Molecular Pharmacology

Supplemental Material

for

Gastrin-Releasing Peptide/Neuromedin B Receptor Antagonists, PD176252 and PD168368, and Related Analogs are Potent Agonists of Human Formyl-Peptide Receptors

Igor A Schepetkin^a, Liliya N. Kirpotina^a, Andrei I. Khlebnikov^b,

Mark A. Jutila^a, and Mark T. Quinn^a

^aDepartment of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA

^bDepartment of Chemistry, Altai State Technical University, Barnaul 656038, Russia

Supplemental Table S1

Structures of Inactive Derivatives

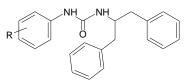
Compound	R ₁	R_2	Enantiomer
AG-10/23		-O-CH₃	S
AG-10/24		-O-CH₃	S
AG-10/25	CI	NH	R/S
AG-10/26	O NH NH NH		R

Compound	R ₁	R ₂	Enantiomer
AG-10/27	F	H	S
AG-10/28	Ö, N, O	0	S
AG-10/29		N	R/S
AG-10/30	0	N	R/S
AG-10/31		N. N.	R/S
AG-10/32	Br	, N	R/S
AG-10/33		N. N.	R/S

$$R_2 =$$

Compound	R_1	Enantiomer	Compound	R ₁	Enantiomer
AG-10/34	Br	S	AG-10/38	CI	S
AG-10/35		S	AG-10/39		S
AG-10/36	CI	S	AG-10/40		S
AG-10/37	0	S	AG-10/41		R

$$R_2 =$$


Compound	R ₁	Enantiomer	Compound	R ₁	Enantiomer
AG-10/42		S	AG-10/46	CIBr	S
AG-10/43		S	AG-10/47	Br Br	8
AG-10/44	CI	S	AG-10/48		S
AG-10/45		S	AG-10/49	CI CI	S

$$R_2 =$$

Compound	R ₁	Enantiomer	Compound	R ₁	Enantiomer
AG-10/50		S	AG-10/54	CI	S
AG-10/51		R	AG-10/55		S
AG-10/52		R	AG-10/56	CI	R
AG-10/53		R	AG-10/57		R

$$R_2 =$$

Compound	R ₁	Enantiomer	Compound	R ₁	Enantiomer
AG-10/58		S	AG-10/62	Br	S
AG-10/59	Br Br	R	AG-10/63		S
AG-10/60		S	AG-10/64		S
AG-10/61	CI	S	AG-10/65		R

Compound	R	Compound	R
AG-10/66	3-O-CH ₃	AG-10/69	2-CH₃
AG-10/67	3-CI	AG-10/70	2-Br
AG-10/68	4-CH₃	AG-10/71	3-S-CH₃

Compound	R	Compound	R
AG-10/72	2-O-CH ₃	AG-10/84	2-O-CH ₂ CH ₃
AG-10/73	3,4-di-CH ₃	AG-10/85	4-O-CH ₂ CH ₃
AG-10/74	3-Cl,4-F	AG-10/86	3-CH₃
AG-10/75	3-O-CH ₃	AG-10/87	4-COO-CH ₃
AG-10/76	3-Cl	AG-10/88	3,5-di-O-CH ₃
AG-10/77	4-CH ₂ CH ₃	AG-10/89	2-F
AG-10/78	2,3-di-CH ₃	AG-10/90	3,4-Ethylenedioxy
AG-10/79	2-COO-CH ₃	AG-10/91	2,4-di-F
AG-10/80	2,5-di-O-CH ₃	AG-10/92	3,4-Methylenedioxy
AG-10/81	2-COO-CH ₂ CH ₃	AG-10/93	3-S-CH₃
AG-10/82	2-CH ₃	AG-10/94	3-COO-CH₃
AG-10/83	2-Br	AG-10/95	3-F

Legend: Compounds were evaluated for their ability to Ca²⁺ mobilization in human neutrophils. The compounds shown were not active and induced either no Ca²⁺ flux or had very low efficacy (<25% of positive control peptide) in human neutrophils. *Location of the chiral center.