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SI Text
Resistance per Path Length. Whole-plant resistance, Zplant, is the
inverse of plant conductance, κplant, given by Eq. 6 in the main
text. The whole-plant resistance is calculated to be
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where ZN ¼ ð1=Nseg
int;NÞð8μlN=πr4int;NÞ is the total resistance for

laminar flow through all conduits in a terminal twig, which
is invariant by principle v from the main text. The total path
length from stem to terminal twig for the plant is
lTOT ¼ lNðnbðNþ1Þ

ext − 1Þ=ðnbext − 1Þ. Our expression for whole-plant
resistance separates the dependence on the number of terminal
twigs and girth of the tree given by ZN=nNext, from the de-
pendence on path length (lTOT/lN) given by the remainder of
the expression. As plants increase in height and total path length
lTOT/lN >> 1, there are two possibilities: (i) If b − p > 0, the
resistance per path length will increase with path length, lTOT,
or (ii) if b − p < 0, the total resistance is ZN=nNext, and the re-
sistance per path length is independent of path length lTOT.
When b − p = 0, l’Hospital’s rule requires that resistance de-
pends weakly on path length [∼ln(lTOT)].
Consequently, minimizing the resistance per path length,

analogous to the calculation in the WBE model, demands that
b − p ≥ 0. Minimizing taper relative to this constraint leads to
b = p = 1/3. This result emphasizes the importance of p = 1/3 as
a transition point. For allometrically optimal plants, our pre-
diction of p = 1/3 differs from the WBE prediction of 1/6 for
taper, obtained by holding the conduit frequency constant and
not including the packing rule (1, 2).
It is important to emphasize, as in the discussion following Eq. 6

of the main text, that for realistic size ranges across plants, the
resistance per path length may still increase significantly as path

length increases and may differ dramatically from the asymptotic
value. Fig. S1A shows that when the taper exponent p ≥ 1/3 the
remainder term of the resistance (dependence on path length)
appears to quickly approach an asymptote. In contrast, this is not
the case when p < 1/3. However, this interpretation is slightly
misleading because of the range of resistance considered. For
example, by restricting the scale of resistance (Fig. S1B) and
focusing only on the cases where the taper exponent p ≥ 1/3, it is
evident that resistance per path length does still increase when
p = 1/3, although at a slower rate than for p < 1/3. This result is
because for p = 1/3 the resistance per path length is predicted to
change logarithmically with path length and will not appear
constant until trees are many orders of magnitude larger than the
tallest trees.

Axial and Radial Taper Data. Our model is designed to describe
changes in conduit radii across levels k—proceeding axially, from
base to twig through the tree. However, variation in conduit radii
also occurs across growth rings—outer cambium to the pith—
radially within a single branch. The packing rule and tapering
seem to exhibit similar patterns both across the tree (axially) and
within branches (radially) (3–7), reflecting the fact that the inner
xylem of a large branch originated when the branch was a narrow
terminal twig. This correspondence has been previously used by
others to increase the amount of data for regression to perform
tests of the WBE model predictions, even though the WBE and
our model both effectively ignore variation in conduit radii
within branches (radial) (3–7). Because of our extensive data
within single trees as well as within and across species, we are able
to calculate scaling exponents both for axial measurements, the
most direct test of our and the WBE model, and for radial and
axial measurements combined, linking our results most directly to
previous studies. As shown in Table 1, the measured scaling ex-
ponents are in good agreement with each other (axial compared
with axial plus radial) and with the predictions of our model.
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Fig. S1. (A) Plots of the remainder term of the resistance, capturing the dependence on total path length, vs. the ratio of total path length to the terminal
twig length for realistic plant sizes. For these plots we used a branching ratio of next = 2 and a terminal twig length of 5 mm and assumed that the total path
length for plants ranged from 1 cm, a small seedling, to 80 m, the approximate height of the tallest tree on earth. For values of p < 1/3 the remainder term for
the resistance increases without bound. For values of p ≥ 1/3 the remainder term for the resistance approaches an asymptotic limit and appears to be constant
as a function of path length. (B) Plots of the remainder term of the resistance, capturing the dependence on total path length, vs. the ratio of total path length
to the terminal twig length. Here, we have restricted the plot to values of p = 1/3 and p = 1 so that it is clear that the remainder term for the resistance
continues to increase substantially with path length, not reaching its asymptote until the path is much longer than for the tallest trees. Consequently, it is not
accurate to claim that resistance is truly independent of path length even for taper exponents of p ≥ 1/3.

Table S1. Predicted scaling exponents for physiological and anatomical variables of whole-plant and base properties as a function of
plant mass (M) for the West, Brown, and Enquist (WBE) model and our model

Network property
WBE model exponent for

plant mass (M)
Our model exponent for

plant mass (M)

Whole plant
No. of leaves (Nleaves) 3/4 3/4
No. of branches (Nbranches) 3/4 3/4
Metabolic rate (B) 3/4 3/4
Stem-to-petiole path length (lTOT) 1/4 1/4
Total fluid volume 25/24 1

Stem/branch
Length (lext,0) 1/4 1/4
Radius (rext,0) 3/8 3/8
Area of conductive tissue (ATOT

int,0) 7/8 3/4
Active conducting conduit area-to-nonconducting area ratio 1/8 0
No. of conduits (Nint,0) 3/4 1/2
Conduit radius (rint,0) 1/16 1/8
Fluid velocity (u0) −1/8 0
Conductivity (K0) 1 1
Leaf-specific conductivity (K0/Nleaves) 1/4 1/4
Pressure gradient ((P1 − P0)/l0) −1/4 −1/4
Resistance (Z0/Nint,0) −3/4 −3/4

The predictions derived from the external network (identical between models) are unchanged, whereas predictions that depend on the internal conduit
network differ. For these predictions we ignore finite-size effects, which alter these scaling exponents depending on the size ranges of the plants considered.
See also discussion connected to Fig. 2 in main text.
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Table S2. Sources for literature data

Network property Taxa Reference

Packing Angiosperms/conifers (1)

Taper Betula pendula (2)
Fraxinus americana (3)
Larix decidua (4)
Nothofagus solandi, Picea abies, Pinus sylvestris (5)
Tsuga canadensis (6)

Velocity Pseudotsuga menziesii (7)
Eucalyptus regnans (8)
Citrus sinensis, Cupressus sempervirens, Eucalyptus camaldulensis, Malus domestica, Persea americana,

Pinus halepensis, Quercus calliprinos, Quercus ithaburensis
(9)

Acer saccharum (10)
Liriodendron tulipifera (11)

Sap flux Angiosperms (12)
Angiosperms (13)
Conifers (14)
Angiosperms (15)
Angiosperms (16)
Angiosperms (17)
Conifers (18)
Conifers (19)
Conifers (20)
Angiosperms (21)
Angiosperms (22)
Conifers (23)
Angiosperms (24)
Angiosperms (25)
Conifers (26)
Angiosperms (27)
Conifers (28)
Angiosperms (29)
Conifers (30)
Angiosperms (31)
Angiosperms (32)
Angiosperms (33)
Angiosperms (34)
Angiosperms (35)
Angiosperms (36)

Hydraulic conductivity Acer rubrum, Acer saccharum, P. sylvestris, Pinus banksiana (37)

Leaf-specific hydraulic
conductivity

Tsuga canadensis (6)
Ficus glabrata (38)
Thuja occidentalis (39)
A. saccharum, Schefflera morototoni, T. occidentalis (40)
Sequoiadendron giganteum, Sequoia sempervirens (41)
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Table S3. Observed values for intraspecific scaling exponents (and 95% confidence intervals and r2 values) as a function of branch radius
(rext,k) for empirical data related to internal network structure measured across three contrasting species (n = 3 trees for all values for oak
and maples; n = 2 trees for all values for pine except number of conduits with n = 3)

Network property

Our model
predicted exponent

for rext,k

Oak observed
exponent for rext,k

Maple observed
exponent for rext,k

Pine observed
exponent for rext,k

No. of conduits in a
branch segment
(Nseg

int,k)

4/3 = 1.33. . . 1.12 (1.01, 1.24; r2 = 0.51) 1.08 (0.99, 1.18; r2 = 0.36) 1.45 (1.40, 1.49; r2 = 0.95)

Conducting-to-
nonconducting
ratio

0 0.56 (0.49, 0.63; r2 = 0.30) −0.42 (−0.47, −0.38; r2 = 0.04) 0.33 (0.28, 0.40; r2 = 0.06)

Conduit radius
(taper, rint,k)

1/3 = 0.33. . . 0.46 (0.42, 0.50; r2 = 0.63) 0.23 (0.21, 0.25; r2 = 0.36) 0.20 (0.17, 0.22; r2 = 0.55)

Packing rule (no.
frequency of
conduits vs.
conduit radius,
rint,k, not branch
radius, rext,k)

−2 −1.44 (−1.55, −1.33; r2 = 0.72) −2.73 (−2.90, −2.57; r2 = 0.68) −1.67 (−1.78, −1.56; r2 = 0.86)

Regression exponents were calculated using RMA regression within (S)MATR software using both radial and axial xylem data. Performing regressions on
individual trees within the same species leads to very similar results.
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