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Comparative genomic hybridization genotyping 

For each hybrid clone, we harvested two batches of cells separated by a 

freeze/expansion cycle. The hybrids were re-genotyped using DNA from the second 

batch of cells and mouse comparative genomic hybridization (CGH) arrays from Agilent. 

DNA from the A23 recipient hamster cell line served as the control channel. The CGH 

arrays displayed 60-mer oligonucleotides in situ synthesized by ink-jet printer 

technology1. The length of the oligonucleotides helped ensure that DNA from both the 

donor mouse and endogenous hamster genomes were detected (see also Transcript 

analysis, below). DNA was labeled using the Agilent Genomic DNA Labeling Kit Plus; 

Cy5 was used for the RH cell lines and Cy3 for the A23 cell line. Labeled DNA was 

applied to the Agilent G4415A Mouse Genome 244k CGH microarray and scanned 

according to manufacturer’s instructions. The translation between the Agilent ID 

reference and genome co-ordinates can be found on the Agilent web site. 

 

Transcript analysis 

Total RNA was extracted from the RH cell lines using the Qiagen Mini RNeasy kit. Two 

biological replicates of RNA were prepared, from the cells grown before and after the 

freeze/expansion cycle (Comparative genomic hybridization genotyping, above). RNA 

was also prepared from the recipient hamster cell line A23. The RNA was converted to 

labeled cDNA using the Agilent Fluorescent Direct Label Kit as per manufacturer’s 

instructions. Labeled products were applied to the Agilent G4121A mouse oligo 

microarray with a dye swap. For the first replicate, the RH RNA was labeled with Cy5 

and the A23 RNA with Cy3. For the second replicate, the labeling was reversed. The 
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translation between the Agilent ID reference and gene names can be found on the 

Agilent web site. 

 

The Agilent microarrays displayed 60-mer oligonucleotides. These long oligonucleotides 

allow medium abundance transcripts with 6 nucleotide mismatches to bind with > 90% 

efficiency1. Our own analyses confirmed that RNA from both the donor mouse and 

endogenous hamster genes were detected with comparable efficiency (Mouse/hamster 

sequence conservation, below). Thus, regulation of either recipient hamster or donor 

mouse genes by extra donor gene copies could be evaluated.  

 

Preprocessing CGH data 

The CGH data (RH/A23 reference) for the 232,626 markers was log10 transformed (see 

Preprocessing expression data, below). The distribution was bimodal (Supplementary 

Fig. 1b). The first mode represented regions with no extra copy of a mouse gene and 

the second mode regions with one or more extra copies. The proportion of clones 

retaining two copies of the donor genome is small (~the square of the retention 

frequency or (0.239)2, i.e. 5.7%). Because of this low frequency, clones with two donor 

copies were not clearly resolved as either a shoulder or third mode in the histogram. 

 

The CGH data was analyzed as log10(RH/A23) copy number ratio averaged over a 

sliding window of 10 markers. This window size gave the best compromise between 

reducing data variance while producing least degradation in resolution.  
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The CGH data were normalized as follows. First, the data for each array were 

subtracted by its own individual mode (a CGH value corresponding to the first peak). 

This small correction gave the first mode for each array a log10(RH/A23) copy number 

ratio of zero. In the next step, the CGH data was pooled over all arrays and the first and 

second modes estimated by modeling the data as a mixture of two Gaussian 

distributions (see also Mixture models for CGH data, below)2,3. Because extra copy 

regions in the autosomes represent three copies (one mouse and two hamster copies) 

compared to two (two hamster copies), the data for the autosomes was multiplied by a 

common scaling factor of (log10[3/2])/(secondary mode CGH value - primary mode CGH 

value). Consequently, the normalized CGH data for the autosomes had a primary mode 

at log10(2 copies/2 copies) = 0 and a secondary mode at log10(3 copies/2 copies) = 

0.176. Since the A23 hamster recipient cells are male, extra copy regions on the X 

chromosome represent two copies (one mouse plus one hamster) compared to one 

(one hamster copy). The data for the X chromosome was therefore multiplied by 

log10(2/1)/(secondary mode CGH value - primary mode CGH value), giving a secondary 

mode at log10(2 copies/1 copy) = 0.301. 

 

Concordance between PCR and CGH markers 

We evaluated the concordance between PCR and CGH markers in the hybrids by 

averaging the log10(RH/A23) copy number ratio of the five neighboring CCH markers to 

the left and right of each PCR marker. If the average signal of the ten CGH markers 

exceeded 95% of the distribution representing the first (baseline) mode, the local region 

was classified as being retained in a particular clone.  
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Retention frequency 

To assess the retention properties of the RH panel, an individual marker was classified 

as being retained in particular clone if its CGH signal exceed 95% of the baseline 

distribution. Similar results were obtained using a mixture model (Mixture models for 

CGH data, below).  

 

Preprocessing expression data 

The expression data was normalized using GeneSpring (Agilent Technologies). Each 

gene value was divided by the control channel and each chip normalized to the 50th 

percentile of the measurements taken from that chip. The log10(RH/A23) expression 

ratios for the 20,145 genes were averaged over the two dye-swapped arrays. The log 

transformation was employed because the non-log transformed data had a large 

dynamic range (10-2-104.3) and a large standard deviation (~33) compared to its mean 

(~1.5)4. The transformation dramatically improved the normality of the data and is how 

microarray expression ratios are usually treated (for example, see refs. 5,6). All outliers 

with expression > 5 standard deviations from the median were removed from the data 

after normalization. 

 

Mouse/hamster sequence conservation 

To evaluate the relative efficiency of the arrays in detecting mouse and hamster 

transcripts, we co-hybridized mouse and hamster brain RNA to two separate arrays 

using a dye swap. Brain was chosen because most genes are expressed in this tissue. 
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Additional genes were surveyed by repeating the experiment using liver RNA on 

another two arrays, also with a dye swap. As anticipated, there was a high correlation 

between the mouse and hamster expression signals, suggesting strong sequence 

conservation between the two species (brain, R = 0.867, P < 2.2 x 10-16; liver, R = 

0.868, P < 2.2 x 10-16; averaged brain and liver, R = 0.863, P < 2.2 x 10-16) 

(Supplementary Figs. 2a-c). There was a modest excess of points above the 

regression lines, consistent with more efficient detection of mouse than hamster 

sequences for those genes.  

 

The normalized log2(mouse/hamster) expression ratio averaged across brain and liver 

(four arrays total) was used to evaluate sequence differences between the two species. 

As expected from the correlation coefficients, the distribution of the averaged 

log2(mouse/hamster) expression ratios was unimodal with a median close to zero (0.04 

± 0.008) and a modestly extended right tail (Supplementary Fig. 2d).  

 

In addition to the expected modest excess of mouse transcripts binding more strongly to 

the array than hamster, there was also a small minority of genes (~7 % with average 

log2(mouse/hamster) expression < -1) where the hamster transcripts appear to bind 

better than mouse. Possible explanations are (1) the inevitable noise in microarray 

measurements (2) some genes may be more highly expressed in hamster liver or brain 

than mouse and (3) sequence errors which happen to match hamster better than 

mouse. In any case, differential binding of mouse and hamster transcripts cannot mimic 

trans regulation. 
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We also examined the limited amount of available hamster sequence to identify 

conservation with the oligonucleotides on the Agilent expression array. In the available 

152 overlaps, the mouse/hamster sequences were 89% conserved (Supplementary 

Fig. 3a). As expected, there was a significant correlation between the mouse/hamster 

log2 expression ratio for each of the 152 probes and the number of mismatches 

between the two species (R = 0.25, P = 0.002) (Supplementary Fig. 3b). Based on the 

limited data, there was no obvious position in the 60-mer where a mismatch gave a 

dominant effect on hybridization (Supplementary Fig. 3c). Overall, the data indicated 

that the arrays can detect both mouse and hamster transcripts with comparable 

efficiency. 

 

Models 

The T31 RH panel can be usefully viewed as a library of cells containing many random 

donor fragments, allowing the effects of extra gene copies to be evaluated for the whole 

genome. This approach provides greater efficiency than employing a cell line for each 

gene and allows the statistical association between the effect of every marker on gene 

expression to be evaluated. The independent retention of multiple fragments also allows 

combinatorial models of interacting genes to be explored. 

 

We used two regression models to analyze the data (Fig. 3a). For both models the 

mean value was conveyed by the parameter μ, which takes the potential effect of other 

ceQTLs into account. Significance was indicated by -log10P.  
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Model 1 regressed the expression of each gene on each marker, thus identifying trans 

ceQTLs for distant markers (> 10 Mb from a gene) and cis ceQTLs for local markers 

(< 10 Mb)7. The effect size was conveyed by the parameter α. An F-test was used to 

evaluate each marker and gene pair for statistical association4. For a marker and gene, 

we fitted a full model 

t = μ + αx  

over all RH clones where t  is the normalized log10(RH/A23) expression data and x  is 

the normalized log10(RH/A23) CGH data. The estimated regression coefficients from the 

least squares method are given by 

ˆ α =
(ti − t )(xi − x )∑

(xi − x )2∑
 

ˆ μ = t − ˆ α x  

where ntt i∑=  and nxx i∑= , with 99=n  being the number of RH cells. To test the 

null hypothesis that α = 0 , we also fitted a reduced model 

μ=t  

where the least squares estimate of μ  is simply given by 

t=*μ̂ . 

The standard F-statistic is given by 

)2()(
)()(

−
−

=
nFMSSE

FMSSERMSSEF  
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where the sum of squared errors (SSE) for the full model (FM) is given by 

∑ −−= 2)ˆˆ()( ii xtFMSSE αμ  and SSE for the reduced model (RM) 

SSE(RM) = (ti − ˆ μ *)2∑ . 

 

Model 2 evaluated the interaction between local and distant markers on the expression 

of a gene. This model hence explored whether a distant marker affected the expression 

of two hamster copies of a gene differently from two hamster copies plus an extra 

mouse copy. Significant results would yield ceQTL peaks in which the -log10P value 

referred to the interaction between local and distant markers. Note that Model 2 can 

identify interacting loci distinct from trans ceQTLs in Model 1. The effect size for 

Model 2 was conveyed by the parameter γ. The CGH signal for local markers in Model 2 

was obtained by linear interpolation of the pair of closest markers to the 5' and 3' of 

each gene. To test distant-local marker pairs for interaction, we also performed an 

F-test. We first fitted a full model 

xyyxt γβαμ +++=  

where x  and y  represents the log10 transformed CGH data for each of the distant and 

local marker pairs, respectively. We then computed 

∑ −−−−= 2)ˆˆˆˆ()( iiiii yxyxtFMSSE γβαμ  where μ̂ , α̂ , β̂  and γ̂  are least squares 

estimates of the regression coefficients4. To test the null hypothesis that 0=γ , we also 

fitted a purely additive reduced model 

yxt βαμ ++=  
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and computed ∑ −−−= 2*** )ˆˆˆ()( iii yxtRMSSE βαμ  where *μ̂ , *α̂  and *β̂  are least 

squares estimates of the regression coefficients. The F-statistic was given by 

)4()(
)()(

−
−

=
nFMSSE

FMSSERMSSEF . 

 

In addition to Model 1, we also used a weighted regression model to evaluate the 

expression data (Weighted regression model, below)8. To implement this model, 

posterior probabilities for whether a marker represented 1 or 0 mouse copies based on 

the CGH data were computed using a mixture model (Mixture models for CGH data, 

below)2. We found very good agreement between the effect size α for the weighted 

regression model and Model 1. Because of its computational simplicity, we employed 

Model 1 for the analyses in the paper. 

 

Calculating P values and FDRs for Models 1 and 2 

To calculate the P value P(F)  for an observed statistic F  in Model 1, the null 

distribution of the test statistic is needed. Instead of assuming that the test statistic 

followed the F-distribution, we estimated the null distribution by permutation9. The 

expression data were randomly permuted five times and F-statistics recalculated (giving 

5 x 20,145 x 232,626 samples), as described6,10. The recalculated F-statistics were 

pooled to obtain an empirical null distribution and P values calculated as the frequency 

of null statistics exceeding the observed statistic.  
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Note that for each gene-marker pair, this scheme permutes the expression data for the 

gene and is equivalent to permuting the genotyping data for the respective marker. The 

strategy thus maintains the correlation structure between gene expression traits and 

accounts for spurious trans ceQTL hotspots. The permutations were run with and 

without the two regions of extreme retention frequency at the p53 gene (<5% retention) 

and the tk gene (>95% retention) both on chromosome 11. There was no detectable 

difference between the resulting empirical significance thresholds, reflecting the small 

number of extreme markers. 

 

To control false discovery rates (FDRs), FDR-adjusted P values (Q values) were 

computed following the Benjamini-Hochberg procedure11,12. If a marker has a significant 

effect on the expression level of a gene, the marker is part of a copy number expression 

quantitative trait locus (ceQTL) for the gene. A marker is part of a trans ceQTL if the 

distance between the marker and the regulated gene is > 10 Mb. The ceQTL is in cis, 

otherwise. In Model 1 the FDR procedure was performed separately for the cis and 

trans ceQTLs, since cis ceQTLs do not require genome-wide significance thresholds13. 

 

For Model 2, the distribution of the null F-statistics was determined using the residual 

empirical method and permutation14. Five permutations of the expression data were 

carried out and the results pooled to obtain a null distribution6. The P value was 

calculated as the frequency of null statistics exceeding the observed statistic. The FDR-

adjusted P values (Q values) were calculated by the Benjamini-Hochberg procedure.  
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Mixture models for CGH data 

Preparatory to a weighted regression model of the expression data (Weighted 

regression model, below), we used a finite mixture model2,3 to evaluate each RH clone 

for the probability of an extra copy of a mouse gene based on the CGH data. For each 

array a mixture of two Gaussian distributions was fitted to the data as follows: 

f (y) = p0φ(y;u0,σ 0
2) + p1φ(y;u1,σ1

2)  

where y  is the log10(RH/A23) CGH data, f  is the probability density function (pdf) for y , 

φ(⋅;u,σ 2) denotes the pdf of the Gaussian distribution with mean u  and variance σ 2, p0 

and p1 are the mixture weights, u0 and σ1
2 are the parameters for the first mode 

representing two copies (two hamster copies) and u1 and σ1
2 are the parameters for the 

second mode representing three copies (two hamster copies and one mouse copy), 

such that u0 < u1. An expectation-maximization (EM) algorithm2,3 was used to compute 

the maximum likelihood estimates of the parameters p0, u0, σ 0
2, p1, u1 and σ1

2. Using the 

estimated parameters, the probability of the presence of an extra copy, that is, three 

copies, was calculated by 

τ(y) =
p1φ(y;u1,σ1

2)
p0φ(y;u0,σ 0

2) + p1φ(y;u1,σ1
2)

. 

The probability of two copies follows as τ−1 . In actual computation τ  was enforced to 

be monotone in y , implying that the larger the CGH signal, the more likely the presence 

of an extra copy. When 5.0>τ , a CGH marker in an RH clone was called as having an 

extra copy. The retention frequency obtained using the mixture model for the T31 RH 

panel was 20.2 ± 0.02%, similar to the estimate in the paper, 23.9 ± 0.02% (see also 
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Retention frequency, above). In addition, there was a high level of agreement between 

the two estimated retention frequencies for all markers (R = 0.96, P < 2.2 x 10-16). 

 

Weighted regression model 

A weighted regression model8 was fitted to the expression data for each gene as 

follows: 

ti = μ + αzi + εi 

where it  is the normalized log10(RH/A23) expression data in RH clone i , zi  is a 

Bernoulli random variable with success probability Pr(zi = 1) = τ i , εi is the residual error 

with N(0,σ 2) , and μ and α  are unknown parameters representing a baseline level and 

an effect size, respectively. That zi =1 means the presence of an extra copy, and the 

success probability τ i  was calculated from the mixture model (Mixture models for CGH 

data, above). An iteratively reweighted least squares (IRWLS) method8 was used to fit 

the weighted regression model and to estimate the parameters. The estimated α  

parameters from the simple regression model (Model 1) and the weighted regression 

model were highly correlated (R = 0.8934, P < 10-300) (Supplementary Fig. 4a). 

 

Replicability 

To assess the quality of the data, we examined the two replicate datasets individually 

using Model 1. Overall, the correlation coefficient of the α values between the two 

replicate datasets was 0.887 (P < 2.2 x 10-16) for all FDRs < 0.4 (Supplementary 

Fig. 4b). At the same FDR of < 0.4, there were 6,331,188 markers above threshold from 

the first dataset and 8,127,330 from the second. Although the overlap of 2,963,068 
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(36.5%) was limited, reflecting the noisy nature of array data, it was nevertheless 

strongly significant (χ2 = 7.96 x 108, df = 1, P < 10-300). The degree of overlap grew with 

decreasing FDR (Supplementary Table 1). These observations were obtained using 

biological replicates of the RH clones after a freeze/expansion cycle and indicate the 

data is of good reproducibility. A trans ceQTL derived separately from the two datasets 

is shown in Figs. 5e and 5f. 

 

Cis ceQTLs 

By co-hybridizing mouse and hamster RNA, we had shown that the expression arrays 

detected transcripts from both species with comparable efficiency (Mouse/hamster 

sequence conservation, above and Supplementary Figs. 2 and 3). Nevertheless, some 

of the cis ceQTLs in Model 1 might stem from sequence differences between the two 

species. In this situation, the mouse gene would give a stronger signal than its hamster 

ortholog when present in the RH clones. In classical eQTL mapping, nearly half of cis 

eQTLs may be artifacts due to sequence polymorphisms affecting hybridization 

efficiency15. We therefore compared the distribution of the average log2(mouse/hamster) 

expression ratios (Supplementary Fig. 2d) for genes regulated by cis ceQTLs and 

trans ceQTLs. The trans ceQTL distribution is expected to be unaffected by 

mouse/hamster sequence differences and acts as a control. There was little difference 

between the two distributions, suggesting that the majority of cis ceQTLs are unrelated 

to sequence differences between the two species (Supplementary Fig. 5).  
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Replicability of negative α cis ceQTLs 

Although the degree of overlap between the two replicate datasets was much poorer for 

the negative α cis ceQTLs at FDR < 0.4 (5.2% of markers) than the positive (48.4%), 

both overlaps were still significantly greater than chance (χ2 = 5.84 x 104 and 7.88 x 106 

respectively, df = 1, P < 2.2 x 10-16 each comparison). In addition, the correlation 

coefficient of the α values between the two replicate datasets was similar for the 

negative and positive α cis ceQTLs (R = 0.72 and 0.87 respectively, P < 2.2 x 10-16 for 

both). These observations suggest that the negative α cis ceQTLs may be driven partly 

by noise but at least some are replicable and not due to outliers (Supplementary Figs. 

6a-c). 

 

Hotspot analysis 

We evaluated whether the number of genes regulated in trans by each ceQTL with 

FDR < 0.4 was significantly high5. The total sum of regulated gene/marker pairs for 

232,626 markers was 1,162,130. If the 1,162,130 gene/marker pairs were randomly 

distributed across the 232,626 markers, the number of regulated genes for each marker 

would follow a Poisson distribution with a mean of 5.00. Using this null distribution, we 

calculated a one-sided P value for each observed number of regulated genes. We 

computed a corresponding Q value (FDR-adjusted P value) by the Benjamini-Hochberg 

procedure.  
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Highly regulated genes 

We tested whether each gene was regulated by a significantly high number of 

trans ceQTLs with FDR < 0.4 following the procedure described for the hotspots 

(Hotspot analysis, above). The most highly regulated gene with FDR < 0.4 was aspartyl 

aminopeptidase (Dnpep) regulated by 42 trans ceQTLs. It is unlikely that expression 

variation observed in 99 RH clones can be meaningfully decomposed into as many as 

42 explanatory ceQTLs, suggesting that simple regression may not be sufficiently 

conservative in this context.  

 

One possible explanation for genes with large number of trans ceQTLs could be that 

non-normality and outliers in the expression of these genes might be diluted by the 

many other genes in the statistical treatment. To ensure that such effects were properly 

accounted for, we validated the global permutation scheme by implementing an 

individual gene-marker pair based permutation scheme for Dnpep, the most highly 

regulated gene. For each of the 232,262 markers, the expression data of the gene were 

randomly permuted 10,000 times, F-statistics recalculated (giving 10,000 samples) and 

P values calculated for each marker. The P values obtained from the global and the 

individual gene-marker pair permutation schemes agreed very well (R = 0.9999, P < 

10-300). Thus even though highly regulated genes may have a number of trans ceQTLs 

approaching the number of hybrids, such genes are still likely to be more highly 

regulated than average.  
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We examined the five most highly regulated genes (aspartyl aminopeptidase, Dnpep, 

regulated by 42 trans ceQTLs; vestigial like 3, Vgll3, 39 trans ceQTLs; myristoylated 

alanine rich protein kinase C substrate-like 1, Marcksl1, 38 trans ceQTLs; proline rich 

13, Prr13, 37 trans ceQTLs and split hand/foot malformation (ectrodactyly) type 1, 

Shfdg1, 34 trans ceQTLs) for unusual properties in the SymAtlas database16. This 

publicly available database provides microarray expression data for all genes across 61 

mouse tissues. The mean log10 expression value across mouse tissues for each of the 

five most highly regulated genes in the RH panel showed no obvious exceptional 

properties with values of 2.26 ± 0.01 (Dnpep), 1.73 ± 0.01 (Vgll3), 3.09 ± 0.08 

(Marcksl1), 3.21 ± 0.05 (Prr13) and 4.13 ± 0.03 (Shfdg1) compared to 2.18 ± 0.003 (all 

genes). Similar results were found for the standard deviation across tissues, with values 

of 0.095 (Dnpep), 0.080 (Vgll3), 0.616 (Marcksl1), 0.381 (Prr13) and 0.214 (Shfdg1) 

compared to 0.181 (all genes). 

 

Comparing RH and SymAtlas data 

We compared the RH and SymAtlas data for the 15,220 genes overlapping in the two 

datasets. For each dataset, we constructed a correlation matrix whose element is the 

Pearson’s correlation coefficient between the expression data for each pair of genes. 

We then tested whether the correlation matrices for the RH and the SymAtlas data were 

significantly more similar than expected by chance. For a dissimilarity measure, we 

used the Frobenius norm of the difference of the two matrices. The Frobenius norm 

F
A  of matrix A  is given by 
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∑∑=
i j

ijF
aA 2  

where ija  are elements of A . The distance (or dissimilarity) between matrix A  and B  is 

given by 
F

BABAdis −=),( . To test whether the distance between the correlation 

matrices was significantly small, we obtained the null distribution by calculating the 

distance between the RH correlation matrix and the randomly permuted SymAtlas 

correlation matrix. A total of 10,000 permutations were performed. The inferred P value 

was the frequency of permutations giving a difference less than the observed difference. 

The resulting P value was < 10-4. 

 

We also asked whether the genes regulated by the top hotspot showed higher 

correlations than chance in the SymAtlas dataset. Of the 614 genes regulated by the 

chromosome 5 hotspot, 486 were found in SymAtlas. A permutation t-test was 

performed comparing the mean pairwise correlation coefficients in SymAtlas of these 

genes with the null distribution obtained by sampling from all gene pairs in common with 

the RH dataset. The genes regulated by the hotspot showed a significantly greater 

correlation in mouse tissues than random (P = 1.6 x 10-3), again suggesting that 

regulation of gene expression in the RH panel is similar to that occurring in the normal 

mouse. 

 

Permutation t-tests 

Permutation t-tests were used to evaluate the significance of differences between two 

groups in which the observed group was a subset of the parental group. The null 

distributions for the tests were obtained by taking the mean of random samples from the 
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parental group having the same number of observations as the tested group. The 

number of permutations was 5 x 104. The frequency of observations in the null 

distribution that exceeded the mean of the observed group was taken as the P value.  

 

Transfection 

We obtained a Pcdh7 isoform a (Pcdh7a) cDNA (GenBank accession number 

BC131967), containing the entire coding region but lacking most of the 3' untranslated 

region (Open Biosystems). The full coding sequence was excised using the restriction 

enzymes MluI and EcoRV and inserted into the mammalian expression vector 

pCMVSport6 (Invitrogen) which provided the CMV promoter and SV40 3' untranslated 

sequences. The resulting construct was transfected into both HEK 293 cells and the 

A23 hamster recipient cells used for the RH panel. Cells were transfected using 

Effectene (Qiagen) lipofection reagent. Parallel transfections wee performed using the 

empty vector and a construct expressing GFP. Under fluorescence microscopy, greater 

than 40% of the cells were observed to be transfected with GFP in both the HEK and 

A23 cell lines. The cells were harvested after 48 hours and total RNA extracted. Two 

biological replicates were obtained for each sample (transfected and transfected with 

empty vector, HEK 293 and A23). 

 

RNA from the transfection experiments was labeled using the Agilent Low RNA Input 

Linear Amplification Kit Plus and applied to the Agilent G4122A 44K mouse oligo 

microarray. The experimental RNA (from cells transfected with Pcdh7a) and control 

RNA (from cells transfected with an empty vector) were co-hybridized to the arrays and 
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scanned according to the manufacturer’s instructions. The translation between the 

Agilent ID Reference and gene names can be found on the Agilent web site. 

 

Real-time qPCR was used to assess overexpression of Pcdh7a because the construct 

lacked the 3' untranslated sequences recognized by the array. Compared to cells 

transfected with empty vector, the Pcdh7a isoform was overexpressed ~500-fold in 

transfected cells. Primers and probes were obtained from Applied Biosystems. Pdch7a 

overexpression in the RH panel (1.44-fold) was evaluated by comparing clones 

containing the gene to those lacking it, based on local CGH markers. 

 

Trans ceQTLs lacking known genes 

Known genes were defined as those appearing in the UCSC genome browser, Refseq, 

the Mammalian Gene Collection and the microRNA database miRBase. There were 

4,485 unique trans ceQTLs of FDR < 0.4 and -log10P > 4 with no genes within a 150 kb 

radius from the peak marker, and 2,761 ceQTLs with no genes within a 300 kb radius 

(Fig. 7a). In this tally, a locus regulating one or more genes was counted as one trans 

ceQTL. To be conservative, we assigned trans ceQTLs as having no genes to those 

lacking genes within a 300 kb radius of the peak -log10P marker. These trans ceQTLs 

are unlikely to be adversely affected by inflated discovery rates due to marker excess in 

non-gene regions, since only 13.3 % of randomly chosen markers lack a gene within a 

300 kb radius.  
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The relation between the number of trans ceQTLs lacking genes and their -log10P and 

FDR values are shown in Supplementary Fig. 6d. Examples of regression lines 

relating expression to peak marker CGH data for trans ceQTLs with both positive and 

negative α values lacking genes are shown in Supplementary Figs. 6e and 6f.  

 

URLs 

Translation between Agilent G4415A mouse genome 244k CGH microarray ID 

reference and genome co-ordinates: 

http://www.chem.agilent.com/cag/bsp/oligoGL/014695_D_GeneList_20070207.txt.zip. 

Translation between Agilent G4121A mouse oligo microarray ID reference and gene 

names: 

http://www.chem.agilent.com/cag/bsp/oligoGL/011978_D_GeneList_20050310.html. 

SymAtlas database: http://symatlas.gnf.org/SymAtlas/. Open Biosystems: 

http://www.openbiosystems.com/. Applied Biosystems: 

http://www.appliedbiosystems.com/. UCSC genome browser: http://genome.ucsc.edu/. 

Refseq: http://www.ncbi.nlm.nih.gov/RefSeq/. Mammalian Gene Collection: 

http://mgc.nci.nih.gov/. miRBase: http://microrna.sanger.ac.uk/. 

 

Mapping results 

Mapping results together with FDRs are available upon request. 
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Supplementary Table 1. Overlap between biological replicate datasets 

FDR 

 
Significant 

markers 
dataset 1 

Significant 
markers 

dataset 2 Overlap 
% of 

dataset 2 
Expected 

overlap χ2 df 
P 

value 
0.4 6,331,188 8,127,330 2,963,068 36.5 10,980 7.96 x 108 1 < 10-300 
0.2 3,366,266 4,253,375 1,906,959 44.8 3,055 1.19 x 109 1 < 10-300 
0.1 2,270,819 2,902,372 1,411,134 48.6 1,406 1.41 x 109 1 < 10-300 

0.05 1,672,038 2,164,346 1,093,842 50.5 772 1.55 x 109 1 < 10-300 
0.01 942,079 1,245,554 649,044 52.1 250 1.68 x 109 1 < 10-300 
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Supplementary Figure 1. CGH and expression analyses. (a) CGH analysis of diploid 
hamster kidney DNA compared to recipient hamster A23 cell DNA (chromosome 3). 
There are no regions of copy number increase or decrease in the A23 cells. (b) Bimodal 
distribution of CGH intensities in RH panel. (c) Chromosome 8 shows slight increases in 
retention in the T31 RH panel at the centromere and telomere. (d) Clustergram showing 
an overview of the log10(RH/A23) expression ratios for the radiation hybrid (RH) clones 
and the A23 recipient cells. The rows represent the expression data and the columns 
represent the RH clones and A23 cells (second to right column) ordered by similarity. 
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Supplementary Figure 2. Detection of mouse and hamster transcripts. (a) Scatterplot 
relating mouse and hamster brain log2(transcript levels) averaged over two arrays (R = 
0.867, P < 2.2 x 10-16). (b) Scatterplot relating mouse and hamster liver log2(transcript 
levels) averaged over two arrays (R = 0.868, P < 2.2 x 10-16). (c) Scatterplot relating 
mouse and hamster log2(transcript levels) averaged over brain and liver (R = 0.863, P < 
2.2 x 10-16). (d) Distribution of log2(mouse/hamster) expression ratios averaged over 
brain and liver.  
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Supplementary Figure 3. Mouse/hamster sequence conservation. (a) Sequence 
conservation for 152 overlaps of hamster sequences with the oligonucleotides on the 
mouse Agilent expression array. The 60 nucleotides of the oligonucleotides are shown 
5' to 3'. (b) Regression between the average log2(mouse/hamster) expression ratio for 
each of the 152 probes and the number of mismatches between the two species (R = 
0.25, P = 0.002). (c) Relation between position of mouse/hamster mismatch on the 
60-mer and the log2(mouse/hamster) expression ratio. The log2(mouse/hamster) 
expression ratio data is averaged over a sliding window of 5 nucleotides. 
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Supplementary Figure 4. Weighted regression model and replicate datasets. 
(a) Distribution of the estimated 

? 

α  parameters from the simple regression model (Model 
1) and the weighted regression model (R = 0.8934, P < 10-300). Outlier CGH markers 
with retention frequency < 5% or > 95% were excluded. Non-normalized CGH data 
were used for the simple regression model to make the estimated 

 

α  parameters 
comparable to those from the weighted regression model on the same scale. The color 
bar indicates the density of points in the distribution. (b) Regression between the α 
values of the two replicate datasets using Model 1 for all FDRs < 0.4 (R = 0.887, P < 2.2 
x 10-16). 
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Supplementary Figure 5. Distribution of average log2(mouse/hamster) expression 
ratios for cis and trans ceQTLs. (a) Distribution for cis ceQTLs (b) Distribution for trans 
ceQTLs. (c) Combined distribution. Pink bars show ratios with more trans than cis 
ceQTLs, dark blue with more cis than trans ceQTLs and magenta the overlap. 
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Supplementary Figure 6. Negative α cis ceQTL and trans ceQTLs lacking genes. 
(a) Regression between CGH copy number signal and gene expression for a negative α 
cis ceQTL showing outliers do not play a role. Cis ceQTL is for the WAP four-disulfide 
core domain 15A (Wfdc15a) gene on chromosome 2 at 164 Mb. α = −0.342, −log10P = 
4.709. (b) Regression between the α values of the negative α cis ceQTL for the two 
replicate datasets with FDRs < 0.4 (R = 0.537, P = 2.2 x 10-16). (c) -log10P curve. 
(d) Relation between the number of trans ceQTLs lacking genes and their -log10P and 
FDR values. The radius from the peak marker of the trans ceQTL was 300 kb. In this 
tally, trans ceQTLs regulating multiple genes (hotspots) were counted multiple times. 
(e) Regression between gene expression and CGH copy number ratio at the peak 
marker for a trans ceQTL with positive α lacking genes, located on chromosome 1 at 
49 Mb regulating the medium-wave-sensitive opsin 1 cone pigment (Opn1mw) gene on 
the X chromosome. α = 0.942, −log10P = 5.104. (f) Regression for a trans ceQTL with 
negative α lacking genes, located on chromosome 6 at 74 Mb regulating the AI464729 
gene on chromosome 16. α = −0.452, −log10P = 5.390. 


