

Figure S1. Generation of Flip conditional Knock out mouse. (A). Southern blot

analysis of *Flip* targeted mouse ES cells. Genomic DNA of neomycin resistant ES clones was digested by EcoRI and hybridized with ³²P-labeled 5'- probe (top panel), or digested by *Bam*HI and hybridized with 3'-probe (lower panel). Clone #128 displays the 7.3-kb targeted allele identified by the 5'-probe and the 7.6-kb targeted allele identified by the 3'-probe. The presence of the wild-type (WT) allele (9.5Kb by 5'-probe and 5.7 Kb by 3'-probe) indicates these cells are heterozygous for the targeted *Flip* allele. In clones #66 and #87 the targeting construct was randomly inserted. The *neo*^R cassette was removed from 3 clones derived from clone 128 (clones 51, 62, 77), indicated by the 3'-probe that hybridized with a 5.7 Kb fragment, which were employed to generate chimeric mice by blastocyst injection and embryo re-implantation in C57BL/C mice. (B) PCR genotyping of *Flip* by genomic DNA extracted from tail biopsies. Three *Flip* alleles were identified: 270bp for floxed (*Flip^f*), 220bp for WT (*Flip⁺*) and 150bp for deleted (*Flip^d*).

Figure S2. Analysis of lymphocytes in peripheral blood. The B cells (A) and

CD4+ (B) or CD8+ (C) T cells in the peripheral blood of control or *Flip^{f/d}*, *LysM*^{c/+} mice were assessed by flow cytometry. Lymphocytes were identified as CD45+, CD11b-, NK1.1- and CD11c-, plus B220+, CD4+, CD8+ for B cells and CD4+ or CD8+ T cells, respectively (n = 8 for each group). A representative example of the distribution of B cells and CD4+ or CD8+ T cells in total CD45+ population is presented on the right. The absolute counts for each cell type is presented based on the total white blood cell counts which were 7.9 ± 1.3 (± 1 SE) for the controls and 49.1 ± 7.3 (x10⁴/µl blood) for the *Flip^{f/d}*, *LysM*^{c/+} mice (p=0.002). ** represents p < 0.01 compared with controls.

CD4+ (B) or CD8+ (C) T cells in the spleens of control and $Flip^{f/d}$, $LysM^{c/+}$ mice was determined by flow cytometry (n = 4 for each represented group). Lymphocytes were identified as indicated in

Figure S3. Analysis of lymphocytes in spleen. The presence of B cells (A) and

Supplemental Figure 2. Representative examples of the distributions of B cells and CD4+ and CD8+ T cells are presented in the panels on the left. The total numbers of each cell type were determined based on the number of live splenocytes in each group (87.5 ± 11.6 and 147.5 ± 25.9 (x10⁶) for control and *Flip^{f/d}*, *LysM* ^{c/+} mice). ** represents p < 0.01 compared with controls.

Figure S4. Analysis of granulocytes in the lymphoid organs. Granulocyte

infiltration in spleen(A), lymph node (B), thymus(C) and bone marrow (D) of control and *Flip*^{f/d}, *LysM*^{c/+} mice were assessed by flow cytometry. Granulocytes were identified as CD45+, CD11b+, NK1.1-, CD11c-, B220-, CD4-, CD8- and Gr1+ (n = 4 for each represented group). A representative example of the distribution of Gr1+ and 11b+ granulocytes in total CD45+ population is presented on the left of each panel. The total numbers (x10⁶) of live cells in the littermate controls and *Flip*^{f/d}, *LysM*^{c/+} mice were: 87.5 ± 11.6 and 147.5 ± 25.9 (splenocytes); 141.3 ± 12.8 and 25.4 ± 10.1 (cells from lymph nodes, p < 0.01); 222.5 ± 31.7 and 5.1 ± 2.4 (thymocytes, p < 0.001) and 16.0 ± 2.3 and 12.8 ± 1.2 (cells from tibias). * represents p < 0.05 and ** p < 0.01 compared with control groups.

Figure S5. Increased leukocyte infiltration in non-lymphoid organs.

Representative tissue sections from the indicated organs from $Flip^{f/d}$, $LysM^{c/+}$ and littermate control mice were stained with hematoxylin and eosin. The area identified by the box is enlarged in the panel below.

Figure S6. Analysis of infection in *Flip^{f/d}*, *LysM*^{*c/+*} and control mice. The peritoneal cavity, thymus, spleen, liver, and lymph nodes of *Flip^{f/d}*, *LysM*^{*c/+*} (n = 13) and control mice were cultured. Body weight (A) and neutrophil counts (B) were determined in the culture positive (n=4) and negative mice (n = 9). *Flip^{f/d}*, *LysM*^{*c/+*} mice (n = 20) were treated with ampicillin +/- gentimycin, and circulating neutrophil counts were performed before and after treatment (C). *** represents p < 0.001.

FigureS7. **Analysis of lymphocytes in the peritoneum.** (A) A representative example of lymphocytes (CD11b⁻) stained with anti-CD19 and -CD3 employing control and $Flip^{f/d}$, *LysM*^{c/+} mice. (B) The number of B and T lymphocytes present in the peritoneal cavity was determined following flow cytometry (n = 8 and 13 for control and KO, respectively). ** represents p < 0.01.

Figure S8. *Flip^{f/d}*, *LysM*^{c/+} mice demonstrate a cell intrinsic defect in bone

marrow transplants. (A) $Flip^{f/d}$, $LysM^{c/+}$ (CD45.2⁺) bone marrow cells failed to compete with wild bone marrow cells (CD45.1⁺), indicated by the % of CD45 subtypes in peripheral blood 8 weeks post transplantation. (B-H) The cell numbers were calculated for the indicated cell types from peripheral blood (10³/µl) by total white blood cell count and flow cytometry in mice from groups 1-

5, which received $Flip^{f/d}$, $LysM^{c/+}$ donor BM cells at 0, 25, 50, 75 and 100%, respectively. Cells from CD45.1 and CD45.2 subtype were indicated as open and solid symbols. Three individual mice in group 5 were specified by matched symbols.