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The supporting information contains the following:

1. Details of the computation of Ca2þ diffusion profiles and
opening transition times from single-channel models, which
are required as input data to the model described in the
main text.

2. Full analytic treatment of the model in terms of intergral
equations.

3. A direct stationary solution of the model in the special case of
a tetrahedral arrangement of channel clusters.

4. A delayed stochastic simulation algorithm suitable for Monte
Carlo simulations of the model.

5. Details of the implementation of a global feedback
6. The σ–Tav relation and biological function
7. Opening transition probabilities ψo at different Ca2þ concen-

tration profiles (Fig. S1).
8. Solutions of the full, time-dependent model obtained by

numerical integration of the integral equations (Fig. S2).
9. Comparative stochastic simulations of the cube model and the

tetrahedron model (Fig. S3).
10. A schematic caricature of responses to stimulation in the

σ–Tav plot (Fig. S4).
11. Simulations of Ca2þ currents due to open clusters, which de-

monstrate that cluster coupling strength can be well approxi-
mated by a time-independent value during a puff (Fig. S5).

12. Spiking conditions at different numbers of channels per
cluster, showing that these shift the curves only slightly at
realistic values of the channel closing rate (Fig. S6).

13. Parameter values of the De Young–Keizer model used to
compute the opening transition probabilities ψo (Table S1).

14. A comparison of the different methods to solve the model
equations (Table S2).

Ca2þ Diffusion and Opening Transition Times. As input data to our
hierarchic stochastic model, we need details of the cluster cou-
pling by Ca2þ and of the probability densities for cluster opening
and closing. In Methods of the main text, we derived the closing
probability ψcðt − τÞ (Eq. S2) and gave a general description of
the opening probabilities ψoðc;t − τÞ and of our Ca2þ diffusion
model. The details will be provided here.

Ca2þ diffusion profile. In the main text, we argued that Ca2þ dy-
namics can be described by point sources at the locations of open
channel clusters, diffusion in the cytosol, and constant activity of
Ca2þ pumps. Therefore, the Ca2þ concentration is governed by a
linear reaction–diffusion equation:

∂
∂t
½Ca2þ�ðr;tÞ ¼ DΔ½Ca2þ� þ ρ∑

No

n¼1
r≠rn

δðr − rnÞ − p½Ca2þ�; [S1]

where D is the Ca2þ diffusion coefficient; ρ is the average Ca2þ
current through a cluster; p is the rate at which Ca2þ is pumped
out of the cytosol by Ca2þ pumps (called SERCAs); the vector r is
the spatial coordinate; rn is the position of cluster n; δðrÞ and Δ
are the Dirac δ-function and the Laplacian in three dimensions,
respectively; and the sum runs over all No open clusters.

Further, in the main text, we justified the use of stationary
Ca2þ concentration profiles, in which the Ca2þ current ρ corre-
sponds to the average current through an open cluster. With free
boundary conditions (i.e. limr→∞½Ca2þ� ¼ 0), and if we take into

account the continuous presence of a resting Ca2þ concentration
c0, the stationary solution to Eq. S1 at closed clusters cm is (1)

cm ¼ ρ

D∑
No

n¼1
n≠m

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p
Djrm−rn j

p

4πjrm − rnj
þ c0: [S2]

Ca2þ diffusion profiles computed from Eq. S2 are shown in
Fig. S1A. More general boundary conditions leading to more
complex Ca2þ diffusion profiles can be used instead of Eq. S2
without difficulty for what follows.

In Table 1, we provide the value of the release current of the
IP3R in units of picoamperes, but it is required in units of micro-
moles per second for Eqs. S1 and S2. We estimated the value in
units of micromoles per second as follows: By Faraday’s law,
ρ ¼ I∕ðzFÞ ≈ 10−12 μmol s−1, if I is the release current of
0.2 pA given in Table 1, z ¼ 2 is the valency of Ca2þ ions, and
F ≈ 105Asmol−1 is Faraday’s constant. However, the 3D δ-func-
tion multiplied to ρ in Eq. S1 has dimension μm−3, whereas the
left-hand side has dimension ðμMsÞ−1, so that by the transforma-
tion from liter to cubic micrometer a factor of 1015 enters ρ.
Further, we assume that on average three channels are open dur-
ing a puff, and we end up with ρ ¼ 3000 μmol s−1, which we use in
simulations.

Opening transition times. The opening probability densities
ψoðc;t − τÞ introduced in the main text depend on the local
Ca2þ and IP3 concentrations as well as on the number of channels
in the cluster Nch. We index only the Ca2þ concentration c, be-
cause it depends on the configuration (see below) and therefore
drives the spatiotemporal dynamics. ψo and ψ c can be measured,
and indeed we use the measured closing time distribution given
by Eq. 2 in the main text. But because ψo has only been measured
for resting [Ca2þ], and not for a range of concentrations yet, we
calculate it from models as described in the following.

Opening transition times are obtained from the method devel-
oped by Higgins et al (2). The method uses the De Young–Keizer
model (3) for the description of the individual IP3Rs with the
parameter values given in Table S1. On the basis of that model,
ψo can be computed from the master equation describing the
random channel state changes. Briefly, the De Young–Keizer
model assumes that a channel is open when three out of the four
subunits of the IP3R are bound by IP3 and activating Ca2þ, but
not by inhibiting Ca2þ. The transition rates between the states
could be determined by experiments to some extent.

Because the probability densities obtained that way are sums
of >1000 exponentials, making computation of function values
rather extensive, we sought for a simpler expression of ψo that
is more suitable for efficiently solving the system. A useful
assumption for the analysis of waiting times is that they can be
described by the two-parametric γ-distribution

ψoðc;θÞ ¼
θαðcÞ−1e−θ∕βðcÞ

ΓðαðcÞÞβðcÞαðcÞ ; [S3]

where θ ¼ t − τ, ΓðxÞ is the Euler Γ function, α is the shape para-
meter, and β is the scale parameter. If α is an integer, the γ-dis-
tribution describes the probability density for the αth Poisson
event with rate 1∕β in a process consisting of α subsequent
Poisson processes. Because within a cluster many independent
state transitions of individual clusters can occur before an open
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cluster configuration is achieved, this is a realistic model for our
purposes.

For α ¼ 1, the γ-distribution is equal to the exponential distri-
bution describing a Markovian rate process:

ψoðc;θÞ ¼ λðcÞe−λðcÞθ; λðcÞ ¼ 1

βðcÞ : [S4]

Fig. S1 shows the ψo computed from the De Young–Keizer model
for diffusion profiles computed according to Eq. S2. The com-
puted ψo fit Eq. S3 well at high values of [Ca2þ], which are ex-
pected during a spike, whereas at resting [Ca2þ], ψo better fits
Eq. S4. Therefore, we fit the probability distribution for opening
of the first cluster by Eq. S4 and refer to the parameter λ (or λ0;
compare Implementation of the Global Feedback) as the puff rate
(Table 1).

Formulation of the Hierachic Stochastic Model in Terms of Integral
Equations.The system variables of the hierarchic stochastic model
of intracellular Ca2þ dynamics, in their most general form, are
solutions of a set of Volterra integral equations (VIEs), which will
be derived in this section. The procedure is a generalization of the
formalism developed by Prager et al. to more states and state
transitions (4).

Non-Markovian master equation. The state of the cell is described
by the configuration of open and closed clusters among its Ncl
clusters. To formulate these ideas mathematically, we introduce
the state variable xj for all clusters j ¼ 1;…;Ncl, which can assume
the values O or C. The set of all possible configurations of open
and closed clusters is denoted Si ¼ fxi1;…;xiNcl

g, i ¼ 0;…;Nconf ,
where Nconf is the number of configurations with at least one
open cluster, and xij ∈ fO;Cg.

We denote with cjðSiÞ the Ca2þ concentration at cluster j in
configuration Si. Then, the stationary solution to our diffusion
problem Eq. S2 becomes

cmðSiÞ ¼
ρ

D∑
No

n¼1
n≠m

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p
Djrm−rnj

p

4πjrm − rnj
þ cðS0Þ; [S5]

where S0 is the configuration with all channels closed and cðS0Þ ¼
c0 is the resting Ca2þ concentration. The probability PðSi;tÞ to be
in configuration Si at time t obeys the master equation

∂
∂t
PðSi;tÞ ¼ ∑

Nconf

l¼0
l≠i

IliðfcjðSiÞg;tÞ − IilðfcjðSiÞg;tÞ; [S6]

with the probability fluxes Iil for a transition from Si to Sl, and
where braces f·g indicate dependence on all clusters j.

In the case of a Markovian rate process, each transition would
only depend on the configuration at the last time step, and we
would be able to write

IilðfcjðSiÞg;tÞ ¼ rilðfcjðSiÞg;tÞPðSi;tÞ; [S7]

with transition rates ril determined uniquely by the configuration
Si at time t (5). But, instead of transition rates, the input data to
our model are the probability density distributions for opening
and closing of clusters, ψoðc;t − τÞ and ψ cðt − τÞ (compare Meth-
ods in the main text and Ca2þ Diffusion and Opening Transition
Times above). Those depend not only on the configuration at the
actual time, but also on the time interval that has passed since the
last state change, t − τ. Therefore, the master equation S6 is non-
Markovian, and the problem does not lead to a set of differential
equations but requires derivation of integral equations.

To introduce the calculation of the probability fluxes Iil in
terms of the ψo;c, we first consider the simplest possible setup with
only one cluster and two configurations, S0 ¼ fCg and S1 ¼ fOg.
Then, the Iil are solutions of a system of integral equations (4, 6):

I01ðtÞ
I10ðtÞ

� �
¼

Z
t

0

0 ψoðcðS0Þ;t − τÞ
ψ cðt − τÞ 0

� �
I01ðτÞ
I10ðτÞ

� �
dτ

þ f 01ðtÞ
f 10ðtÞ

� �
; [S8]

where we omit dependence of the Iil on Ca2þ concentrations in
configuration Si, and f ilðtÞ is the initial flux vector (or initial
function) containing fluxes from the starting configuration Si
to configuration Sl (see below). An intuitive explanation for this
equation can be given as follows: The opening (closing) probabil-
ity flux at time t is the sum of the initial flux f 01ðtÞ (f 10ðtÞ) and the
flux that results from reopening (reclosing). The latter equals the
integral over the probabilities to have closed (opened) at earlier
times t − τ multiplied by the probabilities to reopen (reclose) at t.

In general, we consider more than one cluster, and the prob-
ability for a transition from configuration Si to configuration Sl by
a state change of cluster j depends on the states of all clusters (or
more precisely, on the resulting Ca2þ concentration profile).
Therefore, we denote the probability distribution for a transition
from Si to Sl by ψ ilðfcjðSiÞg;t − τÞ. The general form of Eq. S8
then is

IilðtÞ ¼
Z

t

0

ψ ilðfcjðSiÞg;t − τÞ ∑
Nconf

k¼0
k≠i

IkiðτÞdτ þ f ilðtÞ: [S9]

In the remaining part of this section, we denote the time
elapsed since the last transition with θ ¼ t − τ. Then, the config-
uration transition probability ψ il is given by the transition prob-
ability of the jth cluster times the probability that all other clusters
remain in their states:

ψ ilðfcjðSiÞg;θÞ ¼ ψo;cðcjðSiÞ;θÞ ×
Y
m

�
1 −

Z
θ

0

ψoðcmðSiÞ;t0Þdt0
�

×
Y
n

�
1 −

Z
θ

0

ψ cðt0Þdt0
�
; [S10]

where m indexes the subset of closed clusters and n indexes the
subset of open clusters, both except cluster j. The ψ il are normal-
ized such that

∑
Nconf

i¼0
i≠l

Z
∞

0

ψ ilðt0Þdt0 ¼ 1; [S11]

for all configurations Sl, which can be shown by integration by
parts. This means that the system does not possess an absorbing
state, which is a necessary condition for repetitive spiking.

Solvability and initial conditions. The integral equation S9 belongs
to the class of VIEs with convolution kernels (7). In contrast to
differential equations, VIEs always possess a unique solution and
do not require additional initial values for uniqueness. Neverthe-
less, the initial properties of VIEs are governed by the function
added to their integral part, often called initial function. The tri-
vial solution is always zero: In Eq. S9, e.g., f ilðtÞ ¼ 0 ⇒ IilðtÞ ¼ 0,
regardless of the kernel ψ il.

To determine the correct initial functions for our problem, we
start in configuration S0 ¼ fC;…;Cg, so that all initial fluxes are
zero apart from those out of S0. In the case of one cluster, the
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initial condition is PðS0;0Þ ¼ 1, PðS1;0Þ ¼ 0, and we have
ψ01ðcjðSiÞ;θÞ ¼ ψoðc0ðS0Þ;θÞ, according to Eq. S10. The initial
function as it appears in Eq. S8 should describe system dynamics
in the absence of reclosing events; i.e., for I10 ¼ 0. That implies
θ ¼ t and PðS0;tÞ ¼ 1 − ∫ t

0 ψoðt0Þdt0. Because I10 ¼ 0, we infer
from Eq. S9 that

f 01ðtÞ ¼ −
∂
∂t
PðS0;tÞ ¼ ψoðtÞ: [S12]

In general, this means

PðSi;0Þ ¼ 1 and PðSkÞ ¼ 0; with k ≠ i

⇒ f ilðtÞ ¼ ψ ilðfcjðSiÞg;tÞ and f klðtÞ ¼ 0; with k ≠ i: [S13]

The initial functions S13 complete the mathematical formula-
tion of the model, which provides a unique description of the
systems dynamics. A good direct test for the model equations
is their reduction to simple cases. For that purpose, assume a
Markov process, where the waiting times ψo;c are exponential dis-
tributions λ exp½−λðt − τÞ�, with λ depending on the transition
type. Then, Eqs. S9 and S13 can be transformed to Eq. S7 by
the standard method described in ref. 7.

Calculation of σ and Tav. Because spike patterns can be character-
ized in terms of average (Tav) and standard deviation (σ) of in-
terspike intervals (ISIs), we wish to compute these quantities
from our model. Fortunately, the ISI distribution is the solution
of a well-known first-passage time (FPT) problem: Let
ψFPTðSi;Sl;tÞ denote the probability distribution that Sl is visited
for the first time after starting in Si. Then, the ISI distribution is
equal to ψFPTðS0;S4;tÞ. It can directly be computed from Eqs. S9
and S10 (5):

PðS0;S4;tÞ ¼
Z

t

0

PðS4;S4;t − τÞψFPTðS0;S4;τÞdτ; [S14]

where PðSi;Sj;tÞ is the probability to be in Sj at time t after having
started in Si. Because PðS4;S4;0Þ ¼ 1, differentiation yields

ψFPTðS0;S4;tÞ ¼
∂
∂t
PðS0;S4;tÞ

−
Z

t

0

∂
∂t
PðS4;S4;t − τÞψFPTðS0;S4;τÞdτ: [S15]

This equation belongs to the same class of VIEs as Eq. S9 and
depends merely on ð∂∕∂tÞPðS0;S4;tÞ, which is already known from
Eq. S6. Therefore, Eqs. S6, S9–S13, and S15 form a complete
system that uniquely determines spike statistics on the basis of
puff characteristics.

Numerical solution for time-dependent spike statistics. Equa-
tions S9–S13 define a system of linear VIEs with convolution
kernel, which has a unique solution (7). Such equations can often
be solved directly by reduction to differential equations or by
Laplace transform methods, but this is not possible here because
of the rather complicated form of the kernel ψðtÞ. Therefore, it
requires direct numerical integration. We have implemented the
integral equations of the tetrahedron model (compare Stationary
Statistics and the Tetrahedron Model) by the two-step method
described by Wolkenfelt (8). For this algorithm, Lubich proved
absolute stability (i..e., the numerical solution attains stationarity
if the real solution does) for a prototypic system of integral equa-
tions (9).

Fig. S2A shows a typical solution of the time development of
the PðSi;tÞ, indicating that they rapidly attain stationarity. Solu-

tions for ψFPTðtÞ are depicted in Fig. S2B. The probability to spike
fast clearly is high if the channel closing probability is low. From
ψFPTðtÞ, we can easily derive σ and Tav as the first and second
moments (Table S2). Therefore, we have derived the complete
behavior of spike statistics on the basis of a Ca2þ diffusion profile
and the probability distributions for cluster opening and closing,
which can be measured (see main text).

Stationary Statistics and the Tetrahedron Model. Because numerical
solution of the integral equations derived in the last section is
tedious, we sought to derive direct analytical expressions for stea-
dy-state values describing spike statistics. That is useful as a test
for the stochastic algorithm described in the next section, and it
turns out that many of the results shown in the main text were
obtained more efficiently on the basis of the analysis presented
here.

The tetrahedron model.We will see below that stationary statistics
are particularly easily obtained if transitions between configura-
tions compose a linear chain indexed by the number of open
clusters. The only nontrivial realization of that property for
our model system is the tetrahedron model depicted in Fig. 2A
in the main text: Here, all configurations with equal number of
open clusters are topologically equivalent, implying that the Ca2þ
diffusion profile is equal. This is not true for the next easiest con-
figurations, the hexahedron (or cube) and the octahedron.

The time-dependent model equations can be given explicitly in
matrix notation as follows:

IðtÞ ¼
Z

t

0

ψðt − τÞIðτÞdτ þ f ðtÞ; [S16]

with

I ¼

I01
I10
I12
I21
I23
I32
I34
I43

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

ψ ¼

0 ψ01 0 0 0 0 0 0

ψ10 0 0 ψ10 0 0 0 0

ψ12 0 0 ψ12 0 0 0 0

0 0 ψ21 0 0 ψ21 0 0

0 0 ψ23 0 0 ψ23 0 0

0 0 0 0 ψ32 0 0 ψ32

0 0 0 0 ψ34 0 0 ψ34

0 0 0 0 0 0 ψ43 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

:

In this notation, the normalization of ψðtÞ (Eq. S11) takes the
form of a column sum, ∫ ∞

0 ∑xψ xyðtÞdt ¼ 1, in each column y,
where ψ xyðtÞ is the element in row x and column y of ψðtÞ.

Direct calculation of the stationary solution. The basic assumption
in the forthcoming calculations is that the spike-generating
stochastic process is stationary; i.e., ð∂∕∂tÞPðSi;tÞ ¼ 0. Then, from
Eq. S9,

Īil ¼ Iilð∞Þ ¼ Cil ∑
Nconf

k¼0
k≠i

Īki; [S17]

where Cil ¼ ∫ ∞
0 ψ ilðt0Þdt0 is the splitting probability to reach con-

figuration Sl before returning to the ground state S0 when starting

Thurley and Falcke www.pnas.org/cgi/doi/10.1073/pnas.1008435108 3 of 9

http://www.pnas.org/cgi/doi/10.1073/pnas.1008435108


in Si. Note that we omit the argument c of the distribution
functions in this section for convenience. The ψ ilðθÞ, θ ¼ t − τ,
were defined in Eq. S10. It follows immediately (Eq. S11)
that ∑lCil ¼ 1.

At this point, one might guess that the solutions of Eq. S17 will
determine the relative number of occurrences of each configura-
tion, leading to

P̄ðSiÞ ¼
Ti ∑

Nconf
l¼0
l≠i

Iil

∑
Nconf

l¼0
ðTl ∑

Nconf
k¼0
k≠l

IlkÞ
; [S18]

where Ti ¼ ∫ ∞
0 t

0∑lψ ilðt0Þdt0 is the mean residence time in config-
uration Si, and P̄ðSiÞ is the stationary sojourn probability. Eq. S18
is confirmed by Eq. S24 below and by simulations.

Now, we approach the problem in a different way. If we dealt
with a Markov process, the probabilities for state changes would
be exponentially distributed with parameters ril (5), and that para-
meter could be computed from Ti and Cil:

ψo;cðθÞ ¼ ril expð−rilθÞ [S19]

⇒ ψ ilðθÞ ¼ rile
−θ∑

l

ril
; Ti ¼

1

∑
Nconf
l¼0
l≠i

ril
; Cil ¼

ril

∑
Nconf
l¼0
l≠i

ril

[S20]

⇒ ril ¼
Cil

Ti
: [S21]

Eq. S20 is a direct consequence of the definitions of Ti and Cil, in
the case of a Markov process. The expression for Ti is sometimes
used as characteristic time of a chemical reaction (10).

To proceed with our non-Markovian process, resume an inter-
esting result from Cox (6) for the alternating renewal process
(Eq. S8): The stationary probability to be in configuration Si,
P̄ðSiÞ, does not change if the transition time distribution ψωðθÞ
is replaced by an exponential distribution with the same average
transition time. As a generalization, we assume that the stationary
statistics of the process with general transition probabilities (as
computed in Ca2þ Diffusion and Opening Transition Times, for
example) are equal to those of the Markov process with exponen-
tially distributed transition probabilities. That means, we assume
that Eq. S21 is valid in more general circumstances.

Then, we can apply the theory of birth and death processes in
the case of a linear chain S0 ⇌ S1 ⇌ ⋯ ⇌ SNconf

(5). In particular,
for the tetrahedron model with Nconf ¼ Ncl ¼ 4, C14 is the prob-
ability that a puff (S1) generates a spike (S4) before all clusters are
closed again. It can be expressed in terms of single-step transition
probabilities:

C14 ¼
C12C23C34

1þ C12ðC23 − 1Þ þ C23ðC34 − 1Þ : [S22]

With [Ca2þ] at closed clusters below the values causing Ca2þ-
dependent inhibition, C12 < C23 < C34 < 1 applies because of
Ca2þ-induced Ca2þ release. Eq. S22 shows that C14 ≈ C12 for
large C12. In the main text, we identified C12 with cluster coupling
and derived a general expression for it (Eq. 3). The finding that
C14 ≈ C12 supports this definition in the sense that the probability
to open a second cluster C12 is also an indicator for spiking. We
refer to that in the discussion of spiking conditions in the
main text.

T̄av and σ̄ are, in fact, moments of the FPT to go from S0 to
S4 and can be obtained from recursion relations derived by
Gillespie (11), as well as the stationary probabilities. The rela-

tions for T̄av and P̄ðS0Þ are rewritten as analytic formulas in terms
of model variables by simple algebra (the others are too long to
give them explicitly):

T̄av ¼
T0 þ T1

C14

þ T1C21

C23C34

þ T2

C23C34

þ T3

C34

[S23]

and

P̄ðS0Þ ¼
�
1þ T1C21C32

T0C10C21C32

þ T2C12C32

T0C10C21C32

þ T3C12C23

T0C10C21C32

þ T4C12C23C34

T0C10C21C32

�
−1
: [S24]

Table S2 shows that values calculated by the described method
are in excellent agreement with the exact solution presented in
Formulation of the Hierachic Stochastic Model in Terms of Integral
Equations and the stochastic simulations presented in Stochastic
Simulations, which confirms validity of the assumption made
by Eq. S21.

Stochastic Simulations. In the last sections we have derived analy-
tical expressions for statistical properties of Ca2þ spiking by
means of the hierarchic stochastic model. However, the temporal
evolution of the configurations SiðtÞ, which illustrates the actual
spiking pattern, needs to be resolved with a stochastic simulation
algorithm. Such an algorithm is also required for the determina-
tion of statistic properties of model systems larger than the tetra-
hedron model. Larger models cannot be represented by linear
chains, so that the expressions obtained in the last section are
not applicable, and the full problem considered in Formulation
of the Hierachic Stochastic Model in Terms of Integral Equations
becomes too large for available numerical methods.

Delayed Stochastic Simulation Algorithm (DSSA). Because our pro-
blem is non-Markovian, waiting times between successive events
are not exponentially distributed, and the standard method from
Gillespie (12) cannot be applied. Therefore, we developed a
DSSA, which is similar to those investigated in (13–15). However,
unlike them, we do not draw random numbers from the waiting
time distributions in advance to determine the transition times.
Instead of that, we integrate stepwise over the distributions until
the obtained value exceeds a random number drawn from the
unit interval. The time is reset when a transition occurs. The full
DSSA algorithm can be given in pseudocode as follows:

Data: initial cluster states xj; transition probabilities
ψðcj;t − τ;xjÞ; transition types νðxjÞ; total simulation time T; time
step h.

Result: dynamics of the cluster states xj.
begin

generate fUkgk¼1…Ncl
as Uð0;1Þ random variables

τ ¼ 0; fPkgk¼1…Ncl¼0

while t < T do
for ðj ¼ 1; j <¼ Ncl; jþþÞ do

if Uj > Pj:
Pjþ ¼ ∫ t−τþh

t−τ ψðcj;t0;xjÞdt0
else:

xj ¼ xj þ νðxjÞ
generate fUkgk¼1…Ncl

as Uð0;1Þ random variables
τ ¼ t; fPkgk¼1…Ncl¼0

break
t ¼ tþ h

end
In the above notation, “Uð0;1Þ random variables” means ran-

dom numbers drawn from a uniform distribution in the interval
(0, 1). In our case, the type of the transition νðxjÞ is uniquely
determined for each state (open if closed and close if open),
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and therefore the ψðcj;t − τ;xjÞ are either ψo or ψc as defined in
the main text, depending on xj. In general, we would need a sec-
ond random number to decide over the transition type, analo-
gously to the original stochastic simulation algorithm from
Gillespie (12).

Typical simulations are shown in Fig. 2 and Fig. S3. The tetra-
hedronmodel and the cubemodel both reproduce spike sequences
similar to experimental data for the same set of parameters
(Fig. S3). Ca2þ spikes (most clusters open) emerge from basal
puff-activity (one cluster open) at irregular intervals. Long-term
simulations (≈106 s) are used to compute spike statistics and
are in excellent agreement with the analytic solutions (Table S2).

Efficiency of the DSSA for different model subtypes. The DSSA is
particularly efficient if the integral of ψðcj;t − τ;xjÞ in the above
notation of the pseudocode is an analytic function. Then, at every
time step, instead of applying a subroutine for numerical quad-
rature, we only need to compute the value of the survival function

Ψ ðcj;t − τ;xjÞ ¼ 1 −
Z

t

τ
ψðcj;t0;xjÞdt0; [S25]

which gives us the probability that the present configuration sur-
vives until time t. We thus only need to check ifUj > Ψ ðcj;t − τ;xjÞ;
i.e., if the state survives even longer.

Integrals of the γ-distributions we use for the opening transi-
tions (Ca2þ Diffusion and Opening Transition Times) are incom-
plete Euler Γ functions and integrals of exponentials as employed
for the closing transitions (Eq. 2 of the main text) are exponen-
tials again. Therefore, the described DSSA is very efficient in our
case, and we can compute 106 s of simulated time of the tetra-
hedron model in minutes on a standard personal computer. Para-
meter scans of the irregular cube model, such as shown in Fig. 4,
can be performed in 1–2 d. Note that for the tetrahedron model,
it is still faster to compute the direct solution from Stationary Sta-
tistics and the Tetrahedron Model.

Implementation of the Global Feedback. In the main text (Eq. 1), we
introduced the addition of a global feedback to the model, and we
showed that such a feedback shifts both the slope and the inter-
cept of the σ–Tav relation (Fig. 4). In the following, details of the
implementation of that feedback will be provided.

In Ca2þ Diffusion and Opening Transition Times, we showed
that in our analysis, the probability density for opening of the first
cluster ψoðc0;t − τÞ can be modeled by an exponential distribution
λ exp½−λðt − τÞ�, where the parameter λ is the puff rate (Table 1).
As stated in the context of Eq. 1 in the main text, we apply a
global feedback to this first opening probability by assuming a
dependence of the puff rate on the time elapsed since the last
global spike, t − tsp. Further, in the case of ψoðc0; ·Þ, the last state
transition, which occurred at time τ, is always a transition from
one to zero open clusters, so that we can identify τ with the time
of the last puff, τ ¼ tp, and ψoðc0; ·Þ depends on three different
times: the actual time t, the time of the last puff tp, and the time of
the last spike tsp. After these considerations, we easily derive

ψoðc0;t;tp;tspÞ ¼ λðt − tspÞe
−
R

t

tp
λðt0−tspÞdt0

¼ λ0ð1 − e−ξðt−tspÞÞe−λ0
ξ ½−e−ξðt−tspÞþe−ξðtp−tsp Þ−ξðt−tpÞ�:

[S26]

From Eq. S26, it is immediately clear that the formalism de-
rived in Formulation of the Hierachic Stochastic Model in Terms of
Integral Equations and Stationary Statistics and the Tetrahedron
Model is not applicable anymore because, therein, it was a pre-
requisite that state transitions depend only on time differences
between subsequent state transitions. That is also evident from

a physical point of view: Remembrance of the last occurrence
of a specific configuration is far stronger non-Markovian than just
remembrance of the time of the last configuration change.

But for such reasons, we developed the DSSA introduced in
the last section and tested it against the analytic solutions for sui-
table test cases (Table S2). Indeed, our DSSA is particularly use-
ful for applications such as Eq. S26 because, rather than ψo, we
need the survival probability Ψo given by Eq. S25 in our algo-
rithm:

Ψoðc0;t;tp;tspÞ ¼ 1 −
Z

t

tp

ψoðc0;t0;tp;tspÞdt0

¼ e−
λ0
ξ ðe−ξðt−tsp Þ−e−ξðtp−tsp Þþξðt−tpÞÞ: [S27]

Therefore, the only change to the pseudocode provided in Sto-
chastic Simulations is that we remember the occurrence of the
last spike in order to compute the expression given above.

The σ–Tav Relation and Biological Function. Ca2þ signaling uses a
variety of modes of information transmission (16–19). Frequency
encoding is the mode that is relevant in the context here. How can
stochastic sequences comply with this function of the pathway?
What determines the information content of a random sequence
of spikes, and how should ISI distributions respond to a stimulus?

The information content of a given ISI sequence can be deter-
mined by comparing it in a statistical sense with the “most ran-
dom” sequence; i.e., with a pure Poisson process. That will tell us
whether downstream parts of the pathway could in principle dis-
tinguish the given sequence from the most random sequence. The
Kulback entropy of the given sequence relative to a Poisson pro-
cess is a measure for the statistical difference. We calculated the
Kulback entropy for spike sequences obeying linear σ–Tav rela-
tions in ref. 20. It depends essentially only on the slope m of that
relation and is 0 for m ¼ 1 (the given sequence would also be a
pure Poisson process) and increases for decreasing m. We con-
clude that the slope of the σ–Tav relation is one of its properties,
which is relevant for biological function.

ISI distributions should respond to a stimulus by moving to
smaller average ISIs in order to obtain a change of the average
frequency. The stimulated signal should also be detectable; i.e.,
there should be a typical frequency at which the spectrum of the
stimulated ISI sequence should have a peak as sharp as possible.
That requires a small standard deviation of the ISI sequences. A
priori, a stochastic system with as many parameters as Ca2þ sig-
naling could respond in different ways to stimulation, as sketched
in Fig. S4. But only the response along the black arrow from large
Tav and large σ to smaller Tav and small σ meets both require-
ments that Tav and σ decrease upon stimulation. Ca2þ signaling
exhibits this response, and that warrants its biological function.

The response of Ca2þ signaling to stimulation described above
does only live up to the requirements for a universal signaling
mechanism if it is a property of the mechanism and not only
of individual cells. Stimulation is, in mathematical terms, a
change of parameter values. One way of guaranteeing a specific
response of Tav and σ to parameter changes is the existence of a
well-defined σ–Tav relation for the mechanism. If such a relation
exists, changes of parameters only shift the position of the cell on
the relation and do not move it to a position in the σ–Tav plane
away from it. In experiments, the existence of such a relation
means that all cells using the mechanism align along the relation,
independent from their individual parameter values, and do not
scatter all over the σ–Tav plane. It is also obvious that the most
robust case, where changes of the values of all of the parameters
do not move a cell away from the relation, will not exist in gen-
eral. Changes of the values of some parameters will do so, and
changes of the values of others will not.

Hence, the fact of the existence of a σ–Tav relation is important
for pathway function. The experimental relations shown in ref. 21
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are obtained by plotting the average and standard deviation from
many different cells (population relation). The individual cells
are different with respect to the value of many parameters like
number of clusters, spatial cluster arrangement, concentrations
of Ca2þ-binding proteins, volume, endoplasmic reticulum con-
tent, etc., but nonetheless they align along a linear function.
We obtain the individual σ–Tav relation by conducting two or
more different experiments with the same cell. We found agree-
ment between the slope of the individual σ–Tav relation and the
population relation (20, 21). Therefore, the experiments proved
the existence of a σ–Tav relation.

Although the existence of the relation is not guaranteed in gen-
eral, it might be a property of all spiking systems. That is not the
case, however, as we could illustrate by calculations of σ and Tav

for the perfect integrate and fire model, which is one of the
prototypical spike-generating systems in neuronal membrane dy-
namics (22). Upon variation of parameters in that model, the data
points occupy an area in the σ–Tav plane and do not align along a
single curve as they do for the Ca2þ signaling model in Fig. 4 of
the main text (with fixed global feedback). Consequently, there
are spike-generating mechanisms that exhibit a σ–Tav relation,
and there are mechanisms that do not.

In summary, the existence of a σ–Tav relation, the slope of the
relation, and the fact that its course is from large σ and Tav to
small σ and Tav are all relevant for the biological function of
the pathway. The main text investigates the robustness of these
properties.
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Fig. S1. Calculation of opening transition probabilities ψo. (A) The Ca2þ concentration at a closed cluster c depends on the distances to the open clusters.
Shown is the diffusion profile as obtained from Eq. S2 for the tetrahedron model (compare Fig. 2A in the main text), where all No open clusters have the same
cluster distance. (B) Opening transition probabilities ψo for base-level [Ca2þ] (Inset, orange) and for the [Ca2þ] diffusion profiles depicted in A (the color-code is
the same as inA). The transition probabilities were computed from the De Young–Keizer model with parameters given in Table S1, and were fitted (black lines)
to exponential (Inset) and γ-distributions, as described in Ca2þ Diffusion and Opening Transition Times. The cluster distance is 1.5 μm. For parameter values not
mentioned in this legend, see Table 1 of the main text.
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A B

Fig. S2. Solution of the time-dependent analytic model. (A) The probabilities PðSi ;tÞ attain stationarity after a few seconds. The probability that all clusters are
closed, PðS0;tÞ (Inset), is highest. However, the probabilities for more open clusters also have probabilities different from zero, suggesting short spikes and
longer time intervals in-between. The cluster distance is 1.5 μm , the decay rate is γ ¼ 15 s−1. (B) Calculation of ψFPT, σ, and Tav by integral equations. The colors
indicate different values of the channel closing probability γ [black, 5 s−1; red, 15 s−1; blue, 25 s−1; pink (Inset), 40 s−1]. Average (Tav ) and standard deviation (σ)
of ISIs are the moments of the FPT distributions (see Formulation of the Hierachic Stochastic Model in Terms of Integral Equations). Because they have large
nonzero tails, direct computation of the moments would require solution of the integral equations S9 for >500 s, for which we have no efficient numerical
procedures. Therefore, we fit the FPTs to the normalized, initially zero double exponential λ1λ2∕ðλ2 − λ1Þ × ðexp½−λ1t� − exp½−λ2t�Þ (thin black lines). From these,
we computed the values shown in Table S2. Parameters not mentioned in this legend are given in Table 1.

A B

Fig. S3. Stochastic simulations. The tetrahedron model (A) and the cube model (B) show similar spike patterns with the same set of parameters (Table 1,
γ ¼ 25 s−1). Calculations are performed with the DSSA described in Stochastic Simulations.

0
Tav

σ

Fig. S4. Caricature of different responses of a cell to stimulation. Before stimulation, the cell has values of σ and Tav, as indicated by the green dot. The arrows
indicate transitions to the values assumed upon stimulation. The red transition would provide for a change of the average ISI but would not decrease the
standard deviation σ. The spectrum of that stimulated ISI sequence would be very broad, and the spike train would not have a typical frequency anymore. The
blue transition would correspond to a typical frequency after stimulation but would not change the average ISI substantially. The black transition does change
the average ISI and leads to a typical frequency. A response of the cell to stimulation along the black arrow corresponds to the σ–Tav relation of Ca2þ signaling
and the requirements for frequency encoding.
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BA

Fig. S5. Simulation of the rise of free [Ca2þ] due to an open cluster. (A) The time course of channel closing was chosen according to the average measured rate
in ref. 23. Top, number of open channels in the open cluster; Bottom, [Ca2þ] at typical distances to neighbored clusters. (B) Simulation of a random and very
long puff. Top, [Ca2þ] at the open cluster; Bottom, [Ca2þ] at typical distances to neighbored clusters. The simulations show that the assumption of a constant
[Ca2þ] at neighbored clusters during a puff is a good approximation, because the Ca2þ currents smooth out by diffusion, as referred to inMethods in the main
text. We use linearized buffer and pump dynamics as described in ref. 24 with a total concentration of stationary buffer of 100 μM (dissociation constant 2 μM).
Other parameter values are as follows: concentration of mobile buffer of 20 μM (A) and 100 μM (B) with dissociation constant 0.16 μM and diffusion coefficient
95 μm2 s−1; diffusion coefficient of free Ca2þ 220 μm2 s−1; pump flux coefficient 100 s−1; 10 channels per cluster; single-channel current 0.12 pA (A) and 0.11 pA
(B); cell radius 10 μm.

A

B

Fig. S6. Conditions for spiking. (A) Results of calculations analogous to those presented in Fig. 3A of the main text with variation of the number of channels
per cluster Nch. Spiking occurs for values of the coupling C12 − C∞

12 and the channel closing rate γ between the red and black symbols. We show here results for
the four-cluster model with Nch ¼ 3 (upper triangles), Nch ¼ 5 (squares), and Nch ¼ 9 (lower triangles). Spiking is defined by a long-Tav criterion Cl (red) and a
short-Tav criterion Cs (black), respectively. Coupling values smaller than Cl entail essentially only local puffs, and coupling values larger than Cs cause the regime
of overstimulation. Each data point indicates the critical ðγ;C12 − C∞

12Þ pair at a different cluster distance (values range from 0.5 μM to ∞) and the standard
parameters (Table 1). The spike range increases with γ. (B) The cluster coupling C12 − C∞

12 depends on various system parameters like IP3 concentration and Nch.
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Table S1. Parameter values for the De Young–Keizermodel used to compute the opening transition
times

Parameter Value Unit

a1 20 ðμMsÞ−1
a2 0.001 ðμMsÞ−1
a3 20 ðμMsÞ−1
a4 0.025 ðμMsÞ−1
a5 10 ðμMsÞ−1
d1 2.6 μM
d2 0.03077 μM
d3 2.6 μM
d4 0.1 μM
d5 12.25 μM

Table S2. Comparison of stationary values resulting from the different methods of computation
described in Formulation of the Hierachic Stochastic Model in Terms of Integral Equations,
Stationary Statistics and the Tetrahedron Model, and Stochastic Simulations

Integral equations Direct solution DSSA

P̄ðS0Þ 0.9719 0.9720 0.9715
P̄ðS4Þ 0.0078 0.0078 0.0079
T̄av, s 98.39 98.44 98.68
σ̄, s 98.07 98.11 98.68

The cluster distance is a ¼ 1.522 μm; other parameters are given in Table 1
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