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Supplementary Methods 

 
Experimental procedures. On each trial, participants were instructed to select the 

visual cue if they believed the number underneath the cue was greater than 5, 

and to select the number 5 if they believed the number underneath the cue was 

less than 5.  The underlying number was then revealed. If the participant was 

correct, s/he was rewarded with $1.00 and if the participant was incorrect s/he 

was punished by taking away $0.50.  The participant received the sum of 

monetary outcomes from a randomly selected set of 30 trials across both 

sessions at the end of the experiment in addition to the standard compensation. 

Prior to the instructed session, a thorough description of the specific cues linked 

to different probabilities (P ∈ {25%, 50%, 75%, 100%}) was presented to 

participants and they were required to memorize these cue-probability 

associations successfully before the session started. In addition, the probabilities 

were displayed on top of each cue during the instructed session to remove any 

uncertainty as to whether the participants were aware of the correct cue-

probability association.  In the feedback session, there was no instruction of the 

probabilities linked to specific cues prior to the session and these probabilities 

were not displayed, so that the only means of learning the probabilities was trial 

and error feedback.    

 

fMRI image acquisition. Participants laid supine with their heads in the scanner 

and observed the rear-projected computer screen via a mirror mounted to the 
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head coil. Visual stimuli were presented using Psychtoolbox 

(http://www.psychtoolbox.org). Choices made by participants were registered 

using two MRI-compatible button boxes. Thirty-nine contiguous axial slices (3 x 3 

x 3 mm voxels) parallel to the AC-PC line were obtained while participants were 

engaged in both sessions of the task. High-resolution T1-weighted scans were 

acquired in the same location as the functional images. The functional run was 

echo-planar imaging (EPI) with gradient recalled echo with a repetition time (TR) 

was 2000 ms. The echo time (TE) was 25 ms with a flip angle of 90o and 64 x 64 

within plane resolution. The data were then analyzed using SPM2 (Wellcome 

Department of Cognitive Neurology, London, UK) and xjView 

(http://www.alivelearn.net/xjview/). All images were slice-timing corrected. 

Participants’ head movements were estimated using a rigid-body translation with 

6 parameters (x, y, z, pitch, roll and yaw) and all 20 participants were confirmed 

with head movements less than 2 mm in each direction. Individual T1 images 

were segmented to obtain the individual gray matter images that were later 

normalized to the MNI template to obtain the transformation matrix. The 

transformation matrix was then applied to all the functional images to normalize 

them into MNI space. Images were then smoothed using a 6 mm isotropic 

Gaussian kernel and high-pass filtered (128s) in the temporal domain. 

Model Fitting and selection. We fitted two models to subjects’ behavior data in 

the feedback session and three models in the instructed session to compare the 

performance of most influential models in recent literature (1, 2).  

Feedback Session: 
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Q-Learning with single learning rate. Subjects were not given any information 

about the reward probability of each stimulus. We assume the initial Q-values for 

the stimuli were the same (Q25% = Q50%= Q75% = Q100%). The update of each 

stimulus action value is based on the following rules: 

€ 

δ(t) = r(t +1) −Qc (t)  

€ 

Qc (t +1) = Qc (t) + αδ(t)  

Where δ(t) is the prediction error at time t, r is the obtained reward (normalized 

between [0 1]), c ∈ {No.5, cue25%, cue50%, cue75%, cue100%} and α is the learning 

rate. 

Q-Learning with different learning rates for positive and negative PEs. Stimuli 

action value is updated according to the following rules: 

€ 

δ(t) = r(t +1) −Qc (t)  

€ 

Qc (t +1) = Qc (t) + αGδ+(t)

Qc (t +1) = Qc (t) +αLδ−(t)
 

where αG and αL are learning rates associated with positive and negative (δ+ and 

δ-) prediction errors. 

Free parameters in the models were estimated using the log likelihood estimate 

(i.e. 

€ 

log(∏ t P*(t)) ). Performance of both models was compared using the 

Bayesian information criterion (BIC): 

€ 

BIC = −2 ⋅ ln(L) + k ⋅ ln(n) 
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where L is 

€ 

∏ t P*(t) , k is the number of free parameters and n is the number of 

trials (see Table S1). RL model with single learning rate tended to perform better 

in the feedback session and the PE regressor was sequentially generated from 

this model for neuroimaging linear regression analysis. 

Instructed Session: 

Q-Learning with single learning rate. In this session, subjects were provided extra 

instruction about the reward probability for each visual stimulus. It’s thus 

reasonable to believe that the initial Q-values (Q25%, Q50%, Q75%, Q100%) for the 

stimuli were different. The update of each stimulus action value is the same as in 

the feedback session. 

Q-Learning with different learning rates for positive and negative PEs. The action 

value updating approach is the same as in the feedback session. 

Q-Learning with “confirmation bias”. This model proposes that the instructed 

stimulus activate the striatal Go representations and increases the effect of 

positive prediction error (δ+) following the instructed choice, while also 

diminishing the effect of negative prediction error (δ-) when the instructed choices 

receive punishing feedback (1). This “confirmation bias” is implemented as 

following: 

 

 



  6 

where αG and αL are learning rates associated with positive and negative (δ+ and 

δ-) prediction errors; αI (1 ≤ αI ≤ 10) that amplifies gains and reduces losses 

following the instruction.  

The above three models were compared using BIC and the RL model with 

different learning rates for δ+ and δ- tended to be the marginally best model 

(Table S2). 

The quality of the model fitting is quantified by how well they are able to account 

for the actual pattern of participants’ choice. The log likelihood estimate (i.e. 

€ 

log(∏ t P*(t)) ) was maximized to determine the free parameters in the models. To 

avoid local minima in parameter fitting, 30 randomly selected starting points were 

initiated and the best-fit values were taken across all final parameters values. 

The following restrictive rules also applied: 0 ≤ α ≤1; 0 ≤ α+ ≤ 1; 0 ≤ α- ≤ 1; 0 ≤ m 

≤ 50 and 0 ≤ Qc ≤1. 

To make the results more comparable between the feedback and instructed 

sessions, we adopted the simplest RL model by varying only the learning rate 

and the slope of the softmax choice function of the Q-learning model to fit 

subjects’ behavior in both sessions using the same maximum likelihood algorithm 

described above. Initial Q values were set at 0 in both sessions. We extracted 

the prediction error term from the best-fitting-parameter simple RL model for both 

the feedback and instructed sessions and examined the neural correlates of PEs 

in both sessions (Fig. S3). The results were similar to what we reported in the 

main text (Fig. 3). 
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Behavioral analysis: 

In the feedback session, since participants have no reason to have a differential 

preference towards different visual cues, we assume individual participants start 

the session with the same internal estimate of the action value (Q) expected from 

each cue (i.e. initial cue value of four different probabilities and the fixed number 

Q25% = Q50%= Q75% = Q100% = QNo.5). In particular, we assume the action value (Q) 

was updated according to a Rescorla-Wagner learning rule. However, since 

participants were instructed by the experimenter about the probability of the 

action value for each visual cue in the instructed session, the initial weights of 

four different cues and the fixed number (Q25%, Q50%, Q75%, Q100%, QNo.5) were 

treated as different values and their exact values were determined by the best 

model fitting in the instructed session (see supplementary materials for details). 

For both sessions, the probability of choosing a given action is predicted by the 

model according to a sigmoid function with slope m: 

€ 

PNo.5 (t) =
emQNo .5 ( t )

emWQNo .5 ( t ) + emQcue ( i ) ( t )
, where cue(i) ∈ {25%, 50%, 75%, 100%}. In both 

sessions, for each choice (denote the choice by c and c ∈ {No.5, cue25%, cue50%, 

cue75%, cue100%}), the reward experienced by the participant r(t) was compared 

with the current modeled weights Qc(t) to produce the prediction error δ(t): 

€ 

δ(t) = r(t +1) −Qc (t) . The prediction error signal was then served as a learning 

signal to update modeled action values by the amount governed by learning rate 

α: 

€ 

Qc (t +1) = Qc (t) + αδ(t) .  

PPI analysis: 
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We first identified a seed region that showed increased activation during the 

outcome phase when instructed knowledge was available.  The time series of 

this region was deconvolved based on the assumption that the BOLD signal is 

the convolution product of underlying neural activity and a canonical 

hemodymanic response to obtain the time series of underlying BOLD activity. A 

new general linear model (GLM) was then constructed with the following 

regressors: 1) Interaction between the BOLD activity in the seed region and a 

dummy indicator for positive or negative outcomes. 2) The indicator function for 

positive and negative outcomes. 3). The original BOLD time series in the seed 

area. The first two regressors were also convolved with a canonical form of the 

HRF so that observed BOLD signal would be a linear combination of these 3 

regressors. We were interested in the neural correlates of the first regressor (Fig. 

5B), since it identifies the brain areas whose activities showed an outcome 

specific neural connectivity with the seed area. More specifically, we wanted to 

identify areas in which the correlation in BOLD activity increases (more negative 

correlation) during positive outcome trials (wins), given that the majority of our 

trials yielded positive outcomes.  

The BOLD responses reported in the paper are whole brain corrected (p < 0.05) 

at the cluster level (family wise error; FWE) based on the random field theory 

(RFT) and through a SPM2 plug-in implementation. (3, 4)  

 

Supplementary Tables 
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Table S1. Free parameters and quality of behavioral fits to 1600 choices from 20 

subjects in feedback session. –LL: log likelihood; Pseudo-R2: McFadden’s 

pseudo R-square; BIC: Bayesian information criterion. 

Simple Q
Q (different 

rates for gain 
and loss)

Doll's Q 
(PFC-BG)

Qno.5 0.16 0.26 0.26
Q25% 0.00 0.00 0.00
Q50% 0.19 0.32 0.32
Q75% 0.43 0.75 0.75
Q100% 0.56 1.00 1.00

G - 0.05 0.05

L - 0.00 0.00

I - - 1.00
0.02 - -

m 10.93 6.25 6.26
LLE -433.66 -429.06 -429.06
Pseudo-R2 0.61 0.61 0.61
parameter 7 8 9
BIC 918.96 917.14 924.52
AIC 881.32 874.12 876.12

Instructed Session

 

 

Table S2. Free parameters and quality of behavioral fits to 1600 choices from 20 

subjects in instructed session. –LLE: log likelihood; Pseudo-R2: McFadden’s 

pseudo R-square; BIC: Bayesian information criterion. 
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Simple Q
Q (different rates 
for gain and loss)

Qno.5 0.00 0.00
QRisky 0.02 0.04

G - 0.33

L - 0.19
0.24 -

m 4.38 3.76
LLE -550.21 -549.17
Pseudo-R2 0.50 0.50
parameter 3 4
BIC 1122.55 1127.85

Feedback Session

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3. Maximally activated voxels in areas exhibiting significant correlation 

with prediction error (PE) signals in feedback session. 
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*significant at p <.05 after whole brain cluster correction with a t threshold of 2.54 
and an extent of 91 voxels. 

For completeness, peaks are reported for all clusters ≥ 15 voxels at p < .005 unc. 

 

 

 

 

 

 

 

 

 

 

 

 

Table S4. Maximally activated voxels revealed by the win-loss contrast across 

both the feedback and instructed sessions.  
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*significant at p <.05 after whole brain cluster correction with a t threshold of 2.86 
and an extent of 53 voxels. 

For completeness, peaks are reported for all clusters ≥ 15 voxels at p < .005 unc. 
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Table S5. Brain regions where higher BOLD responses were observed at the 

revelation of outcome of win trials in the instructed relative to the feedback 

session. 

MNI
Region L/R BA Coordinates Z
Temporal Lobe R 37 45 -54 -12 3.98*
Medial Frontal Gyrus L 32 -18 54 9 3.39

R 32 18 51 9 3.63
DLPFC L 46 -48 24 33 3.59*
Fusiform R 37 36 -51 -21 3.49
Precentral Gyrus R 3 48 -15 27 3.30
Frontal Lobe R 9/46 30 15 21 3.26
Superior Frontal Gyrus R 32 15 36 42 3.26
Parietal Lobe L 40 -33 -36 45 3.23*  

*Significant at p <.05 after whole brain cluster correction with a t threshold of 2.35 
and an extent of 110 voxels. 

For completeness, peaks are reported for all clusters ≥ 15 voxels at p < .005 unc. 
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Table S6. Areas where BOLD responses showed a stronger negative correlation 

with the activity in the seed area (DLPFC, Figure 5) during the win trials in the 

instructed session. Results were generated from a psychophysiological 

interaction (PPI) analysis (See materials and methods section for detail). 

MNI
Region L/R BA Coordinates Z
vmPFC L 10 -6 48 -18 4.86*
Inferior Frontal Gyrus R 38 27 24 -21 3.27

R 38 39 15 -18 3.87*
Hippocampus L 20 -24 -18 -24 3.77*
Middle Temporal Lobe L 22 -51 -39 -3 3.63*

L 21 -54 -18 -18 3.46*
Superior Frontal Gyrus L 9 -6 60 30 3.28
Inferior Temporal Gyrus R 21 45 0 -39 3.27
NAc L - -3 6 -12 3.17*
Medial Frontal Gyrus R 6 9 -18 66 3.19  

*Significant at p <.05 after whole brain cluster correction with a t threshold of 2.07 
and an extent of 182 voxels. 

For completeness, peaks are reported for all clusters ≥ 15 voxels at p < .005 unc. 
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Supplementary Figures 

 

Figure S1. Direct contrast of prediction error (PE) related brain activities in 

feedback session and instructed session (feedback – instructed) showed greater 

involvement of BOLD activities in striatum, midbrain and hippocampus in the 

feedback session (p < .005 in red and p < .001 in yellow, unc).  

 

 

Figure S2. Brain regions that showed stronger negative connectivity to DLPFC 

(Figure 5A) in instructed than in feedback session (p < .005 in red and p < .001 in 

yellow, unc).  
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Figure S3. Brain regions that showed significant positive correlation with 

prediction errors derived from a simple RL model in the feedback (top) and 

instructed (bottom) sessions (p < .05 FDR corrected).  
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