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Let

A f) = limkf (x - y)f(y)dy,

where x, y are points in n-dimensional Euclidean space R' and k(x) is a homogeneous
function of degree -n with mean value zero on x| = 1, and let B(f) = b(x)f(x).
It is well known (see ref. 1) that if k and b are sufficiently smooth and b is bounded,
then (AB - BA) (O/cxj) and (a/axj) (AB - BA) are bounded operators in LP,
1<p< co.
The purpose of the present note is to extend and strengthen the preceding result

and establish some related facts of independent interest. These are stated in
Theorems 2 and 3 below.
THEOREM 1. Let k(x) have locally integrable first-order derivatives in XI > 0,

and suppose that the partials of k(x) + k(-x) belong locally to L log+ L in xj > 0.
Let b(x) have first-order derivatives in Lr, 1 <r < o. Then if 1 <p K a, 1 <q < c,
q-1 = p' + r-1 and f is continuously differentiable and has compact support, we have

11(AB - BA) a fjjq < c||fIlp, (a)axi

where c is independent of f. Furthermore, (AB - BA)f has first-order derivatives
in La and

la
(AB- BA)f . cIjfjIp, (b)

where, again, c is independent of f.
THEOREM 2. Let h(x) be homogeneous of degree -n - 1 and locally integrable

in x| > 0. Let b(x) have first-order derivatives in Lt, 1< r < oo. Then, if 1 < p <
c), 1 < q < a, q-1 = p-1 + r-1, h(x) is an even function and

CE(f) = h(x - y)[b(x) - b(y)]f(y)dy.
Ix-yl>e

Ce maps LP continuously into Lq and HC(f)II < cjIgrad b|IIrJfjIp f h(x)I dP, where
the integral is extended over jxj = 1, dv denotes the surface area of Ixl = 1, and
c depends on p and r but not on e. Furthermore, as e tends to zero Cf(f) converges in
norm in L.
A similar result holds if h(x) is odd provided that it belongs locally to L log+ L

in xI > 0 and that the functions x; h(x), j = 1,2, ..., n, have mean value zero
on x = 1. This, however, will not be proved in the present note.
THEOREM 3. Let F(t + is) be analytic in s > 0 and belong to HP, 0 < p < aO.

Let S(F) (t) = [f x(t - u,s) JF'(u + is) 2du dsfl', where x(t,s) is the characteristic
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function of the set s > 0, I tI < s. Then there exist two positive constants cl and c2
depending on p only, such that c4I|F(t)IIp < IIS(F)fIj < c21lF(t)IIp, where F(t) = lim

to-O

F(t + is).
The novelty in the preceding statement is the first inequality for p < 1. A

similar result for the function g of Littlewood and Paley when F has no zeros was
proved by T. M. Flett (ref. 3), whose method we borrow partially. Actually, only
the case p ) 1 will be needed in this note, but its proof is no less laborious than
that of the general case.

Proof of Theorem 3: We will assume first that F(t + is) is analytic in s ) 0
and that FI (t2 + 82)k - 0 as (t2 + s2) X_ cD for every k > 0. Then, of course,
F belongs to HP for every p > 0. We introduce now some notation. For a function
G defined on the real line we write

~+co 1/P
Mt(G) = [:GPdt P > o.

If G is also defined in the upper half-plane, we write

m(G) = sup X(t - u,s)IG(u,s)I, S(G) = [fx(t - u,s)Igrad GI 2du ds]'12,
U,8

where X(t,s) is the characteristic function of the set s > 0, tI < s. By integration
we obtain M22[S(G) ] = 2 f sI grad GI 2dt ds. Now if a is any positive number, we
set G = F J', then a simple calculation gives

A2) = 41 grad GI 2 (0)

and an application of Green's formula yields4

M22(G) = 4 f sjgrad GI 2dt ds = 2 M22[S(G)] (1)

On account of the definition of G and the analyticity of F, we have the following
well-known inequality

M.[m(G) ] < c M.(G), 0 < p < a. (2)

Now let p ) 1, then

S(GP)2= f x(t - u,s) pGP-I grad GI 2du ds < p2m(G)2P-2S(G)2,

that is,

S(GP) < pm(C)P-'S(C), 1 < p < O. (3)

Now let a,i3> 0, 0< a < 1, aa + fl(1- ) = 1. Then

S(G)2=2 f x(t - u,s) grad GI 2du ds a-2dff-2(1-) f (xl grad G'l| 2)a

(xl grad GC| 2)1-'du ds,

whence from Holder's inequality we obtain
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Let us assume now that we have the inequality

c Mr(G) 2 Mr [S(G)] (5)

for some r, r > 0. Let 0 < q < r and p = r/q. Then (3) applied to G1/P gives

S(G) < pmn(GLIP)P-lS(GlIP) = pm(G)(P-1)'PS(G"1)

whence, applying Holder's inequality, we get

MqI[S(G) ] < pq Mj [m(G)q(P-l)lPS(GlIP)q] < p"' AIr/q[S(Gl/P)Q]Mrl(r-.) [m(G)q(P-1)IP]
= pQ Mr' [S(G1IP) ]Ms,(P-l)IP [m(G)]

and from the last expression, (2), and (5) applied to G1/P it follows that

Mq [S(G)] < cpP Mr'I[GlP]MqAq(P-l)IP(G) = cpq Mlq'P(G)Mjq(P-l)/P(G)

or Mq [S(G) ] < c, M,(G). (6)

On account of (1), (5) holds with r = 2. Hence the preceding inequality holds
for 0 < q < 2.
Now we will show that (6) holds for 0 < q < a. Since (5) implies (6) with

q < r, it is enough to show that (6) holds for q > 4. Let h(t) > 0 be any bounded
function with compact support. Then

.+ C4o + co

Sf(G)2hdt = h(t) f x(t - u,s) grad G I2du ds dt

- f |grad GI 2 fw h(t)x(t - u,s) dt du ds.

Now we observe that if P(t,s) denotes the Poisson kernel for the half-plane, then
X(ts) < c sP(t,s) and consequently

f'h(t)x(t- u,s) dt < c h(t)sP(t - u,s)dt < c s H(u,s),

where H(t,s) is the Poisson integral of h(t). Thus,
w+ co

f ,0s(G)2h dt < c f grad G| 2s H(t,s)dt ds.

Now, from (0) we have

A(G2H) = HAG2 + 2(grad G2) - (grad H)

= 4H| grad GI 2 + 2G(grad G) * (grad H)

) 4HIgrad G 2- 2G grad GI Igrad Hf
and

J S(G)2h dt <. f sA(G2H)dt ds + 2 f sG| grad GI I grad HI dt ds
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and applying Green's formula to the first term on the right4
r+coc +c

f S(G)2h dt < f G2h dt_co 4 co

+ fq dt f x(t - u,s) GI grad G| grad H du ds

< G2h dt + - m(G) S(G) S(H)dt.

Now we set p = q/(q - 1) and apply the three-term Holder inequality with ex-
ponents 2q, 2q, p to the preceding integrals and get

r+0
4 fS(G) 2h dt < cM2,2(G)M,(h) + cM2q [m(G) ]M2Q [S(G) ]M, [S(H) ]. (7)

Since H is harmonic and 1 < p < a), we have M, [S(H) . cpMp(h), and since
4 < q < a, we also have M2q[m(G) I < cM2,(G). Substituting in the preceding
inequality, setting M,(h) = 1, and taking the supremum of the left-hand side over
all such h, we find that M.[S(G)2] = M2C2[S(G)] < cM2C(G)[M2q(G) + M2gS(G)],
and this implies that M2q [S(G)] < C' M2,(G) provided that M2, [S(G) I < a0. To
see that this is the case we observe that since m(G) is bounded, (7) holds with
M. f[m(G) ] replacing M2Q[m(G) J and M, [S(G)] replacing M2q [S(G)] and from this,
arguing as above, we obtain

M2Q2[S(G)] < c M2a2(G) + c M. [m(G) ]MQ [S(G)].
Since the right-hand side is finite for q = 2, it follows by induction that the left-
hand side is finite for arbitrarily large q and hence for all q > 2. Thus (6) is
established for 0 < q < a.
Now we prove the converse inequality. Let q > 0. Then (1) and (4) give

Mqg(G) = M22(G9l2) = 2 M22S(G"12) < cMl[S(G112)2aS(Gfql2)2(-1 )]
where a = 2q/(q + 2), ,8 = 2/q, a = (q + 2)/2(q + 1), 1 - = q/2(q + 1).
Applying H6lder's inequality to the right-hand side we get

MCq(G) < C M(q+l)Iq [S(GI1I2)2f]Mq+1 [S(G)2(l-) ].

But

M(q+1)1C [S(G112) 2a ] = Mf(q+2)/q2J[S(Gaql2) I

Mq+i[S(G)2(1-0)] = Mq2(1-u) [S(G)].

Applying (6) to the right-hand side of the first of the preceding identities, and
observing that M(q+2)1q[Ga12] - MqaU/2(G), substitution in the preceding inequality
yields

Mqgf(G) <CC MqaaQ(G) Mq2(1 -w)) [S(G) ]

Since q - aaq = 2(1 -o), from this it follows that

M,,(G) < cq M,[S(G)]. (8)
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-To obtain (6) and (8) for F we set G = IFI and observe that Igrad GI = IFPI.
Finally, we must remove the conditions we imposed on F at the beginning of the
proof. If F(z), z = t + is, is analytic in the upper half-plane and belongs to HP,
then F(z + i/n) = Fn(z) is bounded there. Let now em(z) = exp(-zam), where
o < a < 1/4 and arg(za) is between 0 and 7r/4. Then a simple calculation shows
that

jf8|Iem'(t + js) 2dt ds < C2a,
8>0

where c is independent of m. Consequently, S(em)2 < c2a. Now, the following
inequalities can be readily verified:

S(F. em) 2 < 2 [S(F )2 + m(Fn) 2S(em)2] < 2[S(Fn)2 + C2m(Fn)2a]
S(Fn em)P < 2P [S(Fn) P + cPm(Fn) PaP/2].

Integrating we get

M/P [S(Fn em)] < 2P [MrP [S(Fn)] + CPaP12M P [m(Fn)]].
Since MpP(Fn) = lim MpP(Fn em) and by (8), MpP(Fn em) < cpP MpP [S(Fn em)] from

m
the inequality above we obtain

MpP(Fn) < cpP 2P [MpP [S(Fn) ] + cPaP/2MP [m(Fn) ]],

and letting a tend to zero

Mp(Fn) < cp2Mp[S(Fn)]
Finally, as n tends to infinity, Mp(Fn) converges to Mp(F) and S(Fn) increases and
converges to S(F). Thus we can pass to the limit in the preceding inequality and
obtain half of the desired result. To obtain the other half we observe that, since
(Fn em)' converges to Fn', we have S(Fn) = limm inf S(Fn em). Thus from (6)
applied to Fn em and Fatou's lemma we get

Mp [S(Fn) I < cp M(Fn),
and a passage to the limit completes the proof of the theorem.

Proof of Theorem 2: We begin with the one-dimensional case. Here h(x)
becomes simply x-2, and the proof reduces to estimate

f'Ce(f)gdx = (x - y) 2[b(x) - b(y)]g(x)f(y)dxdy
-co I-Y1>E

in terms of the norms of f, g, and b'. For this purpose there is no loss of generality
in assuming that these functions are infinitely differentiable and have compact
support. Let e(x) be the characteristic function of x > 0 and x(x) that of xI > E.
Then

r+ c

b(x) = e(x - t)b'(t)dt,

and substituting, the integral above becomes
r+ c

J b'(t) f (x- y)-2x(1x- yI)[e(x - t) - e(y - t)]g(x)f(y)dxdydt
-,..
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and the problem reduces to studying the class of the function represented by the
inner integral. For this purpose we let z be a complex variable and set

1 o+co 1
f,(z) = f f(x)dx, j = 1 if Im(z) > 0, j = 2 if Im(z) < 0,

27r co_x - z

and define similarly gj(z). Then we have f(x) = fi(x) - f2(x) and similarly for g.
Furthermore, the fj belong to HP, 1 < p < c, in the corresponding half-planes
and, with the notation of the preceding proof, we have

MP(fj) :< cp MYf), I <P< 0. (9)
Corresponding relations hold also for g and gj. We will study the contribution of
fi to the integral in question, an analogous argument being applicable to f2. Let
us introduce the following kernels

Ko(xyt) = (x - y) -2x(Ix-y ) [e(x - t) - e(y - t)]
Kl(x,y,t) = (x - y -iE)-2[e(x - t) - e(y - t)]

K2(x,y,t) = [(x - t)2 + (y - t)2 + E2]-'/2E.

An easy calculation shows that Ko - K, < cK2 with c independent of e. Now
we set

kj(t) = f K,(x,y,t)g(x)f1(y)dx dy k2(t) = f K2(xyt) g(x)f9('Y) dx dy.

We are interested in estimating ko. On account of the inequality between the
Kj stated above, we have koI < ki + ck2 and thus it will suffice to estimate ki
and k2. On account of the analyticity of fi(y) if x > t we have

Kj(x,y,t)fi(y) dy = (x y - ie)-2f1(y) dy

- _f [(t + is) - (x - ie)>-2f(t + is) d(is).
0

As readily seen, for x < t the integral on the left above is also given by this last
expression. Thus,

r+co +ki(t) = g(x)J [(t + is) - (x -ie)]-2f1(t + is) d(is),

and interchanging the order of integration we get
r++0+c

ki(t) = - Mfi(t + is) [(t + is) - (X -iE)]2g(x) dxd(is).
8=0 Jco

Since g(x) = g(x) -92(x) and g2(z) is analytic in Im(z) < 0, its contribution to
the inner integral above is zero and the value of this reduces to 27rigl'(t + is + ie).
Thus we have

r+c
k1(t) = -27ri , ff(t + is) gi'(t + is + ie) d(is).
L =0

Let us introduce now
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+c

F(z) = -2rif f1(z + is)gl'(z + is + ie)d(is).
8=0

Then we have ki(t) = F(t). Furthermore, since fi and gl' are bounded and O(z-1)
and O(z-2), respectively, F(z) belongs to HP, p > 1, and with the notation of the
preceding proof we have

(27r)-1 S(F) . m(fi)S(g,(z + ie)) < m(fi)S(gi)
and if q-1 = p-1 + r-', 1 < p, q < a), r < a, then by Theorem 3 and (9) we have

Mr/t-i(ki) = Mrlr-l(F) . c Mrr-1 [S(F) ] . c Mp [m(fJ) ]Mq,1,1 [S(gi) ]
< C Mp(J'i)Mqi,(gi) < C Mp@f)M'qiq(g). (10)

Now we estimate k2. We have
r+co+0

f K2(xyt) If(y) dy e[(x- t)2 + E2]-1 supP2f [(y - t)2

+ 62]-3/2If(y)I dy < c E[(x- t)2 + e2]-f(t),
where f is the maximal function of Hardy and Littlewood associated with Ijf.
Consequently,

r+ OD

k2(t)| < cf(t) sup ef [(x - t)2 + E2]-1 g(x)I dX < cf(t) g(t).

Mr/r,1(k2) . C Mp() Mqlq-j(g) < C Mp(f) M/l (g).
This combined with (10) shows that MI,-1(ko) < c Mp(f) MqlfqI(g) where c depends
on p and r but not on e. As readily seen, this implies that Mq [C (f) ] < c Mr(b')
MP(f).
We now pass to discuss the n-dimensional case. As before, we assume that f

and the partial derivatives bj of b are infinitely differentiable and have compact
support. We denote by P a unit vector in Rn and by E its orthogonal complement
and fix E, E > 0. Let s be a real variable and

k(x,v) = f h(v) s-2[b(x) - b(x + vs) ] f(x + vs) ds.
18>e

Then setting y = x + vs, integration in polar coordinates shows that

CEf) = 12 f k(x,v) dv, (11)

where dv denotes the surface area element of the unit sphere in Rn. We now fix v
and set x = z + vt, where zeE. Then from the inequality for the one-dimensional
case established above we get

k(z + Pvtv) dt < c1 {grad b (z + vt,P)lrdt

X [ f(z + vtv)I P dt]I h(v)j .

Integrating with respect to z over E and applying H6lder's inequality to the right-
hand side, we obtain
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[f I k(x,p) e dxplIq < c [J I grad bjdx]1'`J[ lf(x) | Pdx]IP I h(v)|
From this and Minkowski's integral inequality applied to (11) we obtain

ICJjf)Ig .:< c 11grad b|jr 11fljp f h(v) I dp,
where c depends on p, q, and r but not on e.

Concerning the convergence of CCf) as e tends to zero we merely observe that
our assertion obviously holds iffand the bj are assumed to be infinitely differentiable
and have compact support, whence the general case follows from the inequality
above by approximation.

Proof of Theorem 1: Since (b) can readily be obtained from (a) by duality,
we shall only prove the latter. Let us consider first the case when k(x) is an odd
function. There will be no loss in generality in assuming that k(x) is infinitely
differentiable in x| > 0 and that f and the bj are infinitely differentiable and have
compact support. Let fj, bj, and k, denote the jth partial derivatives of f, b, and
k, respectively. Then integration by parts yields

fk l-/k(x- y)[b(x) - b(y)]f,(y) dy = k(x - y) bj(y) f(y) d - y

+ kj(x - y) [b(x) - b(y) ]f(y) dy

- fn k(ve) [b(x) - b(x + ve) ]f(x + ve) vje'- dP,
where vj denotes the jth component of the unit vector v and dv denotes the surface
area element of the unit sphere in R'. Now, the first term on the right represents
aa ordinary truncated singular integral and its norm in B can be estimated in
terms of the norms of bj and f. To estimate the norm of the second term we use
Theorem 2, and in the last term we replace b(x) - b(x + ve) by

2bj(x + tPe) vje dt

and apply Minkowski's integral inequality to the resulting integral. Collecting
results and letting e tend to zero, (a) follows.

In the case when k(x) is even, the operator A can be represented as a finite sum
of operators of the form A1A2 where Al and A2 have odd kernels and satisfy the
hypothesis of the theorem (see ref. 2). Since 0/Ox1 commutes with A2, we have

(A1A2B - BA1A2) = A(A2B-BA2) + (A1B - BA1) - A2,
1xj C1xj 49xj

since A, and A2 are bounded in LP for every p, 1 < p < c, the desired result follows.
* This research was partly supported by the NSF grant GP-3984.
1 Calder6n, A. P., and A. Zygmund, "Singular integral operators and differential equations,"

Am. J. Math., 79, 901-921 (1957).
2 Ibid., "On singular integrals," 78, 289-309 (1956).
3 Flett, T. M., "On some theorems of Littlewood and Paley," J. London Math. Soc., 31, 336-344

(1956).
4 To obtain Green's formula for the half-plane under our assumptions we apply it to n cos(n-'t)

sin(n-1s) and the function G2 or G2H over the square -n < t < n, 0 < 8 < n, and let n tend
to infinity.


