Novel analogues of the therapeutic complement inhibitor compstatin with significantly improved affinity and potency¹

Hongchang Qu,^{†,#} Paola Magotti,^{†,#} Daniel Ricklin,[†] Emilia L. Wu,[‡] Ioannis Kourtzelis,[†]

You-Qiang Wu, [†] Yiannis N Kaznessis,[‡] and John D. Lambris^{*†}

[†]Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, and [‡]Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455. [#] These authors contributed equally.

Supplementary Material

Table of Content

Representative ELISA curves	-S2
Representative ITC curves	S3
Assay method correlation plots	- S4

Suppl. Figure 1. Inhibition of the classical pathway (CP) of complement activation as tested by ELISA. **A+B**: Compstatin analogs with various positions of backbone N-methylation on a $[Tyr^4]$ -Accompstatin template (peptides 1-13). C-E: Specific peptide modification of $[Trp(Me)^4]$ -Ac-compstatin at position 8 and 13 (peptides 14-23). IC₅₀ values are not normalized.

Suppl. Figure 2. ITC data for the binding of panel of tested analogs (peptides **15-17**, **20-21**) to C3 with fit to a "single set of sites' model.

Suppl. Figure 3. Correlation between complement inhibitory potency (IC_{50}) from ELISA and binding affinities (K_D) derived from SPR and ITC.