Fibroblast expression of an IkB-dominant negative transgene attenuates renal fibrosis Tsutomu Inoue¹, Tsuneo Takenaka¹, Matsuhiko Hayashi², Toshiaki Monkawa³, Jun Yoshino³, Kouji Shimoda⁴, Eric G. Neilson⁵, Hiromichi Suzuki¹, and Hirokazu Okada¹ ¹Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, and ²Apheresis and Dialysis Center, ³Department of Internal Medicine, and ⁴Laboratory Animal Center, Keio University School of Medicine, Tokyo, Japan; ⁵Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA ## **Supplementary Figure Legends** Figure S1. FSP1. Cre;EGFP and γGT. Cre;EGFP cells in the kidneys. A. Compared with untreated kidneys, a larger number of FSP1 promoter-driven EGFP⁺ fibroblasts (in Green) were found in the widened interstitium of obstructed kidneys of FSP1. Cre;EGFP mice. EGFP⁺ tubular epithelia (in Green) were observed in untreated kidneys of γGT. Cre;EGFP mice. In the obstructed kidney, in contrast, γGT promoter-driven EGFP⁺ cells were found in tubular epithelia and among solitary cells in the widened interstitium; nuclei were stained blue with TO-PRO-3. When the basement membrane was stained by periodic acid-Schiff reaction (in Red), many of all the EGFP⁺ cells were identified as interstitial cells surrounding tubules, which were likely to be derived from tubular epithelia by EMT. **B.** Most of FSP1 promoter-driven EGFP⁺ fibroblasts (in Green) were simultaneously positive for HSP47 (in Red) (arrows), suggesting production of collagen proteins. Some of γGT promoter-driven EGFP⁺ interstitial cells were simultaneously positive for HSP47 (arrows), suggesting production of collagen proteins. FSP1 promoter-driven EGFP⁺ fibroblasts were not macrophages since they were not positive for F4/80. (Objective lens 40x; bar=100 μm) **Figure S2.** Inhibition of NF-κB activation suppressed fibrosis-related gene transcription in cultured mouse renal fibroblasts, TFB. The TFB cells¹⁴ were seeded in 6-well plates (1x10⁵ cells/well) and incubated overnight in growth medium, after which the medium was replaced with D-MEM containing 0.5% FCS and the cells were incubated for 48 hr prior to subsequent experiments. To examine the effects of NF-κB activation in these cells, an IκK inhibitor, BMS-345542 (Calbiochem, San Diego, CA) (2 μM) was added to the cultures 30 min prior to stimulation with rhTGF-β1 (3.0 ng/mL) or rhTNF-α (3.0 ng/mL). After an incubation of another 1 and 6 hr, the cells were harvested for nuclear protein and RNA extraction, respectively. Electrophoretic mobility shift assay was performed according to the method reported previously. One hr treatment with TGF- β 1 induced nuclear translocation of NF- κ B in TFB cells as TNF- α did, and pretreatment with BMS-345542 suppressed it (A). B. Six hr treatment with TNF- α significantly increased the levels of MCP-1 mRNA in TFB cells, while treatment with TGF- β 1 significantly increased the mRNA levels of PAI-1 and FN-EIIIA, but not MCP-1 in TFB cells, the former of which was suppressed by BMS-345542 pretreatment. Data shown in B were obtained from 3 independent experiments. Figure S1 Figure S2