as both continuous and categorical variables. In evaluating risk, "Biomarker" analyses (YKL-40, tau, ptau, Aβ42) were adjusted for age and gender. Likewise, analyses for "Age" were adjusted for biomarker and gender, and analyses for "Women" were adjusted for biomarker and gender, and analyses for "Women" were adjusted for biomarker and gender. HR, hazard ratio; CI, confidence interval.

Figure S2. Plasma YKL-40 levels do not vary based on gender, but are correlated with age. Plasma YKL-40 levels are not correlated with other CSF biomarkers such as A β 42, tau, p-tau181, or with mean cortical PIB binding potential.

- Hu Y, Malone J, Fagan A, Townsend R, Holtzman D (2005): Comparative proteomic analysis of intra- and interindividual variation in human cerebrospinal fluid. *Mol & Cell Proteom.* 4:2000-2009.
- Hu Y, Hosseini A, Kauwe J, Gross J, Cairns N, Goate A, *et al.* (2007): Identification and validation of novel CSF biomarkers for early stages of Alzheimer's disease. *Proteomics -Clin Appl.* 1:1373-1384.