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SI Text
S1. The Models. S1.1. PPC-in vitro model: A PPC with constant protein
copy numbers. Fig. 1B of the main text shows a cartoon of the
PPC-in vitro model. In this model of the protein phosphorylation
cycle (PPC) the total concentration of each Kai protein is con-
stant. The model is described by reactions 1–5 of the main text,
which we repeat here:
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Here, Ci denotes a KaiC hexamer in the active conformational
state, in which the number i of phosphorylated monomers tends
to increase, and ~Ci denotes a KaiC hexamer in the inactive con-
formational state in which i tends to decrease; A denotes a KaiA
dimer, and B denotes a KaiB dimer. The reactions Ci ⇄ ~Ci in S1
model the conformational transitions between active and inactive
KaiC; the second set of reactions in S1 describe phosphorylation
of active KaiC that is stimulated by KaiA; the reactions in S2
model the binding of KaiB to inactive KaiC and those in S3mod-
el the sequestration of KaiA by inactive KaiC that is bound to
KaiB; note that an inactive KaiC hexamer can bind up to two
KaiA dimers; the reactions in S4 and S5 model spontaneous
phosphorylation and dephosphorylation of active and inactive
KaiC. For a more detailed discussion of the model, we refer
to ref. 1.

We study this model, as well as the other stochastic models
discussed below, using kinetic Monte Carlo simulations of the
chemical master equation (2). In our simulations, we vary the re-
action volume, but keep the concentrations of the Kai proteins
constant at levels comparable to those used in the in vitro experi-
ments (3, 4). Fig. S1A shows two time traces of the phosphoryla-
tion level pðtÞ, defined as the fraction of monomers that is
phosphorylated, for two different volumes, whereas Fig. 2 of the
main text shows the correlation number of cycles, n1∕2, as a func-
tion of the volume; for a discussion of how n1∕2 is computed, see
section S7.

Comparing the robustness with in vivo measurements. Fig. 2 of the
main text shows that n1∕2 increases with the volume. To compare
our predictions with the experimental results obtained in vivo (5),
we have to verify that the concentrations of the Kai proteins in

vitro/in silico are similar to those in vivo, because the behavior of
the phosphorylation cycle depends on the concentrations of the
Kai proteins (3, 4). The copy number of KaiC monomers in vivo
has been measured (6) to be around 10,000, corresponding to
roughly 1,000 KaiC hexamers, which, assuming that the bacter-
ium is roughly 1 cubic micron, corresponds to a KaiC hexamer
concentration of about 1 μM, comparable to the KaiC hexamer
concentration in vitro (3, 4). It thus seems meaningful to compare
the predictions of Fig. 2 of the main text with experiment. Our
model predicts that for a bacterial volume of 1 cubic micron, the
phosphorylation cycle is highly robust, with n1∕2 ≈ 200, in agree-
ment with what has been measured experimentally in vivo, which
is n1∕2 ¼ 166� 100 days (5). However, the number of KaiA
monomers in vivo has been measured to be on the order of
250–500 monomers (6), corresponding to 125–250 KaiA dimers.
This means that in vivo the concentration ratio of KaiA dimers to
KaiC hexamers is about 1∶6, which is lower than the correspond-
ing ratio in the test tube, which is 1∶1 (3). In fact, for the in vivo
concentration ratio of KaiA to KaiC, the in vitro system does not
exhibit macroscopic phosphorylation oscillations (3, 4). It has
therefore been suggested that in vivo the oscillations are confined
to a small subcellular domain from which some KaiB and KaiC
molecules are excluded (6), allowing the reactions to proceed at
roughly the in vitro ratio; here, we adopt this hypothesis and as-
sume that the Kai proteins are found in the physiologically rele-
vant reaction volume in proportions comparable to those used in
the in vitro experiments. If we take this volume to be a third of the
total bacterial volume, i.e., V ∼ 0.3 μm3—small enough that the
measured number of KaiA molecules is more than adequate to
give the in vitro KaiA dimer concentration of 0.58 μM (3, 4)—
then our model predicts that the phosphorylation cycle has a cor-
relation time of roughly 75 days. This would still be consistent
with the value measured experimentally (5), in contrast to the
models proposed by Eguchi et al. (7) and Rust et al. (8) (see sec-
tion S5). Our model thus predicts that the phosphorylation cycle
is highly robust against the intrinsic noise arising from the sto-
chastic nature of the phosphorylation reactions and the physical
interactions between the Kai proteins.

S1.2. PPC-in vivo model: A PPC with constant protein synthesis and
degradation rates. In the main text, we also discuss the perfor-
mance of a model that includes not only a PPC, but also synthesis
and degradation of the Kai proteins; we call this model the PPC-
in vivomodel. This model is described in reactions S1–S5 plus the
following reactions for the synthesis and degradation of the Kai
proteins:

∅→
βc C6 þ 3B; ∅→

βa A; [S6]

A;B;Ci;ACi;Bx
~Ci;AyBx

~Ci→
μ ∅: [S7]

As explained in the main text, we assume that fresh KaiC is in-
jected into the system as fully phosphorylated hexamers because
phosphorylation of fresh KaiC proteins has been reported to be
fast, i.e., occurring within 30 min (9). However, the precise choice
for the phosphoform of fresh KaiC is not so important in this
model; it does not affect the robustness of this model. Because
the KaiB and KaiC proteins are both products of the kaiBC op-
eron, we choose to model the production of both proteins as a
single reaction. We note that while in the model with the tran-
scription–translation cycle, discussed in section S1.4, the delay
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in the synthesis reactions is critical, in the above model, where the
Kai proteins are produced with rates that are constant in time, a
delay would have no effect; the synthesis reactions are therefore
modeled as simple, Poissonian birth reactions. Fig. S1B shows
time traces for the phosphorylation level pðtÞ for three different
degradation rates.

S1.3. Deterministic PPC-in vivo model. To verify that the disappear-
ance of oscillations as the degradation rate is increased is not a
purely stochastic effect, we consider the model of S1–S7 in the
deterministic limit of infinite volume and protein number. In this
limit, the concentrations of the different proteins evolve accord-
ing to deterministic rate equations. We make two further simpli-
fying assumptions: First, we replace the two-step binding of KaiB
to ~Ci with a trimolecular reaction that turns ~Ci directly into B2

~Ci,
and making a similar change for binding of KaiA to the inactive
branch. Second, we assume that binding and unbinding reactions
are fast enough that they are effectively in steady state and thus
explicitly keep track only of the concentrations of the various
KaiC species; the concentrations of free KaiA and KaiB can then
be inferred from conservation laws. The dynamical equations are
then essentially the same as those given in equations 44–47 of our
previous publication (1), with the addition of a linear decay term
with rate μ for each species and of synthesis of C6 with rate βc:

d½Ci�T
dt

¼ σpsi−1½Ci−1�T þ σdpsiþ1½Ciþ1�T − ðσpsi þ σdpsi Þ½Ci�T − σFfi ½Ci�T
þ σFbi ½ ~Ci�;þ βcδi;6 − μ½Ci�T; [S8]

d½ ~Ci�
dt

¼ ~kps½ ~Ci−1� þ ~kdps½ ~Ciþ1�− ð~kps þ ~kdpsÞ½ ~Ci� þ σFfi ½Ci�T − σFbi ½ ~Ci�

− ~κBfi ð½B�ÞT − 2Σi½B2
~Ci�TÞ2½ ~Ci� þ

~κBbi
~Ki½B2

~Ci�T
~Ki þ ½A�2 − μ½ ~Ci�;

[S9]

d½B2
~Ci�T

dt
¼ ~kps½B2

~Ci−1�T þ ~kdps½B2
~Cþ1�T − ð~kps þ ~kdpsÞ½B2

~Ci�T

þ ~κBfi ð½B�T − 2Σi½B2
~Ci�TÞ2½ ~Ci�−

~κBbi
~Ki½B2

~Ci�T
~Ki þ ½A�2

− μ½B2
~Ci�T; [S10]

where the concentration of free KaiA, [A], is given by

½A� þ∑
N

i¼0

½A�½Ci�T
Ki þ ½A� þ 2∑

N

i¼0

½A�2½B2
~Ci�T

~K2
i þ ½A�2 − ½A�T ¼ 0. [S11]

Here ½Ci�T is the total concentration of KaiC hexamers with i
phosphorylated monomers in the active state, whether or not
complexed with KaiA, i.e., ½Ci�T ¼ ½Ci� þ ½ACi�; ½B2

~Ci�T is defined
similarly. The effective rate constants appearing in these equa-
tions depend on the concentration [A] of free KaiA and are de-
fined in terms of the more microscopic rate constants as follows:
The effective (de)phosphorylation rates on the active branch are
σpsi ¼ ðkpsKi þ kpf ½A�Þ∕ðKi þ ½A�Þ and σdpsi ¼ Kikdps∕ðKi þ ½A�Þ.
The effective flipping rates are given by σFfi ¼ f iKi∕ðKi þ ½A�Þ
and σFbi ¼ bi, where f i and bi are the forward and backward flip-
ping rates. The parameters ~κBfi and ~κBbi differ from ~kBfi and ~kBbi ,
respectively, in that the κ’s are rate constants for trimolecular re-
actions, which are broken down into two successive bimolecular
reactions in the stochastic simulations. The dissociation constants
Ki satisfy Ki ¼ kAb

i ∕kAf
i ; the ~Ki could be defined similarly in terms

of forward and backward rates for KaiA binding to the inactive
branch, but (just as with ~κBfi and ~κBbi ) these rates would differ from
those used in the stochastic simulations, so we choose instead to
quote the dissociation constants directly. Following ref. 1, we
choose values for the new parameters associated with trimolecu-
lar interactions such that time dependence of pðtÞ matches the
average behavior of the stochastic model.

To determine where oscillations disappear as μ is increased, we
analyzed these equations using the XPPAUT implementation of
the AUTO continuation package (10). We found that, for the
parameter values given in Table S1, the system undergoes a super-
critical Hopf bifurcation at μ ¼ 0.0621 h−1, as noted in the
main text.

S1.4. PPC-TTCmodel: The PPC and TTC combined.The PPC-TTCmod-
el of the main text consists of a PPC, a transcription–translation
cycle (TTC), and a pathway that couples these two cycles. This
model is described by the reactions of S1–S5 for the PPC, to-
gether with the following reactions for the TTC and the coupling
between them:

~RþX→
ka RþX; Rþ ~X→

ki ~Rþ ~X; [S12]

∅⇒
βc ½R�n∕ðKnþ½R�nÞ

τ�στ
C6 þ 3B; ∅→

βa A; ∅→
βr ~R ; [S13]

R; ~R;A;B;Ci;ACi;Bx
~Ci;AyBx

~Ci→
μ ∅: [S14]

Here, R and ~R denote the RpaA protein in its active and its in-
active form, respectively, whereas n is the Hill coefficient of gene
repression; its baseline value is n ¼ 4, but in section S4.3 we study
the effect of varying n. The X and ~X in S12 denote any of the
phosphoforms of KaiC that mediate the activation and repression
of RpaA, respectively; in section S4.1, we discuss the dependence
of the results on precisely which phosphoforms are chosen to ac-
tivate and repress RpaA, respectively. The double arrow indicates
a reaction with a Gaussian distributed delay with mean τ and var-
iance στ. We thus assume that kaiBC expression is activated by
RpaA, where the activity of RpaA is modulated by the PPC.
In contrast, the expression of KaiA, KaiB, and RpaA is assumed
to occur constitutively. Fig. S1C shows time traces for the phos-
phorylation level pðtÞ and total KaiC concentration ½C�TðtÞ for
V ¼ 1 μm3 and μ ¼ 0.03 h−1 (solid lines) and μ ¼ 0.1 h−1 (dotted
lines), respectively.

S1.5. TTC-onlymodel.The TTC-onlymodel is given by the following
reactions:

∅⇒
βc½R�4∕ðK4þ½R�4Þ

τ;στ
C; ∅→

βr R; C;R→
μ ∅; [S15]

~R→
kta R; CþR→

kti Cþ ~R: [S16]

In the simulations, we adjust the delay τ and the synthesis rate βc
for each choice of the degradation rate μ such that the oscillation
period is 24 h and the average KaiC concentration is comparable
to that of the other models considered so far. Fig. S1D shows time
traces for the concentrations of KaiC and active RpaA, respec-
tively. In section S2 we discuss the simplest possible TTC model,
namely one in which KaiC directly represses its own synthesis;
this gave very similar results.

S1.6. Parameters. Table S1 gives the values of the parameters used
in the stochastic simulations based on the kinetic Monte Carlo
algorithm developed by Gillespie (2). Unless otherwise noted,
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we choose the total concentrations of the Kai proteins to match
common conditions for the in vitro reaction system (3, 4):
½A�T ¼ 0.58 μM, ½B�T ¼ 1.75 μM, and ½C�T ¼ 0.58 μM.

S2. A Simplified Description Provides Insight into the PPC-TTC Model’s
Robustness. To elucidate why a clock built upon a TTC and a PPC
is robust across a range of protein turnover rates, we study mini-
mal versions of the models discussed above. We also introduce
two newmodels, the PMS-TTCmodel and theUPPC-TTCmodel,
that represent intermediate cases between the extremes of the
coupled PPC-TTC model on the one hand and the separate
PPC-in vivo and TTC-onlymodels on the other. Cartoons of these
new models are shown in Fig. S2 A–D. Below, we first briefly de-
scribe the different models and then use them to explain why a
PPC enhances the robustness of a TTC, and vice versa. Through-
out this section, we refer to the more realistic models introduced
in the main text, and discussed in the preceding section, as full
models, while the simplified versions considered in this section
are called minimal models. The parameters of the minimal mod-
els are shown in Table S1.

Minimal PPC-in vivo model. In the minimal PPC-in vivo model, the
binding of KaiB to KaiC has been integrated out and intermedi-
ate conformational transitions between active and inactive KaiC
are disallowed. The model is described by the following reactions:

C6→
f 6 ~C6; ~C0→

b0C0; Ci þA⇄
kAf
i

kAb
i

ACi→
kpf
Ciþ1 þA; [S17]

~Ci þA ⇄
2~kAf

i

~kAb
i

A ~Ci; A ~Ci þA ⇄
~kAf
i

2~kAb
i

A2
~Ci; [S18]

Ci ⇄
kps

kdps
Ciþ1; ~Ci ⇄

~kps

~kdps

~Ciþ1; Ay
~Ci ⇄

~kps

~kdps

Ay
~Ciþ1; [S19]

∅→
βc C6; ∅→

βa A; A;Ci;ACi;Ay
~Ci→

μ ∅: [S20]

These equations give a generic description of a protein modifica-
tion cycle that is synchronized via the mechanism of differential
affinity (1), in which KaiA sequestration synchronizes the phos-
phorylation cycles of different KaiC hexamers. The solid red line
of Fig. S2E shows the correlation number of cycles, n1∕2, as a
function of the degradation rate μ for V ¼ 1 μm3 for this minimal
PPC-in vivo model; when μ is varied, the protein synthesis rates
are adjusted such that the average protein concentrations are un-
changed. The minimal model’s behavior is not only qualitatively,
but also quantitatively very similar to that of the full PPC-in-vivo
model (Fig. 5 of main text); in particular, the PPC alone is stable
only at low protein degradation rates.

Minimal TTC-only model. The simplest and most generic TTC mod-
el is one in which KaiC directly represses its own synthesis (with a
delay, indicated by a double arrow as in the main text):

∅⇒
βcK4∕ðK4þ½C�4Þ

τ;στ
C; C→

μ ∅: [S21]

It can be seen that in comparison to the TTC-only model of the
main text, here RpaA has been integrated out. The green line of
Fig. S2E shows n1∕2 as a function of μ for V ¼ 1 μm3; when μ is
varied, both the protein synthesis rate βc and the delay in protein
synthesis τ are adjusted such that the average KaiC concentration

and the oscillation period remain constant. The minimal model
behaves very similarly to the full TTC-onlymodel discussed in the
main text (see Fig. 5), showing robust oscillations only for high
protein turnover rates.

Minimal PPC-TTC model. The PPC of the minimal PPC-TTC model
is given by the minimal PPC described above (S17–S20). In the
full PPC-TTC model, the active KaiC phosphoforms activate
RpaA and thereby stimulate KaiC synthesis, whereas the inactive
KaiC phosphoforms deactivate RpaA and thereby repress KaiC
synthesis. In the minimal PPC-TTC model, we have integrated
out RpaA. Moreover, we assume that only the inactive KaiC
phosphoforms regulate, i.e., repress, KaiC synthesis. This yields
the following synthesis and decay reactions:

∅⇒
βcK4∕ðK4þ½R�4Þ

τ;στ
C6; ∅→

βa A; [S22]

A;Ci;ACi;Ay
~Ci→

μ ∅: [S23]

Here, ½R� ¼ ∑6
i¼0ð ~Ci þ ½A ~Ci� þ ½A2

~Ci�Þ is the total concentration
of all the KaiC phosphoforms that are in the inactive state. The
blue line of Fig. S2E shows the correlation number of cycles n1∕2
as a function of the degradation rate μ for V ¼ 1 μm3 for this
model. As μ is varied, the protein synthesis rates are adjusted
to keep the average protein concentrations constant, but it turns
out not to be necessary to change the delay τ in protein synthesis,
because the period of the clock is dictated primarily by the PPC
(see section S6 for a more detailed discussion). As expected, the
behavior of the minimal PPC-TTC model is similar to that of the
full PPC-TTC model discussed in the main text; the clock is ro-
bust not only in the limiting regimes of low and high protein turn-
over rates, but also in the biologically relevant crossover regime.

Minimal PMS-TTC model. This model is meant to capture one pos-
sible effect on the TTC of coupling it to the PPC: Rather than
disappearing only through first-order degradation at a rate μ,
as they do in the TTC-only model, the KaiC forms that repress
transcription can also, when a PPC is present, be eliminated by
their advance through KaiC’s phosphorylation cycle, which must
eventually turn repressing hexamers ~Ci on the inactive branch
into active hexamers Ci that do not affect transcription. More-
over, because progress through the phosphorylation cycle in-
volves a sequence of first-order steps, the distribution of times
for repressors to disappear via this new route will be narrower
than the distribution of degradation times, which should in turn
increase the clock’s robustness. To elucidate these effects, the
PMS-TTC model combines a TTC with a protein modification
sequence (PMS): The proteins do not undergo a full cycle of pro-
tein modification steps, as in the original PPC, but a half cycle,
during which they progress through a sequence of repressive KaiC
phosphoforms before being converted into the C0 form that can-
not regulate transcription. The model is described by the follow-
ing reactions:

C6→
f 6 ~C6; ~C0→

b0C0; [S24]

~Ci→
~kdps ~Ci−1; [S25]

∅⇒
βcK4∕ðK4þ½R�4Þ

τ;στ
C6; C6;C0; ~Ci→

μ ∅: [S26]

Here, ½R� ¼ ∑6
i¼0½ ~C�i is the total concentration of inactive KaiC,

which represses kaiC. Note that, in order to maintain as close a
correspondence as possible with the PPC-TTC model, KaiC is
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produced in its fully phosphorylated, but active, state, C6. Be-
cause the flip rate from C6 to ~C6 is much faster than the depho-
sphorylation rate, however, this has essentially no effect on the
dynamics. In contrast, the reaction from ~C0 → C0 is critical:
Omitting it would yield a model that behaves exactly as the
TTC-only model—dephosphorylation would merely change the
phosphorylation label of KaiC, but not the dynamics of kaiC re-
pression. In order for protein modification to have an effect on
the temporal regulation of kaiC repression, it is essential that
KaiC can leave the modification states in which it represses kaiC
via a reaction other than degradation. It should also be noted
that, in order to compare the PMS-TTC model with the PPC-
TTCmodel, the dephosphorylation reactions have the same rates
as in the PPC-TTC model. As for the TTC-only model, when μ is
varied, both the protein synthesis rate βc and the delay in protein
synthesis τ are adjusted so that the average KaiC concentration
and the oscillation period remain constant. When μ ≪ kdps, the
gene-repressing phosphoforms turn into the nonrepressing C0

state via protein dephosphorylation before they are degraded,
and one might thus think that the model’s behavior is completely
independent of μ in this limit. However, C0 is part of the total
KaiC concentration, which we fix by adjusting βc for each μ;
and because βc does affect the behavior of the system as described
below, μ remains an important control variable, even when
μ ≪ kdps. The magenta line of Fig. S2E shows the correlation
number of cycles n1∕2 as a function of the protein degradation
rate μ for V ¼ 1 μm3 for the PPC-TTC model. It is more robust
than the TTC-only model, with sustained oscillations for lower
values of the protein degradation rate. Nonetheless, the oscilla-
tions still cease to exist for small enough μ.

Minimal UPPC-TTC model.This model probes the ability of the TTC
to synchronize the PPC. To this end, it combines a TTC with an
unsynchronized protein phosphorylation cycle (UPPC). Each
protein undergoes a full cycle of protein modification steps as
in the original PPC, but the cycles of the individual proteins
(KaiC hexamers) are not synchronized as in the original PPC
—KaiA, and thus the differential-affinity synchronization me-
chanism, has been removed. The model is defined by the reac-
tions

C6→
f 6 ~C6; ~C0→

b0C0; Ci→
kpf
Ciþ1; [S27]

Ci ⇄
kps

kdps
Ciþ1; ~Ci ⇄

~kps

~kdps

~Ciþ1; [S28]

∅⇒
βcK4∕ðK4þ½R�4Þ

τ;στ
C6; Ci; ~Ci→

μ ∅: [S29]

Here, ½R� ¼ ∑6
i¼0½ ~Ci� is, as in the other minimal models, the total

concentration of the KaiC phosphoforms that repress kaiC ex-
pression. The light blue line of Fig. S2E shows the robustness
of this model, n1∕2, as a function of the protein turnover rate
μ for V ¼ 1 μm3; when μ is varied, the protein synthesis rates
are adjusted to keep the average protein concentrations constant.
(As with the PPC-TTCmodel, the period is largely determined by
the phosphorylation cycle.) Its behavior in the limit of high pro-
tein degradation rate is similar to that of the PMS-TTC model,
but the oscillations disappear more gradually as μ is decreased,
and even in the limit of low protein turnover rate, the system
shows damped oscillations, leading to a n1∕2 value of about
1–2 days.

Toward a mechanism for robustness. In section E of the main text,
we argued that the PPC-TTC model is easily understood in the

limits of low and high degradation rates: At low degradation
rates, a TTC by itself must fail, because it can generate only large
amplitude oscillations if proteins are synthesized and destroyed
on times scales faster than the oscillation period; one thus expects
that the PPC-TTC clock is driven primarily by the PPC for small
μ. On the other hand, at high degradation rates, most KaiC pro-
teins are destroyed before they can complete a full phosphoryla-
tion cycle, reducing the importance of the PPC. The TTC should
thus be dominant when μ is large. These expectations are borne
out by the simulation results of Fig. S3. For small μ (Fig. S3A), the
total KaiC concentration is nearly constant in time, and oscilla-
tions in the concentration of KaiC phosphoforms that repress
kaiC expression ([R]) are driven almost entirely by the protein
modification cycle of the PPC. For large μ (Fig. S3B), in contrast,
[R] tracks the total KaiC concentration almost perfectly, indicat-
ing that the oscillations arise primarily from periodic protein
synthesis and degradation.

Although these limiting cases go a long way toward unraveling
the behavior of the PPC-TTC model, they do not entirely explain
the crossover regime when 1∕μ is of order of the clock period and
the combined PPC-TTC performs far better than the TTC or PPC
alone. The PMS-TTC and UPPC-TTC models allow us to move
away from the limiting cases and to examine how a PPC can en-
hance a TTC, and vice versa, in this crossover regime.

To explain why a PMS can enhance the stability of a TTC, we
show in Fig. S3C time traces of the concentrations of the indivi-
dual KaiC phosphoforms that repress kaiC in the PMS-TTCmod-
el, as well as their sum [R]; for comparison, we also show a time
trace of the KaiC concentration [C] in the TTC-onlymodel. In the
TTC-only model, the concentration of KaiC varies slowly and un-
reliably. In contrast, in the TTC-PMS model, the total repressor
concentration [R] switches rapidly and strongly between a value
that is well below the repression threshold and one that is well
above it; this occurs because the concentrations of the individual
KaiC phosphoforms rise and fall sharply as a result of the se-
quence of protein modification steps. These strong oscillations
are beneficial because they minimize the effect of fluctuations
in the repressor concentration on the timing of gene repression.
To demonstrate this more clearly, we analytically compute for the
TTC-only and the PMS-TTC models the distribution of times it
takes to cross the gene repression threshold ½R� ¼ K, assuming
that initially N molecules are present in the system that then de-
cay either via protein degradation only, as in the TTC-onlymodel,
or via a combination of protein degradation and protein modifi-
cation, as in the PMS-TTC model (see Appendix for details).

Fig. S3D shows the distribution of crossing times for both the
TTC-only model and the PMS-TTC model, and for different va-
lues of the protein degradation rate μ. It is seen that the crossing-
time distribution of the PMS-TTC model is narrower than that of
the TTC-only model, especially when the protein degradation
rate is lower than the protein modification rate. Although in
the TTC-only model gene repression is relieved only via protein
degradation, involving a single Poisson process, in the PMS-TTC
model gene repression can also be relieved via protein modifica-
tion, which involves a sequence of Poissonian steps. The sequence
of Poissonian steps leads to a narrower waiting-time distribution
for crossing the repression threshold, and this explains why a pro-
tein modification sequence, which is a key characteristic of the
PPC, can enhance the robustness of a TTC.

Although the protein modification sequence makes the PMS-
TTCmodel more robust than the TTC-onlymodel (Fig. S2E), the
PMS-TTC model nonetheless is subject to the same fundamental
bounds on its amplitude as a function of μ, and it therefore does
fail for protein degradation rates lower than about 0.05 h−1. If we
examine the simulation results in this regime in more detail, we
can see that the immediate cause of the failure is an accumulation
of molecules in the C0 state, leading the concentrations of KaiC
phosphoforms that repress gene expression to drop below the re-
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pression threshold permanently. The UPPC-TTC model differs
from the PMS-TTC model in that it does not permit proteins
to accumulate in one state, but instead includes an entire cycle
through which molecules can be recycled to the ~C6 state. With
such a cycle, coherent oscillations are in principle possible down
to μ ¼ 0; all that is required is a mechanism to synchronize the
cycles of the different KaiC hexamers. In the models in which
only a PPC is present, this synchronization is of course accom-
plished by the differential-affinity mechanism, but a moment’s re-
flection reveals that the TTC must also have a synchronizing
effect: When, once each oscillation period, a burst of proteins
is produced in the C6 state, the distribution of phosphoforms
not only shifts toward C6, it also becomes narrower. Or, to phrase
the argument slightly differently, while all KaiC hexamers are re-
moved from the system at a rate that does not depend on the
modification state, meaning that the protein removal process
has no effect on the breadth of the phosphoform distribution,
they are replaced by a synchronized group of proteins all in
the same phosphorylation state, which means that the synthesis
process does tend to narrow the distribution. This necessarily acts
to synchronize the oscillation as a whole. With the UPPC-TTC
model, in which this is the only synchronizing influence present,
we can examine quantitatively how strong this effect is. To this
end, we need to examine the stability of the UPPC-TTC in the
regime 0.02 < μ < 0.05 h−1. In this regime, the UPPC-TTCmod-
el is much more stable than the TTC-only and the PMS-TTCmod-
els, showing that the PPC is the principal driver in this regime.
Moreover, the stability of the UPPC-TTC model in this regime
is higher than that in the limiting regime of low growth rate. This
difference is due to the synchronizing effect of the TTC on the
PPC. This idea is supported by the fact that the n1∕2 values for the
UPPC-TTC model and the PPC-TTC model begin to increase at
almost the same degradation rate μ. Taken together, these obser-
vations strongly suggest that the increased robustness of the PPC-
TTC model in the crossover regime can be attributed in large
measure to the additional synchronizing effect of the TTC.

In summary, our analysis suggests that at low protein turnover
rates, where nPPC-TTC1∕2 ≈ nPPC1∕2 ≫ nTTC1∕2 , the PPC is the principal
driver of the circadian clock; at somewhat higher μ, where
nPPC-TTC1∕2 > nPPC1∕2 ≫ nTTC1∕2 , the PPC still drives the clock, but it
needs help from the TTC to create macroscopic oscillations
out of the phosphorylation cycles of the individual hexamers;
at even higher values of μ, where nPPC-TTC1∕2 > nTTC1∕2 ≫ nPPC1∕2 , the
TTC is the principal pacemaker, but its stability is enhanced
by the protein modification sequence of the PPC; and at the high-
est turnover rates, where nPPC-TTC1∕2 ≈ nTTC1∕2 ≫ nPPC1∕2 the TTC is the
sole driver of the clock.

S3. PPC-TTC Model: Rhythms of kaiBC Expression when kaiA Is Over-
expressed. Kitayama et al. have shown that kaiBC expression os-
cillates with a circadian period in the presence of an excess of
KaiA, although it is not clear whether these oscillations are sus-
tained or damped (17). Our PPC-TTC model of the main text,
which is described by S1–S5 and S12–S14 above, generates oscil-
lations in kaiBC expression with a period of 24 h when kaiA is
overexpressed threefold, as shown in Fig. S4A. This figure shows
that the phosphorylation level also exhibits weak oscillations,
which are not seen experimentally; this is due to the fact that
our PPC model neglects phosphorylation of inactive KaiC, which
is known to occur at high KaiA concentrations (8). To rectify this,
we have extended our model to include KaiA-stimulated phos-
phorylation of inactive KaiC, using the same reactions as those
used for active KaiC; specifically, we add to the reactions of
S1–S5 and S12–S14 the following reactions:

AyBx
~Ci þA⇄

~kAf
i

~kAb
i

AyBx
~CiA→

~kpf
AyBx

~Ciþ1 þA; [S30]

for each phosphorylation level i; the rate constants equal those of
the corresponding reactions of active KaiC, except that the KaiA-
KaiC association rate is reduced by a factor of 100. All other rate
constants are as in Table S1. We also include autoactivation of
RpaA via

~R→
kma R; [S31]

with kma ¼ 25 h−1. Autoactivation of RpaA becomes necessary
because the concentrations of the KaiC phosphoforms that acti-
vate RpaA become very low when KaiA is in excess. (The freshly
injected KaiC hexamers do not make it to the bottom of the phos-
phorylation cycle because of the excess KaiA.) This model not
only matches the in vitro observation that when an excess of KaiA
is added during the dephosphorylation phase, the phosphoryla-
tion level of KaiC rises immediately (8), but also reproduces
the in vivo oscillations of the total amount of KaiC when KaiA
is overexpressed (17), as shown in Fig. S4B.

S4. Robustness of the PPC-TTC Model to Parameter Variations. In this
section, we discuss how robust our PPC-TTC model is to varia-
tions in a number of parameters. In the next subsection we show
that the results are insensitive to details of the pathway that cou-
ples the PPC with the TTC. In subsection S4.2 we show that bursts
in gene expression hardly reduce the stability of the clock. In the
next two subsections we show that the stability of the clock is
highly insensititive to the value of the Hill coefficient of gene re-
pression as long as it is larger than one, and quite insensitive to
the variance in the delay of protein synthesis. In essence, combin-
ing a PPC with a TTC enhances the robustness of the clock to
variations in the parameters of the TTC, such as the magnitude
of bursts in gene expression, the Hill coefficient, and the width of
the delay distribution. Finally, in subsection S4.5 we study a mod-
el in which cell growth, cell division, and binomial partitioning of
proteins upon cell division are modeled explicitly and show that,
due to the stabilizing effect of the PPC, its behavior is similar to
the model of the main text. In the next section, section S5, we
discuss a different PPC-TTC model, namely one that is based
upon the model of the PPC developed by Rust et al. (8).

S4.1. Results are independent of details of the output pathway. In this
section, we show that the precise choice of the KaiC phospho-
forms that activate and repress RpaA is not critically important
for the existence of oscillations. Table S2 shows the different
models that we have considered, and Fig. S5 A–C shows their
time traces. It is seen that the time traces are very similar to those
of the PPC-TTC model of the main text, which is model a in
Table S2. The most significant difference can be observed for
the time trace of RpaA in models d and e. In these models,
not only CxA activates RpaA, but also Cx, thus KaiC that is
not bound to KaiA. The concentration of CxA reaches zero dur-
ing the dephosphorylation phase, and, as a result, the concentra-
tion of RpaA becomes zero during this phase in models a–c.
However, the concentration of Cx does not reach zero during
the dephosphorylation phase, and consequently, there is some re-
sidual activation of RpaA during this phase in models d and e.
Nevertheless, RpaA activation during the dephosphorylation
phase in these models does not manifest itself in the time traces
of KaiC, because the concentration of active RpaA is still below
the threshold for kaiBC expression. The oscillations of the phos-
phorylation level and total KaiC concentration are thus fairly
similar in all models, although models d and e are less robust.

S4.2. The effect of bursts. In the PPC-TTC model of the main text,
described in section S1 of this SI Text, we have concatenated tran-
scription and translation into one gene-expression step. More-
over, we have ignored promoter-state fluctuations. Allowing
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for the explicit formation and translation of mRNA (11), as well
as for slow promoter-state fluctuations (12, 13), could lead to
bursts in protein synthesis, which are expected to lower the ro-
bustness of the TTC. This could potentially lower the stability
of the clock. To address this, we have performed simulations
of a model in which KaiB and KaiC are produced in bursts.
We assume that 5 KaiC hexamers and 15 KaiB dimers are formed
in each gene-expression reaction (rather than the 1 and 3 of S13);
this corresponds to typical burst sizes observed experimentally
(11) in Escherichia coli. Formula S13 is thus replaced by

∅⇒
βc½R�4∕ðK4þ½R�4Þ

τ�στ
5C6 þ 15B: [S32]

Fig. S5D shows the resulting phase diagram. It is similar to Fig. 4
of the main text, which shows the results of the PPC-TTC model
without bursts in gene expression. The robustness of the model
with bursts is lower, but not very much so: n1∕2 ¼ 150 for the mod-
el with bursts versus n1∕2 ¼ 195 for the model without bursts
shown in the main text (μ ¼ 0.03 h−1 and V ¼ 1 μm3 in both
cases). We believe that this relatively small reduction in the
clock’s stability is due to the stabilizing effect of the PPC.

S4.3. Robustness to varying the Hill coefficient. Fig. S5E shows for
the full PPC-TTC model the correlation number of cycles,
n1∕2, as a function of the degradation rate μ for V ¼ 1 μm3,
for four different values of the Hill coefficient of gene repression
(see 7 of the main text and S13). It is seen that the stability of the
clock is highly insensitive to the value of the Hill coefficient, ex-
cept when the degradation rate is high: For μ > 0.1 h−1, the os-
cillator becomes unstable when the Hill coefficient drops from 2
to 1. For lower values of μ the PPC plays an important role in
driving and stabilizing the clock; in fact, for μ < 0.02 h−1 the
PPC is the sole driver, which means that in this regime the clock
is not sensitive at all to variations in the parameters of the TTC
(as long as the average concentrations and copy numbers remain
constant). For μ > 0.1 h−1, however, the TTC becomes the prin-
cipal driver of the clock, which means that now the system does
become sensitive to variations in the parameters of the TTC. It is
known that oscillators built on only negative transcriptional feed-
back require a Hill coefficient that is larger than one to become
stable (14). Our results are in line with these observations.

S4.4. Robustness to the variance in the delay of protein synthesis.
Fig. S5F shows for the full PPC-TTC model the correlation num-
ber of cycles n1∕2 as a function of the degradation rate μ and the
width of the distribution of the delay in protein synthesis, στ (see
S13). It is seen that because of the stabilizing effect of the PPC
the clock is essentially insensitive to variations in στ. Only for
μ > 0.1 h−1, when the TTC becomes the principal pacemaker
of the clock, does n1∕2 decrease when στ becomes larger than 3 h.

S4.5. PPC-TTC model with volume growth and binomial partitioning.
Living cells constantly grow and divide, and proteins thus have
to be synthesized to balance dilution. In the main text, we argued
that the principal effect of dilution is to introduce an effective
degradation rate set by the cell doubling time. Here, we show that
this is indeed the case: We study a model in which growth, cell
division, and binomial partitioning of the proteins upon cell divi-
sion are modeled explicitly (15) and show that its qualitative be-
havior is similar to the model of the main text, in which the
volume is held constant and protein degradation occurs at a rate
that is constant in time.

The model we consider here is the PPC-TTC model presented
in the main text, but with the degradation reaction, 9, replaced by
a scheme in which the bacterial volume V grows exponentially as

V ðtÞ ¼ V 0e
tln 2Td ; [S33]

where Td denotes the doubling time after which the volume
reaches twice its minimum V 0 and cell division is triggered. Divi-
sion includes dividing the volume by two, partitioning the pro-
teins binomially (15), and deleting events on the queue of the
delay associated with the KaiC production reaction with a prob-
ability of 0.5 for each daughter cell. To compare the results of this
model with those from the main text, we take Td ¼ ln 2∕μ, where
μ is the protein degradation rate of the model in the main text; if
proteins were to decay only by dilution in a cell with a doubling
time Td, then μ would be the effective protein degradation rate; if
proteins are also degraded actively, then μ ¼ ln 2∕Td is a lower
bound on the actual degradation rate.

Fig. S5 G and H show time traces of the total KaiC concen-
tration and the KaiC phosphorylation level for this refined model.
It is seen that the oscillations of the total KaiC concentration are
more noisy than those in the model in which the Kai proteins are
degraded with rates that are constant in time (Fig. S1C). Clearly,
binomial partitioning is a major source of noise, with the random
removal of items from the queue associated with the KaiC synth-
esis reaction being the largest source of noise. Nonetheless, the
oscillations of the KaiC phosphorylation level are much less af-
fected, with the correlation number of cycles being n1∕2 ¼ 88. In-
deed, while this model combining a TTC with a PPC is fairly
robust, an oscillator with exponential volume growth and bino-
mial partitioning built upon a TTC alone, is not stable. This sup-
ports our statement in the main text that a PPC can strongly
enhance the robustness of a TTC. In future work, we will system-
atically study the effect of bursts in gene expression and binomial
partitioning.

S5. An Alternative PPC-in Vitro Model: The Rust Model. In the main
text, we argue that the synergy between a transcription–transla-
tion cycle and a protein modification cycle is a generic feature of
clocks that exploit both cycles. To support this claim, we have stu-
died a model in which our model of the PPC is replaced by that of
Rust et al. (8). This model describes a phosphorylation cycle at
the level of KaiC monomers, rather than KaiC hexamers as in our
model. In the Rust model, each KaiCmonomer cycles between an
unphosphorylated state “U,” a singly phosphorylated state “T,”
where KaiC is phosphorylated at threonine 432, a doubly phos-
phorylated state “ST,” where KaiC is phosphorylated at threonine
432 and serine 431, and a singly phosphorylated state “S,” where
KaiC is phosphorylated at serine 431 (8, 16). This cycle is de-
scribed by the reactions

U↔ T; T↔ ST; ST↔ S; S↔U [S34]

with reaction rates given by equation 5 of the supplementary ma-
terial of Rust et al. (8). These rates depend on the concentration
of free KaiA, which is sequestered by KaiC in the S state. We
model KaiA sequestration explicitly:

SþA ↔ AS; ASþA ↔ A2S: [S35]

We picture sequestration to be fast and we picked a forward rate
of 1.72 · 1012 1∕Mh and a backward rate of h−1 for both equa-
tions above. Dephosphorylation of KaiC in the S state might oc-
cur even when KaiA is bound, in which case the KaiA protein is
released from the complex. We define the output signal as

pðtÞ ¼ ½T� þ ½ST� þ ½S� þ ½AS� þ ½A2S�
½U� þ ½T� þ ½ST� þ ½S� þ ½AS� þ ½A2S�

; [S36]

which resembles the phosphorylation ratio in the case where we
cannot distinguish between singly and doubly phosphorylated
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KaiC. The denominator in the above expression is also the total
KaiC monomer concentration. We use the same concentrations
as Rust et al., ½KaiA� ¼ 1.3 μM (active KaiA monomers) and
½KaiC� ¼ 3.4 μM (KaiC monomers), and simulate this model
using the Gillespie algorithm (2).

When we simulate this model for a volume V ¼ 1 μm3, we find
a period of L ¼ 21.4 h and a decay constant for the autocorrela-
tion function of τd ¼ 128 h. The corresponding correlation num-
ber of cycles is n1∕2 ¼ 30, which is lower than that observed
experimentally, n1∕2 ¼ 166� 100 (5), and lower than that of
the PPC developed by us (1), for which n1∕2 ≈ 200 (see Fig. 2
of the main text). This is because the model of Rust et al. features
a phosphorylation cycle at the level of KaiC monomers rather
than KaiC hexamers as in our model. The concomitant reduction
in the total number of phosphorylation steps in the cycle reduces
the robustness in the model of Rust et al. (8).

S5.1. An alternative PPC-in vivo model: The Rust model with constant
protein synthesis and degradation. To study the behavior of the
model of Rust et al. (8) under conditions in which cells grow
and divide, we have to include protein degradation and make
up for this by protein synthesis. As in the main text, when we vary
the protein degradation rates, we adjust the protein synthesis
rates such that the average protein concentrations are unchanged
and similar to those used in the in vitro experiments (3, 4).

Fig. S6A shows the results for this model. They are qualita-
tively the same as those of Fig. 3 of the main text: The robustness
decreases with decreasing volume and increasing degradation
rate. Hence, not only in our model but also in that of Rust et
al. (8), protein degradation can cause the oscillations to disap-
pear. This supports our claim that a protein modification oscil-
lator cannot function on its own when the cell’s growth rate is
high enough.

S5.2. An alternative PPC-TTC model: The Rust model with a TTC. We
will now show that a TTC can resurrect the PPC of Rust et al.
(8). We model the TTC as

∅⇒
βc½R�4∕ðK4þ½R�4Þ

τ;στ
ST; ∅→

βaA; ∅→
βr ~R ; [S37]

~RþT→
kaRþT; RþAxS→

ki ~RþAxS; x ∈ f0;1;2g; [S38]

A;R; ~R;U;S;AxS;T;ST→
μ ∅; [S39]

where the first line describes the production of proteins to coun-
teract their degradation and the second line summarizes the
RpaA signaling pathway, where KaiC that is phosphorylated at
the T site activates RpaA and KaiC that is phosphorylated at
the S site represses RpaA activation. The parameters in this
model are βc ¼ 1.16 μM∕h, K ¼ 0.058 μM, βa ¼ 0.13 μM∕h,
βr ¼ 0.058 μM∕h, ka ¼ ki ¼ 1.71 · 109 1∕Mh, μ ¼ 0.1 h−1, and
the delay is τ ¼ ð3� 0.3Þ h. Fig. S6B shows the results of this
model at a volume V ¼ 1 μm3. Analyzing the autocorrelation
function, we find a period L ¼ 22.5 h and a correlation decay
time of τ ¼ 1;832 h leading to a correlation number of cycles
of n1∕2 ¼ 402. Clearly, a TTC can also resurrect the PPC of Rust
et al. (8), supporting our claim that the qualitative results of the
main text should apply to any biological system that exploits both
a protein modification cycle and a protein synthesis cycle to gen-
erate circadian rhythms.

S6. PPC-TTC Model: Period as a Function of Cell Volume and Protein
Degradation Rate. Fig. S7 shows the period of the oscillation of
the KaiC phosphorylation level in the full PPC-TTC model of
the main text (1–9) as a function of the cell volume and the pro-

tein degradation rate. As before, the protein synthesis rates are
adjusted such that the average protein concentrations are con-
stant and similar to those used in the in vitro experiments (3,
4). It is seen that the dependence of the oscillation period on
the cell volume and protein degradation rate is rather weak. This
is because the rhythm of the clock is dictated by the PPC, which is
insensitive to the absolute rates of protein synthesis and decay.
We note here that the period of the oscillation, as well as its am-
plitude, would change if the ratio of the concentrations of the Kai
proteins were changed. Although the dependence of both the am-
plitude and the period of the in vitro PPC on the ratio of the con-
centrations of the Kai proteins has been characterized in detail
(3, 4), the dependence of the in vivo oscillator on their ratio has
not been studied experimentally.

S7. Measuring the Robustness. In this section, we discuss how we
calculate the correlation number of cycles n1∕2 for our various
models. We begin with some theoretical background: Consider
a phase variable φðtÞ that increases with an average frequency
ω and is also subject to noise. Its time evolution can be written
as

dφðtÞ
dt

¼ ωþ ξðtÞ with hξðtÞξðt0Þi ¼ σ2δðt− t0Þ: [S40]

Here ξðtÞ is Gaussian white noise of strength σ2, and h∘i indicates
averaging over different realizations of the noise. Integrating the
equation with the initial condition φð0Þ ¼ 0 yields

φðtÞ ¼ ωtþWðtÞ; [S41]

where WðtÞ is a Gaussian random variable with mean zero and
variance

hðφðtÞ−ωtÞ2i ¼ σ2t: [S42]

From this, we can construct an oscillating signal

xðtÞ ¼ x0 þ a · sinφðtÞ [S43]

with mean x0 and amplitude a. The autocorrelation function of 44
is then

Cðt0Þ ¼ hδxðtÞδxðtþ t0Þi
hδxðtÞ2i ¼ e−

1
4
σ2jt0 j · cosðωt0Þ; [S44]

where δxðtÞ≡ xðtÞ − x0 is the deviation of the signal from its aver-
age value x0. We thus expect that the correlation function is a
sinusoid modulated by a single exponential decay.

S7.1. Incorporating amplitude noise. Because the phase is the only
“soft” direction of the dynamical system, one generically expects
any noisy oscillator at long times to act similarly to the simple
model of a phase oscillator just described. Nonetheless, a more
realistic description would also include a fluctuating amplitude.
We incorporate this behavior phenomenologically by including a
time dependence in the amplitude:

a→ aðtÞ ¼ a0 þ ξðaÞðtÞ⇒ xðtÞ ¼ x0 þ ½a0 þ ξðaÞðtÞ� · sin½ωtþWðtÞ�;
[S45]

where ξðaÞðtÞ denotes a Gaussian white noise process of strength
σ2a and therefore neglects correlations in the amplitude fluctua-
tions. We can again calculate the correlation function analytically.
By definition, we have Cð0Þ ¼ 1 for t ¼ 0, but because aðtÞ now
contains a white noise term, CðtÞ jumps discontinuously to a smal-
ler value for any t > 0. One finds
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Cðt0Þ ¼ hδxðtÞδxðtþ t0Þi
hδxðtÞ2i ¼ a20

a20 þ σ2a|fflfflffl{zfflfflffl}
¼ν

e−
1
4
σ2jt0 j · cosðωt0Þ; t0 > 0.

[S46]

Considering the more natural case of a finite correlation time in
the amplitude noise, the picture will only change slightly: Instead
of jumping from 1 to ν at t0 ¼ 0, the envelope will undergo a
smooth transition involving two time scales: a short time scale
of the order of the correlation time of the amplitude fluctuations
and a much longer time scale associated with the phase diffusion.
In practice, we found that including amplitude fluctuations did
not significantly change our estimate for n1∕2.

S7.2. Computing the correlation number of cycles. To calculate the
correlation number of cycles n1∕2, we begin by using our simula-
tion results to estimate the correlation function CðtÞ. After an
initial equilibration phase of 500 h, we do simulations for
50,000 h. From these, we extract N ¼ 500;000 values xi for the
time trace xðtÞ at equidistant points in time, which we can then
use to calculate the correlation function at times separated by an
interval Δt ¼ 0.1 h:

xi ¼ xðt0 þ i · ΔtÞ; Cði · ΔtÞ ¼ 1

ðN − iÞ · hδx2i∑
N−i

j¼0

δxjδxjþi:

[S47]

Here xðtÞ is either the phosphorylation level pðtÞ or the total con-
centration of KaiC hexamers. pðtÞ is used for all cases except for
models where there is only a TTC and a phosphorylation level
cannot be defined.

Once CðtÞ has been computed, it can be fitted to the form S46
to determine the free parameters ν, σ2, and ω. In practice we
perform the fit using gnuplot, which in turn implements a
Marquardt–Levenberg algorithm.

Finally, it remains to translate the fitted parameter values into
an estimate of n1∕2. Eguchi et al. define n1∕2 as the number of
cycles after which the standard deviation of the phase is π (7).
Thus, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½φðL · n1∕2Þ−ωt�2i

q
¼ π ⇒ n1∕2 ¼

π2

Lσ2
; [S48]

where L ¼ 2π∕ω denotes the period and we have used Eq. S42 to
solve the left equation for n1∕2. The value of n1∕2 is then obtained
by substituting the fitted values for σ2 and ω. Using this method
we can reliably measure n1∕2 from 1 to 1,000. The upper bound is
given by the fact that we compute the correlation function CðtÞ
only up to t ¼ 3;000 h and therefore correlation functions that
decay on much longer time scales are difficult to detect.

Concerning the error bar on the computed n1∕2, it should be
noted that there are two distinct sources of error: one due to sta-
tistical fluctuations, and one due to systematic errors, e.g., that
the correlation function cannot be fitted to Eq. S46. To estimate
the former, for certain parameter values we repeated the proce-
dure described above 32 times, i.e., we performed 32 independent
simulations and computed the mean and the standard deviation
of the set of 32 independently estimated values for n1∕2. For V ¼
1 μm3 and μ ¼ 0.025 h−1, this gave n1∕2 ¼ 168� 31 (mean� SD)
for the combined PPC-TTCmodel. To address the second type of
error, we also computed n1∕2 using two different methods. One is
the method of Eguchi et al., which is based on examining the
times at which the oscillation reaches its maximum in each cycle
and thus does not assume any particular form like Eq. S43 for the
oscillating signal (7). The other method involves computing the

width of the dominant peak in the power spectrum of the time
traces. The three methods gave similar error bars and values
for n1∕2 that agree within the error bar. Although all methods
gave the same result, we found the method based on the correla-
tion function (Eq. S46) more robust for noisy oscillations at low
cell volumes.

Appendix: Crossing-Time Distribution in TTC-Only and PMS-TTC Mod-
els. We imagine that at t ¼ 0 we have N repressor molecules,
which can only decay; they can either decay via degradation only,
as in the TTC-only model, or decay via a combination of degra-
dation and a sequence of modification steps, as in the PMS-TTC
model. The aim is now to compute the distribution of times the
system crosses the repression threshold at a later time t. We ima-
gine that the repression threshold is crossed when the number of
moleculesMðtÞ at time t drops belowMc, thus whenM goes from
Mc to Mc − 1. This yields the following expression for the (nor-
malized) distribution of crossing times:

PcðtÞ ¼McqðtÞ
N!

ðN −McÞ!Mc!
SðtÞMc−1ð1− SðtÞÞN−Mc ; [S49]

where SðtÞ is the survival probability, which is the probability that
a molecule has not decayed at later time t, and qðtÞ ¼ −∂SðtÞ∕∂t is
the probability per unit amount of time that a molecule, given
that it is active at t ¼ 0, decays at a later time t.

The task is now to compute SðtÞ. In the TTC-only model the
molecules can decay only via degradation, and the survival prob-
ability is simply SðtÞ ¼ e−μt, where μ is the degradation rate. For
the PMS-TTC model, we assume that the molecules start in the
repressing ~C6 state. They can then go through a sequence of ir-
reversible protein modification steps ~C6 → ~C5 → ⋯ → ~C1 → ~C0,
and then switch to the nonrepressing C0 state; moreover, in each
state they can also decay via degradation. Each modification re-
action occurs at a rate λ ¼ kdps, degradation proceeds with a rate
μ, and the switch from ~C0 to C0 occurs with rate b0. A molecule is
still active as a repressor when it is in one of the ~C6; ~C5;⋯; ~C1; ~C0

states, meaning that the survival probability is given by

SðtÞ ¼∑
6

i¼0

PiðtÞ; [S50]

where PiðtÞ is the probability that a molecule is in state ~Ci at time
t. For i ¼ 1;2;…;5;6, it is given by

PiðtÞ ¼
ðλtÞ6−i
ð6− iÞ! e

−ðλþμÞt: [S51]

Indeed, this equation holds for all the repressing states except the
last one, because in this state ~C0 the molecule can become non-
repressing not only via degradation, but also by switching to the
nonrepressing state C0 state. The probability of being in the ~C0 at
time t is

P0ðtÞ ¼ λ

Z
t

0

dt0P1ðt0Þe−ðb0þμÞt−t0Þ; [S52]

¼ λ6

5!
e−ðμþb0Þt

Z
t

0

dt0t05e−ðλ−b0Þt0 ; [S53]

which can be solved analytically by iteratively integrating by parts.
Clearly, if b0 ¼ λ the above expression reduces to Eq. S51 for
i ¼ 0. It is also clear that if b0 → ∞, P0ðtÞ becomes zero and
SðtÞ ¼ ∑6

i¼1 PiðtÞ. Finally, if λ ¼ 0, this model reduces to the
TTC-only model.
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Fig. S1. Time traces of the different models studied in the main text. (A) PPC-in vitro model, a PPC model in which the concentration of each Kai protein is
constant. Time traces of the phosphorylation level pðtÞ, defined as the fraction of monomers that is phosphorylated, for two different volumes. The correlation
number of cycles, n1∕2, as a function of volume is shown in Fig. 2 of the main text. (B) PPC-in vivomodel, a PPC model in which the Kai proteins are continually
being produced and degraded. Time traces of the phosphorylation level pðtÞ for three different degradation rates μ. The correlation number of cycles, n1∕2, as a
function of volume and the degradation rate is shown in Fig. 3 of the main text. (C) PPC-TTC model, which combines a PPC with a TTC. Time traces of the
phosphorylation level pðtÞ and total KaiC concentration ½C�TðtÞ for V ¼ 1 μm3 and μ ¼ 0.03 h−1 (solid lines) and μ ¼ 0.1 h−1 (dashed lines). The correlation
number of cycles, n1∕2, as a function of volume and the degradation rate is shown in Fig. 4 of the main text. Time traces of RpaA are shown in Fig. S5C.
(D) TTC-only model. Time traces of the concentrations of active RpaA and KaiC (V ¼ 1 μm3 and μ ¼ 0.15 h−1). The (average) concentrations of KaiA, KaiB,
and KaiC are those used in the in vitro experiments (3, 4): ½A�T ¼ 0.58 μM; ½B�T ¼ 1.75 μM; ½C�T ¼ 0.58 μM. For other parameter values, see Table S1.
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Fig. S5. Robustness of the PPC-TTC model to parameter variations. (A–C) Time traces of the stochastic simulations of models with different output pathways
from the PPC to the TTC (see Table S2). The phosphorylation ratio (A), the total concentration of KaiC (B), and the concentration of RpaA (C) are fairly similar for
all models studied. (D) The correlation number of cycles n1∕2 as a function of the degradation rate μ and the volume V for a PPC-TTCmodel that exhibits bursts
in gene expression; upon a gene-expression event, 5 KaiC molecules are produced and 15 KaiB dimers. (E) n1∕2 as a function of μ for V ¼ 1 μm3, for different
values of the Hill coefficient n of gene repression (see Eq. S13). (F) n1∕2 as a function of μ and the width of the distribution of the delay in protein synthesis, στ ,
for V ¼ 1 μm3 (see S13). (G and H) Time traces of the PPC-TTCmodel modified to take into account cell division and binomial partitioning. Here, the cell divides
when the volume reaches Vm ¼ 1.38 μm3, which occurs every 20 h, as indicated by the arrows above the graph; a cell doubling time of 20 h corresponds to an
effective degradation rate of μ ¼ 0.035 1∕h. The average volume is V ¼ 1 μm3. (G) Time traces of the phosphorylation level and the total KaiC concentration.
(H) Time traces of the total KaiC concentration, the KaiC copy number, and the volume. Note that the time trace of the total KaiC concentration is hardly
affected when cell division happens to occur during the degradation phase, whereas it has a relatively large effect when cell division happens to occur during
the KaiC production phase; this is because the removal of items from the queue associated with the KaiC synthesis reaction effectively lowers the synthesis rate;
indeed this explains the change in slope in the KaiC concentration during the production phase.
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Fig. S7. Period of the oscillation in the KaiC phosphorylation level in the full PPC-TTC model of the main text as a function of cell volume and protein de-
gradation rate. When the degradation rate is varied, the protein synthesis rates are adjusted such that the average protein concentrations are constant and
similar to those used in the in vitro experiments (3, 4). The period is essentially independent of the volume and exhibits only a weak dependence on the
degradation rate μ.
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Table S1. The parameters used for the full models of the main text and the minimal models of section S2

Constant Value Constant Value

PPC (1–5 and S1–S5):
kps, ~kps

0.025 1∕h kdps, ~kdps 100 1∕h
kpf 1.0 1∕h
f i f10−6;10−5;10−4;10−3;10−2;10−1;10g 1∕h bi 100 1∕h
kAf
i

1.72 · 1010 1∕M·h kAb
i f1;3;9;27;81;243;729g 1∕h

~kBf
i

1.72 · 109 × f0.001;0.1;1;1;1;1;1g 1∕M·h ~kBb
i f10;1;1;1;1;1;1g 1∕h

~kAf
i

1.72 · 109 × f10−2;103;103;103;102;10−3;10−4g 1∕M·h

~kAb
i

f10;1;1;1;1;1;10g 1∕h
Deterministic PPC (Eqs. S8–S11):
~κBfi 2.97 · 1018 × f0.01;1;1;1;1;1;1g 1∕M2·h ~κBbi 100 × f10;1;1;1;1;1;1g 1∕h
Ki 3.37 · 10−25 × f∞;100;1;1;100;∞;∞g M2

RpaA activation (6 and S12):
ka 8.6 · 109 1∕M·h ki 4.3 · 109 1∕M·h
TTC (7–9 and S13 and S14):
K 0.058 μM
βa μ−1 × 0.58 μM βr μ−1 × 0.29 μM
τ 5 h στ 0.5 h
RpaA activation TTC-only (11 and S16):
kt
a 1 1∕M·h kt

i 100 1∕M·h
Minimal PPC (S17–S20):
kdps, ~kdps

0.375 1∕h kpf 1.0 1∕h
f6 100 1∕h b0 90 1∕h
kAf
i

1.72 · 1010 1∕M·h kAb
i f1;3;9;27;81;243;729g 1∕h

~kAf
i

1.72 · 109 × f10−2;103;103;103;102;10−3;10−4g 1∕M·h

~kAb
i

f106;103;10−2;10−3;10−3;10−3;103g 1∕h
Minimal TTC (S21–S23):
K 0.29 μM βa μ−1 × 0.58 μM
τ 8 h στ 0.8 h

The degradation rate μ is a free parameter that we vary to explore different growth conditions. The numbers between the curly brackets
correspond to the different KaiC phosphorylation states i in ascending order; values of ∞ for Ki indicate that a particular binding reaction is
not allowed. The production rate βc is determined from an optimization for the mean protein concentration h½C�i ¼ 0.58 μM.

Table S2. Models with different output pathways from the PPC to the TTC

Model Activator Repressor Threshold K n1∕2

a AC2, AC3, AC4, AC5 AyBx
~C2;…;AyBx

~C5 0.058 μM 195
b AC3, AC4 AyBx

~C2;…;AyBx
~C6 0.058 μM 118

c AC3, AC4 AyBx
~C3;…;AyBx

~C4 0.058 μM 180
d C3, AC3;C4, AC4 AyBx

~C3;…;AyBx
~C4 0.029 μM 39

e Cx , ACx , x ∈ f2;3;4;5g AyBx
~C3;…;AyBx

~C4 0.029 μM 48

These models differ in the choice of phosphoforms that activate and repress RpaA, respectively. The maximal production rate βc has been modified such
that the average concentration of KaiC is 0.58 μM, as used in the in vitro experiments (3, 4). In each case, n1∕2 is given for a volume V ¼ 1 μm3 and a decay
rate μ ¼ 0.03 h−1. Model a is the PPC-TTCmodel from the main text. To make the simulations tractable, we neglected repression of RpaA activation by KaiC
phosphoforms that occur in negligible concentrations; consequently, the full list of phosphoforms that has the potential to repress RpaA is
fB2

~C6; B2
~C5;AB2

~C5;A2B2
~C5; B2

~C4; AB2
~C4; A2B2

~C4; B2
~C3; AB2

~C3; A2B2
~C3; B2

~C2; AB2
~C2; A2B2

~C2 g. Other parameters are given in Table S1
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