SUPPLEMENTARY INFORMATION

Table of Content

Supplementary text for the chapter "Flux through the NPC is robust precisely because all
reactions go through the same pore"2
Supplementary Figures Supplementary figures for the main text Figure 1S
Supplementary Tables Rate equations and parameters of models Table 1
Sensitivity analysis of main conclusions Table 11
Supplementary references

Text for the chapter "Flux through the NPC is robust precisely because all reactions go through the same pore"

Here we present the model for metabolic control analysis of NPC transport. The nuclear import rate of each particular signaling protein x_i (with y_i represented its imported form) through the NPC is described by a reversible kinetic equation incorporating competitive inhibition by other cargo from both sides of the nuclear membrane:

$$v_{i} = \frac{V_{MAX} \cdot \frac{x_{i}}{K_{x_{i}}} \cdot \left(1 - \frac{y_{i}}{x_{i}}\right)}{1 + \frac{x_{i}}{K_{x_{i}}} + \sum_{\substack{k=1\\k \neq i}}^{n} \frac{x_{k}}{K_{x_{k}}} + \sum_{\substack{k=1\\k \neq i}}^{n} \frac{y_{k}}{K_{y_{k}}}}.$$

Here v_i is the transport rate of species x_i (and hence also of y_i); V_{MAX} and the K_{xk} are constant rate characteristics of transport of species k.

For large *n*, several simplifications apply, i.e. when many other cargo proteins compete for transport and their individual concentrations become small relative to the total cargo concentration. First, the nuclear import rate v_i becomes linear with respect to x_I and the corresponding elasticity coefficient, i.e. the log-log dependence of rate on concentration (Burns et al, 1985) approaches 1, whenever the gradient of substance i across the nuclear membrane is sizeable, i.e. $x_i >>y_i$:

$$v_i \approx_{n \gg 1} \frac{V_{MAX}}{1 + \sum_{\substack{k=1 \ k \neq i}}^n \frac{x_k}{K_{x_k}} + \sum_{k=1}^n \frac{y_k}{K_{y_k}}} \frac{x_i}{K_{x_i}} \cdot \left(1 - \frac{y_i}{x_i}\right)$$
$$\mathcal{E}_{x_i}^{v_i} \equiv \left(\frac{\partial \ln v_i}{\partial \ln x_i}\right)_{x_j} \approx 1 - \frac{y_i}{x_i - y_i} \approx_{if y_i \ll x_i} 1$$

Second, the rate becomes independent of the concentration of any specific other cargo molecule including the already imported forms, causing all cross elasticity coefficients to become zero:

$$\begin{split} v_{i} &= \frac{V_{MAX} \cdot \frac{x_{i}}{K_{x_{i}}} \cdot \left(1 - \frac{y_{i}}{x_{i}}\right)}{1 + \frac{x_{j}}{K_{x_{j}}} + \sum_{\substack{k=1\\k\neq j}}^{n} \frac{x_{k}}{K_{x_{k}}} + \frac{y_{j}}{K_{y_{j}}} + \sum_{\substack{k=1\\k\neq j}}^{n} \frac{y_{k}}{K_{y_{k}}}}{1 + \sum_{\substack{k=1\\k\neq j}}^{n} \frac{x_{k}}{K_{x_{k}}} + \sum_{\substack{k=1\\k\neq j}}^{n} \frac{y_{k}}{K_{y_{k}}}}{1 + \sum_{\substack{k=1\\k\neq j}}^{n} \frac{x_{k}}{K_{y_{k}}}}{1 + \sum_{\substack{k=1\\k\neq j}}^{n} \frac{y_{k}}{K_{y_{k}}}}, \end{split}$$

This shows if there are many active pathways (the condition that n be large), all regulatory influences between the pathways have elasticity coefficients that are very close to zero. Consequently, all pathways become independent of each other. Therefore, all the flux control of any path resides completely with its component enzymes:

$$C_{\text{enzymes pathway j}}^{J_{\text{flux pathway j}}} = 0; \text{ for } j \neq k$$

$$C_{\text{enzymes pathway j}}^{J_{\text{flux pathway j}}} > 0$$
all enzymes in
$$\sum_{i=1}^{\text{pathway j}} C_i^{J_j} = 1$$

Partly because the NPC import is irreversible but mostly because of the saturation effect itself, the reactions after import that sense the concentration of the imported form, become so-called 'slave enzymes', which only control the concentration of their own imported form in the nucleus but not its flux into the nucleus (Bakker et al, 2000) (Fig. 4B; control by 'output' is small). A possibly important exception to this arises when NR accumulates in the nucleus after import, thereby reducing the amount of NR in the cytosol. The NPC itself has positive control over all fluxes (approximately 0.5 in Fig. 4B). Cytosolic activities of a particular pathway have little, negative control on the flux through any another pathway (cross control by input is small and negative in Fig. 4C). Because they exert negative concentration control on x and y, nuclear processes control other pathway fluxes positively if at all (Fig. 4C, gray line). Because no steady-state flux exchange occurs between pathways, all flux control coefficients within a pathway sum to 1 (dashed line in Fig. 4B). It turns out that even though all pathways run through the same pore, perturbation of any one pathway does not much influence the flux through the other pathways. It only influences the flux through the perturbed pathway itself. Thus, the flux of each pathway is robust precisely because all reactions go through the same pore.

Figures

Imp_{total}/Nr_{total}

Fig. 1S. Active export of importins rather than active import of the importin-NR complex is advantageous in enhancing the transcriptional response also when there is degradation of NR.

Three alternative network designs are depicted: (A) Passive facilitated diffusion (reversible pore) of NR across the nuclear membrane; (B) Active nuclear import (irreversible pump) of importin-NR complex; (C) Active export (irreversible pump) of importing from the nucleus. (D) Time course of the transcriptional response (ratio $ReNrL/Re_{total}$) at total importin concentration of 0.1×10^{-12} nmoles. The transcriptional response represents the fraction of REs complexed to the NRL. There is a peak of transcriptional response (maximal transcriptional response). (E) Maximal transcriptional response (ratio $ReNrL/Re_{total}$) as function of the total concentration of importing (for designs A-C; note the logarithmic importin concentration axis). The transcriptional response is inhibited by high concentrations of importin in models A and B. (F) Sequestration (defined as the ratio $NrL_{total}Imp_{total}/NrL_{total}$) as function of the total concentration of importins (for designs A-C; note the logarithmic importin concentration axis). A high importin concentration leads to a high fraction of the NR fraction being bound to importins, but only in models A and B. In model C active export of importins keeps the NR-importin complex concentration in the nucleus low. Cytoplasmic and nuclear compartment volume, resp. 1.55×10^{-12} L and 0.45×10^{-12} L (Riddick and Macara, 2007), and the total concentrations of NRL and RE were set to realistic values (1.31×10^{-12} nmoles of NRLs and 1.67×10^{-12} nmoles of Res, respectively, per cell). The rate constants for complex formation of NRs with importins and of NRs with REs were chosen as diffusion-limited ($k_{association} = 60 \text{ nM}^{-1}\text{min}^{-1}$; resp. $K_d = 5 \text{ nM}$ and $K_d = 1 \text{ nM}$); nuclear import and nuclear export is described by mass action kinetics with Kappa = 5.4×10^{-12} [l/min]. Rate equations and additional parameters are given in Table 9 of Supplementary Information. Abbreviations: NrL – liganded NR (for example, GR); Impimportins, NrLImp- liganded NR bound with importins; Re - RE for NR on DNA; **ReNrL-** RE on DNA bound with activated NR; NPC – nuclear pore complex; Degr – degraded NR.

The model is available in JWS Online and can be simulated in a web browser:

http://jjj.biochem.sun.ac.za; http:// jjj.bio.vu.nl; http://jjj.mib.ac.uk (Snoep and Olivier,

2002; Olivier and Snoep, 2004). The model can be found via "author search",

'kolodkin7'. The model can be also accessed directly via:

http://jjj.bio.vu.nl/webMathematica/Examples/run.jsp?modelName=kolodkin7 or at any of the other servers listed above. Please note that values of parameters for nuclear import/ export rates are set for reversible transport. Simulations of receptor (importin) pump require parameter values from Supplementary Table 9.

Fig. 2S. Time courses of the concentration of the total NR in the nucleus for the six network designs. Nuclear transport of liganded and unliganded NR in design 6 is fitted to GR case (model for Figure 2 of Supplementary Information). (A) Upon 0.005 nM of DEX addition. (B) Upon 0.1 nM of DEX addition. (C) Upon 1 nM of DEX addition. Rate equations and additional parameters are given in Table 10 of Supplementary Information.

Models can be found via the "author search", 'kolodkin'. Models can be also accessed directly via: http://jjj.bio.vu.nl/webMathematica/Examples/run.jsp?modelName=kolodkinX, with X ranging from 1 to 6 respectively for design 1 to design 6 (at each of the servers listed above). Note: Figure 2D cannot be reproduced with online simulations, which allow determining the net flux of ligand (as a sum of import and export fluxes) but not the time course of import flux alone. Please contact the authors for more details. Figure 2G can be reproduced by populating design 6 model with parameters from Supplementary Table 10.

Fig. 3S ∆			
0 min	1 min	2 mins	3 mins
4 mins	5 mins	6 mins	7 mins
8 mins	9 mins	10 mins	11 mins
12 mins B	13 mins	14 mins	15 mins
0 min	1 min	2 mins	3 mins
4 mins	5 mins	6 mins	7 mins
8 mins	9 mins	10 mins	11 mins
12 mins C	13 mins	14 mins	15 mins
0 min	1 min	2 mins	3 mins
4 mins	5 mins	6 mins	7 mins
8 mins	9 mins	10 mins	11 mins
12 mins	13 mins	14 mins	15 mins

Fig. 3S. Nuclear translocation of GR-GFP following exposure to varying concentrations of dexamethasone. Huh7 were transiently transfected with an overexpression plasmid for GR-GFP and then exposed to (A) 0.005 nM (B) 0.1 nM or. (C) 1 nM of DEX. Nuclear:cytoplasmic localisation of GR is presented graphically in a representative cell, and as the average nuclear localisation over time for at least ten cells (error bars = SEM). Data is representative of three independent experiments.

Supplementary Methods

Huh7 cells, a human hepatoma cell line (a kind gift from Dr Steve Hood, GlaxoSmithKline), were seeded into 8-chambered microscope slides (BD Biosciences, Erembodegem, Belgium) at a concentration of 12,500 cells/well and incubated at 37°C for 24 hrs in a humidified container for attachment. FuGENE 6-mediated DNA transfections, using 83ng DNA/chamber were performed as described previously [El-Sankary et al, 2001], using serum-free medium for the six-hour transfection period; this was then replaced with fresh, complete medium, containing charcoal-stripped serum, for the remaining culture period. Following 48 hours incubation, cells were visualized using a Zeiss Axiovert LSM510 microscope. Following addition of dexamethasone at the indicated concentration, cell fields were imaged in every 30s for 15 mins, using a 2.6µs pixel time. Total and nuclear fluorescence from at least ten cells for each treatment condition were analysed using ImageJ v1.43.

Fig. 4S

Fig. 4S. Simulation results for all species in all models of Figure 2

Fig. 5S. Simulation results for all species in all models of Figure 3

Fig. 6S

Fig. 6S. Simulation results for all species in all models of Figure 4 (x and y for n=4)

Tables (rate equations and parameters of models)

Table 1

Design 1: just the role of NR

	Reactions	Parameters		
v ₁	Binding of nuclear ligand to NR tightly bound to the nuclear RE on	$k_{1f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{1b} = 60 \text{ min}^{-1}$		
	the DNA:			
	$(k_{1f} \cdot \operatorname{Re} Nr_n(t) \cdot L_n(t) - k_{1b} \cdot \operatorname{Re} NrL_n(t)) V_{nuc}$ [nmoles/min]			
v ₂	Ligand diffusion between cytosol and nucleus:	$Kappa_2 = \kappa_{Ligand}$		
	$Kappa_2 \cdot (L_c - L_n(t))$ [nmoles/min]	$diffusion = 32 \times 10^{-12} \text{ L/min; } L_c = 0.005 \text{ pM}$		
	Delenes emotions	0.003 IIIVI		
4L/(4) IL	Balance equations			
$dL_n(t)/dt$	$(v_2 - v_1) / v_{nuc} [hivi/min]$			
$dReNr_n(t)/dt$	$(-v_1)/V_{nuc}$ [nM/min]			
$\frac{dReNrL_n(t)/dt}{(+v_1)/V_{nuc} [nM/min]}$				
Conserved Moieties				
$DNA_{total} \cdot V_{nuc}$	Re $Nr_n(t) \cdot V_{nuc}$ + Re $NrL_n(t) \cdot V_{nuc}$ [nmoles/cell]	$DNA_{total} \cdot V_{nuc} = 1000*10^9 / N_A$		
		$= 1.67 \times 10^{-12} nmoles (10^{3})$		
		molecules/cell)		
Initial conditions				
$\operatorname{Re} Nr_n(0)$	DNA _{total} [nM]			
$\operatorname{Re} NrL_n(0)$) $0 [nM]$			
$L_n(0)$	0 [nM]. The addition of ligand was modeled as the increase of its fixed concentration in the outer cellular			
	membrane (L _c) from 0 to 0.005 nM (and maintained constant at the latter level), where the concentrations			
	are quantified as the aqueous concentrations in the cytosol immediately adjacent to the plasma			
	membrane; we shall assume a rapid equilibration of the ligand between this aqueous phase and the			
	plasma-membrane phase. The concentration of ligand in the nucleus $(L_{*}(t))$ was treated as aqueous only.			
	i.e. in terms of the total number of molecules divided by the volume of the nucleus.			
Volumes: $V_{\text{nuc}}=0.45 \times 10^{-12}$ l; $V_{\text{cvt}}=1.55 \times 10^{-12}$ l; $V_{\text{cell}}=2 \times 10^{-12}$ l; $N_{\text{A}}=\text{Avogadro's number}=6.02 \times 10^{23}$				

We describe a spherical cell of radius 7.85 μ m, with a spherical nucleus of radius 4.75 μ m. Consequently, Area_{nuc} (area of nuclear membrane) =280 μ m²=2.8 · 10 ⁻⁸ dm², Dist (distance between cytoplasmic and nuclear membrane)=3.1 μ m=3.1 · 10 ⁻⁵ dm ; V_{nuc}=450 μ m³, V_{cytoplasm}=1575 μ m³, and V_{cell}=2025 μ m³.

 $D_{\text{Protein}} = 6 \cdot 10^{-9} \text{dm}^2/\text{min}$ (diffusion coefficient for protein (Kholodenko et al, 2000a).

 D_{Ligand} =36·10⁻⁹dm²/min (calculated from the Stokes-Einstein equation by comparing with $D_{Protein}$).

* $\kappa_{\text{Ligand diffusion}} = D_{\text{Ligand}} \times \frac{Area_{nuc}}{Dist}$ [litre/min= dm³/min]=32.5pL/min=32.5·10⁻¹² L/min.

Table 2

Design 2. The functioning as the only	Design	2:	NR	functioning	as	NR	only
---------------------------------------	--------	----	----	-------------	----	----	------

	Reactions	Parameters	
v ₁	Nuclear RE binding NRL:	$k_{1f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{1b} = 60 \text{ min}^{-1}$	
	$(k_{1f} \cdot \operatorname{Re}_n(t) \cdot NrL_n(t) - k_{1b} \cdot \operatorname{Re} NrL_n(t)) V_{nuc}$		
	[nmoles/min]		
v ₂	NR binding nuclear ligand:	$k_{2f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{2b} = 60 \text{ min}^{-1}$	
	$(k_{2f} \cdot Nr_n(t) \cdot L_n(t) - k_{2b} \cdot NrL_n(t)) V_{nuc}$ [nmoles/min]		
v ₃	Ligand diffusion between cytosol and nucleus:	Kappa ₃ =* κ_{Ligand}	
	$Kappa_2 \cdot (L_2 - L_2(t))$ [nmoles/min]	$diffusion = 32 \times 10^{-12}$ l/min; L _c =	
		0.005 nM	
Balance equations			
$dL_n(t)/dt$	$(v_3-v_2)/V_{nuc}$ [nM/min]		

dRe(t)/dt	$-v_1/V_{nuc}$ [nM/min]		
dReNrL _n (t)/dt	$+v_1/V_{nuc}[nM/min]$		
dNr _n /dt	$-v_2/V_{nuc}[nM/min]$		
dNrLn(t)	$(+v_2-v_1)/V_{nuc}[nM/min]$		
	Conserved Moieties		
$DNA_{total} \cdot V_{nuc}$	Re $Nr_n(t) \cdot V_{nuc}$ + Re $NrL_n(t) \cdot V_{nuc}$ [nmoles/cell]	$DNA_{total} \cdot V_{nuc} = 1000*10^9 / N_A$	
		= 1.67×10^{-12} nmoles (10^3 molecules/cell)	
$NR_{total} \cdot V_{nuc}$	$Nr_n(t) \cdot V_{nuc} + NrL_n(t) \cdot V_{nuc} + \operatorname{Re} NrL_n(t) \cdot V_{nuc}$ [nmoles/cell]	$NR_{total} \cdot V_{nuc} = 10^5 * 10^9 / N_A =$	
		167×10^{-12} nmoles (10 ⁵)	
		molecules/cell)	
Initial conditions			
$\operatorname{Re} Nr_n(0)$	DNA _{total} [nM]		
$\operatorname{Re} NrL_n(0)$	0 [nM]		
$Nr_n(0)$	NR _{total} [nM]		
$NrL_n(0)$	0) ⁰ [nM]		
$ \begin{array}{c c} L_n(0) & 0 \ [nM]. \ The addition of ligand was modeled as the increase of its fixed concentration in the outer cellular membrane (L_c) from 0 to 0.005 nM (and maintained constant at the latter level), where the concentrations are quantified as the aqueous concentrations in the cytosol immediately adjacent to the plasma membrane; we shall assume a rapid equilibration of the ligand between this aqueous phase and the plasma-membrane phase. The concentration of ligand in the nucleus (L_n(t)) was treated as aqueous only, i.e. in terms of the total number of molecules divided by the volume of the nucleus. \\ \hline \end{array}$			
Volumes: $V_{nuc}=0.45 \times 10^{-12}$ l; $V_{cyt}=1.55 \times 10^{-12}$ l; $V_{cell}=2 \times 10^{-12}$ L; $N_A=Avogadro's$ number = 6.02×10^{23}			

We describe a spherical cell of radius 7.85 μ m, with a spherical nucleus of radius 4.75 μ m. Consequently, Area_{nuc} (area of nuclear membrane) =280 μ m²=2.8 $\cdot 10^{-8}$ dm², Dist (distance between cytoplasmic and nuclear membrane)=3.1 μ m=3.1 $\cdot 10^{-5}$ dm ; V_{nuc}=450 μ m³, V_{cytoplasm}=1575 μ m³, and V_{cell}=2025 μ m³.

 $D_{Protein} = 6 \cdot 10^{-9} dm^2/min$ (diffusion coefficient for protein (Kholodenko et al, 2000a). $D_{Ligand} = 36 \cdot 10^{-9} dm^2/min$ (calculated from the Stokes-Einstein equation by comparing with $D_{Protein}$).

* $\kappa_{\text{Ligand diffusion}} = D_{\text{Ligand}} \times \frac{Area_{nuc}}{Dist}$ [litre/min= dm³/min]=32.5pL/min=32.5·10⁻¹² L/min.

Table 3

Design 3: NR functioning both as NR in the nucleus and as cytosolic shuttling protein

	Reactions	Parameters
v ₁	Nuclear RE binding NRL:	$k_{1f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{1b} = 60 \text{ min}^{-1}$
	$(k_{1f} \cdot \operatorname{Re}_n(t) \cdot NrL_n(t) - k_{1b} \cdot \operatorname{Re} NrL_n(t)) V_{nuc}$	
	[nmoles/min]	
v ₂	NR binding nuclear ligand in the nucleus:	$k_{2f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{2b} = 60 \text{ min}^{-1}$
	$(k_{2f} \cdot Nr_n(t) \cdot L_n(t) - k_{2b} \cdot NrL_n(t)) V_{nuc}$ [nmoles/min]	
v ₃	Mass Action: NR near the nuclear membrane (but in the cytoplasm) binding ligand from the nucleus: $(k_{3f} \cdot Nr_m(t) \cdot L_n(t) - k_{3b} \cdot NrL_m(t)) \cdot V_{cyt}$ [nmoles/min]	$k_{3f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{3b} = 60 \text{ min}^{-1}$
v ₄	Mass Action: NR that sits near plasma membrane binds ligand from the plasma membrane. $(k_{4f} \cdot Nr_c(t) \cdot L_c - k_{4b} \cdot NrL_c(t)) \cdot V_{cyt}$ [nmoles/min]	$k_{4f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{4b} = 60 \text{ min}^{-1}$
v ₅	Passive diffusion of Nr between cytoplasma close to plasma membrane and cytoplasma close to nuclear membranes $Kappa_5 \cdot (Nr_c(t) - Nr_m(t))$ [nmoles/min]	Kappa ₅ =** $\kappa_{Protein diffusion}$ =5.4×10 ⁻¹² L/min
	Please note we modeled the diffusion as a single movement from	

	close to the plasma membrane where the nuclear receptor was				
	membrane where the nuclear receptor had a concentration Nr_{m}				
Vc	Passive diffusion of NrL between plasma and nuclear membranes:	Kappa ₆ =**K _{Protoin} diffusion= 5.4×10^{-12}			
.0	$Kappa_{6} \cdot \left(NrL_{c}(t) - NrL_{m}(t)\right)$ [nmoles/min]	l/min			
	Please note we modeled the diffusion as a single movement from				
	close to the plasma membrane where the nuclear receptor was				
	present at concentration NrL _c to a position close to the nuclear				
	membrane where the nuclear receptor had a concentration NrL _m .	10			
v ₇	Ligand diffusion between cytosol and nucleus:	Kappa ₇ =* $\kappa_{\text{Ligand diffusion}}$ =32×10 ⁻¹²			
	$Kappa_7 \cdot (L_c - L_n(t))$ [nmoles/min]	$1/min; L_c = 0.005 \text{ nM}$			
dL _m (t)/dt	Balance equations				
$d\mathbf{R}_{\rm fl}(t)/dt$	$-v_1/V_{\text{min}}[nM/\text{min}]$				
$dReNrL_{r}(t)/dt$	$+v_1/V_{\text{max}}[nM/min]$				
dNr_{n}/dt	$-v_2/V_{\rm max}$ [nM/min]				
dNrL _r (t)	$(+v_2-v_1)/V_{\text{muc}}[nM/min]$				
$dNrL_m(t)$	$(+v_2+v_6)/V_{\text{out}}[nM/min]$				
dNrLc(t)	$(+v_4-v_6)/v_{cyt}$ [nM/min]				
dNr./dt	$(-v_5-v_4)/V_{\text{out}}[nM/min]$				
dNr _m /dt	$(+v_5-v_3)/V_{\text{cyt}}[nM/min]$				
an of the second s	Conserved Moieties				
$DNA_{total} \cdot V_{nuc}$	Re $Nr_n(t) \cdot V_{nuc}$ + Re $NrL_n(t) \cdot V_{nuc}$ [nmoles/cell]	$DNA_{total} \cdot V_{nuc} = 1000*10^{9}/N_{A} =$			
		1.67×10^{-12} nmoles (10 ³			
		molecules/cell)			
$NRC_{CytTotal}$ · V_{cyt}	$Nr_m(t) \cdot V_{cyt} + Nr_c(t) \cdot V_{cyt} + NrL_m(t) \cdot V_{cyt} + NrL_c(t) \cdot V_{cyt}$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) = 10^{5} \times 10^{9} / N_A$			
	[nmoles/cell]	$= 167 \times 10^{-12} \text{ nmoles} (10^5)$			
$NR_{NucTotal} \cdot V_{nuc}$	$Nr_n(t) \cdot V_{nuc} + NrL_n(t) \cdot V_{nuc} + \text{Re}NrL_n(t) \cdot V_{nuc}$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) = 10^3 \times 10^9 / N_A$			
	[nmoles/cell]	$= 167 \times 10^{-12}$ nmoles (10 ⁵)			
		molecules/cell)			
Initial conditions					
$\operatorname{Re} Nr_n(0)$	DNA _{total} [nM]				
$\operatorname{Re} NrL_n(0)$	0 [nM]				
$Nr_n(0)$	NR _{total} [nM]				
$NrL_n(0)$	0 [nM]				
$Nr_m(0)$	NR _{total} [nM]				
$NrL_m(0)$	0 [nM]				
$Nr_c(0)$	NR _{total} [nM]				
$NrL_{c}(0)$	0 [nM]				
L _n (0)	0 [nM]. The addition of ligand was modeled as the increase of its fix membrane (L.) from 0 to 0.005 nM (and maintained constant at the l	ed concentration in the outer cellular atter level), where the concentrations			
	are quantified as the aqueous concentrations in the cytosol immediate	elv adjacent to the plasma membrane:			
	we shall assume a rapid equilibration of the ligand between this aque	ous phase and the plasma-membrane			
	phase. The concentration of ligand in the nucleus $(L_n(t))$ was treated as aqueous only, i.e. in terms of the				
	total number of molecules divided by the volume of the nucleus.				
Volumes: $V_{nuc} = 0.45 \times 10^{-10}$	10^{-12} L; V _{cvt} = 1.55×10^{-12} L; V _{cell} = 2×10^{-12} L; N _A =Avogadro's number	$er = 6.02 \times 10^{23}$			

We describe a spherical cell of radius 7.85 μ m, with a spherical nucleus of radius 4.75 μ m. Consequently, Area_{nuc} (area of nuclear membrane) =280 μ m²=2.8 $\cdot 10^{-8}$ dm², Dist (distance between cytoplasmic and nuclear membrane)=3.1 μ m=3.1 $\cdot 10^{-5}$ dm ; V_{nuc}=450 μ m³, V_{cytoplasm}=1575 μ m³, and V_{cell}=2025 μ m³.

 $\begin{array}{l} D_{Protein} = \!\!6\cdot 10^{.9} dm^2 / \!min \ (diffusion \ coefficient \ for \ protein \ (Kholodenko \ et \ al, \ 2000a). \\ D_{Ligand} = \!\!36\cdot 10^{.9} dm^2 / \!min \ (calculated \ from \ the \ Stokes-Einstein \ equation \ by \ comparing \ with \ D_{Protein}). \end{array}$

$$*\kappa_{\text{Ligand diffusion}} = D_{\text{Ligand}} \times \frac{Area_{nuc}}{Dist} \text{ [litre/min= dm^3/min]} = 32.5 \text{pL/min} = 32.5 \cdot 10^{-12} \text{ L/min}.$$

$$**\kappa_{\text{Protein diffusion}} = D_{\text{Protein}} \times \frac{Area_{nuc}}{Dist} \text{ [litre/min= dm^3/min]} = 5.4 \text{ pl/min} = 5.4 \cdot 10^{-12} \text{ L/min}.$$

Table 4

Design 4: NR functioning both as NR and as shuttle from plasma membrane all the w	ay to the DNA
---	---------------

	Reactions	Parameters			
v ₁	Nuclear RE binding NRL:	$k_{1f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{1b} = 60 \text{ min}^{-1}$			
	$\left(k_{1,\ell} \cdot \operatorname{Re}_{n}(t) \cdot NrL_{n}(t) - k_{1,\ell} \cdot \operatorname{Re} NrL_{n}(t)\right) V_{max}$				
X/	[Inmoles/min] NP binding nuclear ligand in the nucleus:	$k = 60 \text{ nM}^{-1} \text{min}^{-1} \cdot k = 60 \text{ min}^{-1}$			
v ₂	$\left(I - N \right) \left(A \right) = \left(A \right) \left(A \right$	$k_{2f} = 00 \text{ mm}$, $k_{2b} = 00 \text{ mm}$			
	$V_{2f} \cdot Nr_n(t) \cdot L_n(t) - K_{2b} \cdot NrL_n(t) + V_{nuc}$ [nmoles/min]				
v ₃	Mass Action: NR that sits near plasma membrane binds ligand	$k_{3f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{3b} = 60 \text{ min}^{-1}$			
	from the plasma membrane.				
	$(k_{3f} \cdot Nr_c(t) \cdot L_n(t) - k_{3b} \cdot NrL_c(t)) \cdot V_{cyt}$ [nmoles/min]				
v ₄	Passive transport of NR across nuclear membrane:	Kappa ₄ = $**\kappa_{Protein diffusion} = 5.4 \times 10^{-10}$			
	$Kappa \cdot (Nr(t) - Nr(t))$ [nmoles/min]	¹² L/min			
T	Provide transport of NPL agross nuclear membrane:	$K_{anna} = **c = 5.4 \times 10^{-12}$			
¥5	$K_{\text{max}} = \left(N_{\text{m}} L_{\text{m}} \left(\lambda \right) - N_{\text{m}} L_{\text{m}} \left(\lambda \right) \right)$	I /min			
	$Kappa_{5} \cdot (NrL_{c}(t) - NrL_{n}(t)) \text{ [nmoles/min]}$				
V ₆	Ligand diffusion between cytosol and nucleus:	$Kappa_6 = *\kappa_{Ligand diffusion} = 32 \times 10^{-12}$			
	$Kappa_{6} \cdot (L_{c} - L_{n}(t))$ [nmoles/min]	$L/min; L_c = 0.005 \text{ nM}$			
Balance equations					
dL _n (t)/dt	$(v_6-v_2)/V_{nuc} [nM/min]$				
dRe(t)/dt	$-v_1/V_{nuc}[nM/min]$				
dReNrL _n (t)/dt	$+v_1/V_{nuc}[nM/min]$				
dNr _n /dt	$(+v_4-v_2)/V_{nuc}[nM/min]$				
dNrL _n (t)	$(+v_2+v_5-v_1)/V_{nuc}$ [nM/min]				
dNr _c /dt	$(-v_3-v_4)/V_{cyt}$ [nM/min]				
$\frac{\text{dNrL}_{c}/\text{dt}}{(+v_3-v_5)/v_{cyt}[\text{nMI/min}]}$					
$DNA_{total} \cdot V_{nuc}$	$\operatorname{Re} Nr_n(t) \cdot V_{nuc} + \operatorname{Re} NrL_n(t) \cdot V_{nuc}$ [nmoles/cell]	$DNA_{total} \cdot V_{nuc} = = 1000*10^{\circ}/N_A$			
		$= 1.67 \times 10^{-12} \text{ nmoles } (10^3)$			
		molecules/cell)			
$NR_{total} \cdot (V_{nuc} + V_{cyt})$	$Nr_n(t) \cdot V_{nuc} + Nr_c(t) \cdot V_{cyt} + NrL_n(t) \cdot V_{nuc}$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) = 10^5 * 10^9 / N_A$			
	$+ NrI(t) \cdot V + Re NrI(t) \cdot V$ [nmoloc/coll]	$= 167 \times 10^{-12}$ nmoles (10 ⁵)			
	+ $IVIL_c(t) = V_{cyt} + IVIL_n(t) = V_{nuc}$ [ninoles/cell]	molecules/cell)			
Initial conditions					
$\operatorname{Re} Nr_n(0)$	DNA _{total} [nM]				
$\operatorname{Re} NrL_n(0)$	0 [nM]				
$Nr_{\rm c}(0)$	k.c.				
	$NR_{total} \cdot (V_{nuc} + V_{cvt}) \times \frac{N_{4f}}{1 - V_{cvt}} $ [nM]				
	$k_{4f} \cdot V_{nuc} + k_{4b} \cdot V_{cyt}$				
$NrL_n(0)$	0 [nM]				

$Nr_c(0)$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) \times \frac{k_{4b}}{k_{4f} \cdot V_{nuc} + k_{4b} \cdot V_{cyt}} $ [nM]
$NrL_{c}(0)$	0 [nM].
L _n (0)	0 [nM]. The addition of ligand was modeled as the increase of its fixed concentration in the outer cellular membrane (L_c) from 0 to 0.005 nM (and maintained constant at the latter level), where the concentrations are quantified as the aqueous concentrations in the cytosol immediately adjacent to the plasma membrane; we shall assume a rapid equilibration of the ligand between this aqueous phase and the plasma-membrane phase. The concentration of ligand in the nucleus ($L_n(t)$) was treated as aqueous only, i.e. in terms of the total number of molecules divided by the volume of the nucleus.
Volumes: $V_{nuc}=0.45 \times 10^{\circ}$	12 1; V _{cvt} =1.55×10 ⁻¹² 1; V _{cell} =2×10 ⁻¹² 1; N _A =Avogadro's number=6.02×10 ²³

We describe a spherical cell of radius 7.85 μ m, with a spherical nucleus of radius 4.75 μ m. Consequently, Area_{nuc} (area of nuclear membrane) =280 μ m²=2.8 $\cdot 10^{-8}$ dm², Dist (distance between cytoplasmic and nuclear membrane)=3.1 μ m=3.1 $\cdot 10^{-5}$ dm ; V_{nuc}=450 μ m³, V_{cytoplasm}=1575 μ m³, and V_{cell}=2025 μ m³.

 $D_{Protein} = 6 \cdot 10^{-9} dm^2/min$ (diffusion coefficient for protein (Kholodenko et al, 2000a). $D_{Ligand} = 36 \cdot 10^{-9} dm^2/min$ (calculated from the Stokes-Einstein equation by comparing with $D_{Protein}$).

 $*\kappa_{\text{Ligand diffusion}} = D_{\text{Ligand}} \times \frac{Area_{nuc}}{Dist} \text{ [litre/min= dm^3/min]} = 32.5 \text{ pL/min} = 32.5 \text{ rL/min} = 32.5 \text{ r$

Table 5

Design 5: NR functioning as NR and imported actively from the cytoplasm

	Reactions	Parameters
v ₁	Nuclear RE binding NRL:	$k_{1f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{1b} = 60 \text{ min}^{-1}$
	$\left(k_{1f} \cdot \operatorname{Re}_{n}(t) \cdot NrL_{n}(t) - k_{1b} \cdot \operatorname{Re} NrL_{n}(t) \right) V_{nuc}$	
	[nmoles/min]	
v ₂	NR binding nuclear ligand:	$k_{2f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{2b} = 60 \text{ min}^{-1}$
	$(k_{2f} \cdot Nr_n(t) \cdot L_n(t) - k_{2b} \cdot NrL_n(t)) V_{nuc}$ [nmoles/min]	
v ₃	Mass Action: NR that sits near plasma membrane binds ligand	$k_{3f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{3b} = 60 \text{ min}^{-1}$
	from the plasma membrane.	
	$(k_{3f} \cdot Nr_c(t) \cdot L_n(t) - k_{3b} \cdot NrL_c(t)) \cdot V_{cyt}$ [nmoles/min]	
v ₄	Active transports of NR across nuclear membrane:	$Kappa_{4importin} = 5.4 \times 10^{-12} L/min;$
	$Kappa_{4importin} \cdot Nr_{c}(t) - Kappa_{4\exp ortin} \cdot Nr_{n}(t)$	Kappa _{4exportin} = 0.054×10^{-12} L/min
	[nmoles/min]	
v ₅	Active transports of NRL across nuclear membrane:	Kapp _{5importinf} = 5.4×10^{-12} L/min;
	$Kappa_{Simportin} \cdot NrL_{c}(t) - Kappa_{Sexportin} \cdot NrL_{n}(t)$	Kappa _{5exportin} = 0.054×10^{-12} L/min
	[nmoles/min]	
V ₆	Ligand diffusion between cytosol and nucleus:	Kappa ₆ =* $\kappa_{Ligand diffusion}$ =32×10 ⁻¹²
	$Kappa_{6} \cdot (L_{c} - L_{n}(t))$ [nmoles/min]	$L/min; L_c = 0.005 \text{ nM}$
	Balance equations	
$dL_n(t)/dt$	$(v_6-v_2)/V_{nuc} [nM/min]$	
dRe(t)/dt	$-v_1/V_{nuc}$ [nM/min]	
$dReNrL_n(t)/dt$	$+v_1/V_{nuc}$ [nM/min]	
dNr _n /dt	$(+v_4-v_2)/V_{nuc}[nM/min]$	
$dNrL_n(t)$	$(+v_2+v_5-v_1)/V_{nuc} [nM/min]$	
dNr _c /dt	$(-v_3-v_4)/V_{cyt}$ [nM/min]	
dNrL _c /dt	$(+v_3-v_5)/V_{cyt}[nM/min]$	
	Conserved Moieties	

$DNA_{total} \cdot V_{nuc}$	Re $Nr_n(t) \cdot V_{nuc}$ + Re $NrL_n(t) \cdot V_{nuc}$ [nmoles/cell]	$DNA_{total} \cdot V_{nuc} = 1000 * 10^9 / N_A =$
		1.67×10^{-12} nmoles (10 ³
		molecules/cell)
$NR_{total} \cdot (V_{nuc} + V_{cyt})$	$Nr_n(t) \cdot V_{nuc} + Nr_c(t) \cdot V_{cyt} + NrL_n(t) \cdot V_{nuc}$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) = 10^{5} \times 10^{9} / N_A$
	+ $NrL_{c}(t) \cdot V_{cyt}$ + Re $NrL_{n}(t) \cdot V_{nuc}$ [nmoles/cell]	= 167×10^{-12} nmoles (10^{5} molecules/cell)
	Initial conditions	
$\operatorname{Re} Nr_n(0)$	DNA _{total} [nM]	
$\operatorname{Re}NrL_n(0)$	0 [nM]	
$Nr_n(0)$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) \times \frac{k_{4f}}{k_{4f} \cdot V_{nuc} + k_{4b} \cdot V_{cyt}} $ [nM]	
$NrL_n(0)$	0 [nM]	
$Nr_c(0)$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) \times \frac{k_{4b}}{k_{4f} \cdot V_{nuc} + k_{4b} \cdot V_{cyt}} $ [nM]	
$NrL_{c}(0)$	0 [nM]	
L _n (0)	0 [nM]. The addition of ligand was modeled as the increase of its to membrane (L_c) from 0 to 0.005 nM (and maintained constant at the are quantified as the aqueous concentrations in the cytosol immediates we shall assume a rapid equilibration of the ligand between this acceptage. The concentration of ligand in the nucleus ($L_n(t)$) was treated total number of molecules divided by the volume of the nucleus.	fixed concentration in the outer cellular e latter level), where the concentrations iately adjacent to the plasma membrane; jueous phase and the plasma-membrane ed as aqueous only, i.e. in terms of the
Volumes: $V_{nuc}=0.45 \times 10$	$^{-12}$ l; V _{cvt} =1.55×10 ⁻¹² l; V _{cell} =2×10 ⁻¹² L; N _A =Avogadro's number=6	5.02×10^{23}

We describe a spherical cell of radius 7.85 μ m, with a spherical nucleus of radius 4.75 μ m. Consequently, Area_{nuc} (area of nuclear membrane) =280 μ m²=2.8 $\cdot 10^{-8}$ dm², Dist (distance between cytoplasmic and nuclear membrane)=3.1 μ m=3.1 $\cdot 10^{-5}$ dm ; V_{nuc}=450 μ m³, V_{cytoplasm}=1575 μ m³, and V_{cell}=2025 μ m³.

 $\begin{array}{l} D_{Protein}=\!\!6\cdot10^{-9}dm^2\!/min \ (diffusion \ coefficient \ for \ protein \ (Kholodenko \ et \ al, \ 2000a).\\ D_{Ligand}=\!\!36\cdot10^{-9}dm^2\!/min \ (calculated \ from \ the \ Stokes-Einstein \ equation \ by \ comparing \ with \ D_{Protein}). \end{array}$

* $\kappa_{\text{Ligand diffusion}} = D_{\text{Ligand}} \times \frac{Area_{nuc}}{Dist}$ [litre/min= dm³/min]=32.5pL/min=32.5·10⁻¹² L/min.

Table 6
Design 6: NR functioning as NR and preferential active import of NRL into the nucleus

	Reactions	Parameters
v ₁	Nuclear RE binding NRL:	$k_{1f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{1b} = 60 \text{ min}^{-1}$
	$(k_{1f} \cdot \operatorname{Re}_{n}(t) \cdot NrL_{n}(t) - k_{1b} \cdot \operatorname{Re} NrL_{n}(t)) V_{nuc}$	
	[nmoles/min]	
v ₂	NR binding nuclear ligand:	$k_{2f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{2b} = 60 \text{ min}^{-1}$
	$(k_{2f} \cdot Nr_n(t) \cdot L_n(t) - k_{2b} \cdot NrL_n(t)) V_{nuc}$ [nmoles/min]	
v ₃	Mass Action: NR that sits near plasma membrane binds ligand from the plasma membrane. $(k_{3f} \cdot Nr_c(t) \cdot L_n(t) - k_{3b} \cdot NrL_c(t)) \cdot V_{cyt}$ [nmoles/min]	$k_{3f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{3b} = 60 \text{ min}^{-1}$
v ₄	Active transports of NR across nuclear membrane:	Kappa _{4f} = 0.216×10^{-12} L/min;
	$Kappa_{4importin} \cdot Nr_{c}(t) - Kappa_{4\exp ortin} \cdot Nr_{n}(t)$	Kappa _{4b} = 0.054×10^{-12} L/min
	[nmoles/min]	
v ₅	Active transports of NRL across nuclear membrane:	Kapp _{5umportin} = 5.4×10^{-12} L/min;

	$Kappa_{5importin} \cdot NrL_{c}(t) - Kappa_{5exportin} \cdot NrL_{n}(t)$	Kappa _{5exporin} = 0.054×10^{-12} L/min
N7	[nmoles/min]	-22×10^{-12}
V ₆	Ligand diffusion between cytosol and nucleus: $K_{\rm eff} = K_{\rm eff} = K_{\rm eff}$	$Kappa_6 = K_{Ligand diffusion} = 32 \times 10$
	$Kappa_6 \cdot (L_c - L_n(t))$ [nmoles/min]	$L/11111, L_{c} = 0.005 \text{ mVI}$
	Balance equations	
$dL_n(t)/dt$	$(v_6-v_2)/V_{nuc} [nM/min]$	
dRe(t)/dt	-v ₁ /V _{nuc} [nM/min]	
$dReNrL_n(t)/dt$	$+v_1/V_{nuc}[nM/min]$	
dNr _n /dt	$(+v_4-v_2)/V_{nuc}[nM/min]$	
$dNrL_n(t)$	$(+v_2+v_5-v_1)/V_{nuc} [nM/min]$	
dNr _c /dt	$(-v_3-v_4)/V_{cyt}$ [nM/min]	
dNrL _c /dt	$\frac{(+v_3-v_5)}{v_{cyt}} \frac{(nM/min)}{(+v_3-v_5)}$	
	Conserved Moleties	
$DNA_{total} \cdot V_{nuc}$	$\operatorname{Re} Nr_n(t) \cdot V_{nuc} + \operatorname{Re} NrL_n(t) \cdot V_{nuc} [nmoles/cell]$	$DNA_{total} \cdot V_{nuc} = 1000*10^{9}/N_{A} = 1.67 \times 10^{-12} \text{ nmoles } (10^{3} \text{ molecules} (cell)$
$NR_{total} \cdot (V_{nuc} + V_{cyt})$	$Nr_n(t) \cdot V_{nuc} + Nr_c(t) \cdot V_{cyt} + NrL_n(t) \cdot V_{nuc}$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) = 10^5 * 10^9 / N_A$
	+ $NrL_{c}(t) \cdot V_{cyt}$ + Re $NrL_{n}(t) \cdot V_{nuc}$ [nmoles/cell]	= 167×10^{-12} nmoles (10^5 molecules/cell)
	Initial conditions	- I
$\operatorname{Re} Nr_n(0)$	DNA _{total} [nM]	
$\operatorname{Re} NrL_n(0)$	0 [nM]	
$Nr_n(0)$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) \times \frac{k_{4f}}{k_{4f} \cdot V_{nuc} + k_{4b} \cdot V_{cyt}} \text{ [nM]}$	
$NrL_n(0)$	0 [nM]	
$Nr_{c}(0)$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) \times \frac{k_{4b}}{k_{4f} \cdot V_{nuc} + k_{4b} \cdot V_{cyt}} $ [nM]	
$NrL_c(0)$	0 [nM]	
L _n (0)	0 [nM]. The addition of ligand was modeled as the increase of its membrane (L_c) from 0 to 0.005 nM (and maintained constant at th are quantified as the aqueous concentrations in the cytosol immed we shall assume a rapid equilibration of the ligand between this ac phase. The concentration of ligand in the nucleus ($L_n(t)$) was treational total number of molecules divided by the volume of the nucleus.	fixed concentration in the outer cellular e latter level), where the concentrations iately adjacent to the plasma membrane; queous phase and the plasma-membrane ed as aqueous only, i.e. in terms of the
Volumes: V _{nuc} =0.45×10	$^{-12}$ l; V _{cvt} =1.55×10 ⁻¹² l; V _{cell} =2×10 ⁻¹² L; N _A =Avogadro's number=0	6.02×10^{23}
***Different regimes of nuclear, high shuttling (re Kappa _{4f} =5.4×10 ⁻¹⁰ l/min	predominant localization and shuttling rate of Nr were used for d solid line): ; Kappa _{4b} = 5.4×10^{-12} l/min; Kapp _{5f} = 2.7×10^{-8} l/min; Kappa _{5b} = $5.4 \times$	Fig. 2G: 10 ⁻¹² l/min
nuclear, low shuttling (rec Kappa _{4f} = 5.4×10^{-14} l/min;	l dashed line): ; Kappa₄₅=5.4×10 ⁻¹⁶ l/min; Kapp₅₅=2.7×10 ⁻¹² l/min; Kappa₅₅=5.4>	<10 ⁻¹⁶ l/min
mixed, high shuttling (bla Kappa _{4f} = 5.4×10^{-12} l/min;	ck solid line): ; Kappa₄b=5.4×10 ⁻¹² l/min; Kapp₅f=2.7×10 ⁻¹⁰ l/min; Kappa₅b=5.4>	<10 ⁻¹² l/min
mixed, low shuttling (black Kappa _{4f} = 5.4×10^{-16} l/min	k dashed line): ; Kappa₄b=5.4×10 ⁻¹⁶ l/min; Kapp₅f=2.7×10 ⁻¹⁴ l/min; Kappa₅b=5.4>	<10 ⁻¹⁶ l/min
cytoplasmic, high shuttlin Kappa _{4f} =5.4×10 ⁻¹² l/min	g (blue solid line): ; Kappa _{4b} =5.4×10 ⁻¹⁰ l/min; Kapp _{5f} =2.7×10 ⁻¹⁰ l/min; Kappa _{5b} =5.4>	<10 ⁻¹⁰ l/min
cytoplasmic low shuttling	y (blue dashed line):	

We describe a spherical cell of radius 7.85 μ m, with a spherical nucleus of radius 4.75 μ m. Consequently, Area_{nuc} (area of nuclear membrane) = 280 μ m²=2.8 · 10 ⁻⁸ dm², Dist (distance between cytoplasmic and nuclear membrane)=3.1 μ m=3.1 · 10 ⁻⁵ dm ; V_{nuc}=450 μ m³, V_{cytoplasm}=1575 μ m³, and V_{cell}=2025 μ m³.

* $\kappa_{\text{Ligand diffusion}} = D_{\text{Ligand}} \times \frac{Area_{nuc}}{Dist}$ [litre/min= dm³/min]=32.5pL/min=32.5·10⁻¹² L/min.

Table 7 Model for Fig. 3

Model for Fig.	Reactions	Parameters
V ₁	NRL binding importins in the cytoplasm:	$k_{1f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{1b} = 300 \text{ min}^{-1}$
1	$(k \cdot NrI(t) \cdot IMP(t) - k \cdot NrIIMP(t)) \cdot V$	11
	$(\kappa_{1f} \cdot I \vee L_c(t) \cdot I \vee I c (t) - \kappa_{1b} \cdot I \vee L I \vee I c (t)) \cdot V_{cyt}$	
	[nmoles/min]	
v ₂	Nuclear transport of importins complexed with NR:	reversible pore (black dashed line):
	$Kappa_{2f} \cdot NrLIMP_{c} - Kappa_{2h} \cdot NrLIMP_{n}$	Kappa _{2f} = 5.4×10^{-12} l/min;
	[nmoles/min]	$Kappa_{2b}=5.4 \times 10^{-1} I/min$
		active import of NrI Imp complex
		(grey solid line):
		Kappa ₂ =5 4×10^{-12} l/min
		Kappa _{2h} =0 L/min
		active export of IMP (black solid
		line):
		Kappa _{2f} = 5.4×10^{-12} l/min;
		Kappa _{2b} = 5.4×10^{-12} l/min
v ₃	Nuclear transport of importins:	reversible pore (black dashed line):
	$Kappa_{3f} \cdot IMP_{c}(t) - Kappa_{3h} \cdot IMP_{n}(t)$ [nmoles/min]	$Kappa_{3f} = 5.4 \times 10^{-12} $ l/min;
		$Kappa_{3b}=5.4 \times 10^{-12} \text{ l/min}$
		active import of NrI Imp complex
		(gray solid line):
		(grey solid line). Kappag -5.4×10^{-12} l/min:
		Kappa ₃₁ = 5.4×10^{-12} l/min
		active export of IMP (black solid
		line):
		Kappa _{3f} =0 L/min;
		$Kappa_{3b}=5.4 \times 10^{-12} l/min$
v ₄	NRL binding importins in the nucleus:	$k_{4f}=60 \text{ nM}^{-1}\text{min}^{-1}$; $k_{4f}=300 \text{ min}^{-1}$
	$(k_{4f} \cdot NrL_n(t) \cdot IMP_n - k_{4b} \cdot NrLIMP_n(t)) \cdot V_{nuc}$	
	[nmoles/min]	
V5	Nuclear RE binding NRL:	$k_{5f}=60 \text{ nM}^{-1}\text{min}^{-1}$; $k_{5f}=60 \text{ min}^{-1}$
5	$(k_{\varepsilon_{1}} \cdot NrL(t) \cdot \operatorname{Re}(t) - k_{\varepsilon_{1}} \cdot \operatorname{Re}NrL(t)) \cdot V$	
	[nmolec/min]	
	[Innores/Inn] Balance equations	1
dNrL _c (t)/dt	-v ₁ /V _{evt} [nM/min]	
$dImp_c(t)/dt$	$(-v_1-v_3)/V_{\text{ovt}}[\text{nM/min}]$	
dImpNrL _c (t)/dt	$(+v_1-v_2)/V_{cvt}$ [nM/min]	
$dNrL_n(t)/dt$	$(+v_4-v_5)/V_{\text{nuc}}[nM/\text{min}]$	
dImp _n (t)/dt	$(+v_3-v_4)/V_{nuc}[nM/min]$	
dImpNrL _n (t)/dt	$(+v_2+v_4)/V_{nuc} [nM/min]$	

dRe _n /dt	$-v_5/V_{nuc}$ [nM/min]	
dReNrL _n /dt	$+v_5/V_{nuc}[nM/min]$	
	Conserved Moieties	
$DNA_{total} \cdot V_{nuc}$	$\operatorname{Re} NrL_{n}(t) \cdot V_{nuc} + \operatorname{Re}_{n}(t) \cdot V_{nuc}[nmoles/cell]$	$DNA_{total} \cdot V_{nuc} = 1000*10^{9}/N_{A} =$ 1.67×10 ⁻¹² nmoles (10 ³ molecular(acll))
$NR_{total} \cdot (V_{nuc} + V_{cyt})$	$NrL_n(t) \cdot V_{nuc} + NrL_c(t) \cdot V_{cyt} + \operatorname{Re}NrL_n(t) \cdot V_{nuc}$	$\frac{NR_{total} \cdot (V_{nuc} + V_{cyt})}{NR_{total} \cdot (V_{nuc} + V_{cyt})} =$
	+ $NrLIMP_{c}(t) \cdot V_{cyt}$ + $NrLIMP_{n}(t) \cdot V_{nuc}$ [nmoles/cell]	1.31×10^{-12} nmoles
$IMP_{total} \cdot (V_{nuc} + V_{cyt})$	$NrLIMP_n(t) \cdot V_{nuc} + NrLIMP_c(t) \cdot V_{cyt}$	variable
	$+IMP_{c}(t) \cdot V_{cyt} + IMP_{n}(t) \cdot V_{nuc}$ [nmoles/cell]	
	Initial conditions	
DNA (0)	DNA _{total} [nM]	
$NrL_{c}(0)$	$\frac{NR_{total} \cdot (V_{nuc} + V_{cyt})}{[nM]}$	
	V_{cyt}	
Imp _c (0)	$IMP_{total} \cdot (V_{nuc} + V_{cyt}) \times \frac{k_{3b}}{k_{3f} \cdot V_{nuc} + k_{3b} \cdot V_{cyt}} $ [nM]	
ImpNrL _c (0)	0 [nM]	
$NrL_n(0)$	0 [nM]	
Imp _n (0)	$IMP_{total} \cdot (V_{nuc} + V_{cyt}) \times \frac{k_{3f}}{k_{3f} \cdot V_{nuc} + k_{3b} \cdot V_{cyt}} [nM]$	
ImpNrL _n (0)	0 [nM]	
Volumes: $V_{nuc}=0.45 \times 10^{-1}$	² l; $V_{cyt}=1.55 \times 10^{-12}$ l; $V_{cell}=2 \times 10^{-12}$ l; $N_A=Avogadro's$ number=6.0	2×10 ²³
Various regimes of Nr nu	cleo-cytoplasmic transport (reactions 2 and 3):	
(Fig. 3 A) reversible pore (black dashed line):	410-1214
$Kappa_{2f} = 5.4 \times 10^{12} I/min;$	$Kappa_{2b}=5.4 \times 10^{12}$ l/min; $Kappa_{3f}=5.4 \times 10^{12}$ l/min; $Kappa_{3b}=5.4 \times 10^{12}$	10 ¹² l/min
(Fig. 3 B) active import of	NrI Imp complex (grey solid line):	
Kappa _{2f} = 5.4×10^{-12} l/min;	Kappa _{2b} =0 l/min; Kappa _{3f} = 5.4×10^{-12} l/min; Kappa _{3b} = 5.4×10^{-12} l/m	in
(Fig. 3 C) active export of	IMP (black solid line):	
Kappa _{2f} = 5.4×10^{-12} l/min;	Kappa _{2b} =5.4×10 ⁻¹² l/min; Kappa _{3f} =0 l/min; Kappa _{3b} =5.4×10 ⁻¹² l/m	in

Table 8 Model for Fig. 4

	Reactions	Parameters
v _{1i}	Product inhibition (The S/Ks term in the denominator is neglected) $\frac{V_{MAX_{1}}' \cdot \frac{S}{K_{s}'}}{1 + \frac{x_{i}(t)}{K_{1x}} + \frac{S}{K_{s}'}} [nM/min] \text{ which was approximated by:}$	$V_{MAX_1} = 500 \text{ nM min}^{-1}; K_s = 50$ $K_{1x} = 0.1 \text{ nM}; s = 1 \text{ nM};$

	$\frac{V_{MAX_1} \cdot \frac{S}{K_s}}{1 + \frac{x_i(t)}{K_{_{1X}}}}$	
v _{2i}	$\frac{V_{MAX_{2}} \cdot \frac{x_{i}(t)}{K_{2x}}}{1 + \sum_{k=1}^{n} \frac{x_{i}(t)}{K_{2x}} + \sum_{k=1}^{n} \frac{y_{i}(t)}{K_{2y}}} [nM/min]$	$V_{MAX_2} = 1 \text{ nM min}^{-1}; K_{2x} = 1$ nM; $K_{2y} = 1 \text{ nM}$
v _{3i}	$\frac{V_{MAX_3} \cdot \frac{y_i(t)}{K_{3y}}}{1 + \frac{y_i(t)}{K_{3y}}} [nM/min]$	$V_{MAX_3} = 0.1 \text{ nM min}^{-1}; K_{3x} = 1$ nM; $K_{3y} = 1 \text{ nM}$
	Balance equations	
ds(t)/dt	0 (considered an infinite reservoir)	
dx _i (t)/dt	$(+v_{1i}-v_{2i}) [nM/min]$	
dy _i (t)/dt	$(+v_{2i}-v_{3i}) [nM/min]$	
	Initial conditions	
s(0)	1 [nM]	
$x_i(0)/dt$	0 [nM]	
$y_i(0)/dt$	0[nM]	

Table 9

	Reactions	Parameters
v ₁	NRL binding importins in the cytoplasm:	$k_{1f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{1b} = 300 \text{ min}^{-1}$
	$(k_{1,\ell} \cdot NrL(t) \cdot IMP(t) - k_{1,\ell} \cdot NrLIMP(t)) \cdot V$	
	$(n_{1f} + n_{c} + c) + n_{c} + c + c + c + c + c + c + c + c + c +$	
	[nmoles/min]	
v ₂	Nuclear transport of importing complexed with NR:	reversible pore (black dashed line): $V_{\text{oppo}} = 5.4 \times 10^{-12} l/\text{min}$
	$Kappa_{2f} \cdot NrLIMP_{c} - Kappa_{2b} \cdot NrLIMP_{n}$	Kappa _{2f} = 5.4×10^{-12} l/min;
	[nmoles/min]	$\operatorname{Kappa}_{2b} = 5.4 \times 10^{-1/11111}$
	[]	active import of NrI Imp complex (grey
		solid line):
		Kappa _{2f} =5 .4 $\times 10^{-12}$ l/min;
		$Kappa_{2b} = 0 L/min$
		active export of IMP (black solid line):
		$Kappa_{2f} = 5.4 \times 10^{-12} $ l/min;
		$Kappa_{2b} = 5.4 \times 10^{-12} \text{ l/min}$
V ₃	Nuclear transport of importins:	reversible pore (black dashed line):
	$Kappa_{3f} \cdot IMP_{c}(t) - Kappa_{3b} \cdot IMP_{n}(t)$	$Kappa_{3f} = 5.4 \times 10^{-12} \text{ l/min};$
	[nmoles/min]	$Kappa_{3b} = 5.4 \times 10$ 1/min
		active import of NrI Imp complex (grey
		solid line):
		$Kappa_{3f} = 5.4 \times 10^{-12} $ l/min;
		$Kappa_{3b} = 5.4 \times 10^{-12} $ l/min
		active export of IMP (black solid line):
		$Kappa_{3f} = 0 l/min;$
		$Kappa_{3b} = 5.4 \times 10^{-12} \text{ l/min}$
V ₄	NRL binding importing in the nucleus:	$k_{4f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{4f} = 300 \text{ min}^{-1}$
	$(K_{4f} \cdot NrL_n(t) \cdot IMP_n - K_{4b} \cdot NrLIMP_n(t)) \cdot V_{nuc}$	
	[nmoles/min]	
v ₅	Nuclear RE binding NRL:	$k_{5f} = 60 \text{ nM}^{-1} \text{min}^{-1}; k_{5f} = 60 \text{ min}^{-1}$
	$(k_{5f} \cdot NrL_n(t) \cdot \operatorname{Re}_n(t) - k_{5b} \cdot \operatorname{Re} NrL_n(t)) \cdot V_{nuc}$	
	[nmoles/min]	
V ₆	Degradation of NR after being bound with RE (RE):	$K_{6f} = 0.1 \text{ min}^{-1}$
	$(k_{c}, \mathbf{Re} NrL(t)) \cdot V$ [nmoles/min]	
dNrI (t)/dt	Balance equations	
$\frac{dImp(t)}{dImp(t)}$	$-v_1/v_{cyt}$ [IIIVI/IIIII] $(-v_1-v_2)/V$ [INM/min]	
dImpNrL(t)/dt	$(-v_1 - v_3)/v_{\text{cyt}}[\text{inv}(1)\text{ini}]$	
$dNrL_{c}(t)/dt$	$(+v_1 - v_2)/v_{\text{cyt}}$ [nM/min]	
$dImp_n(t)/dt$	$(+v_{2}-v_{4})/V_{muc}$ [nM/min]	
$dImpNrL_n(t)/dt$	$(+v_2+v_4)/V_{\text{nuc}}[nM/min]$	
dRe _n /dt	$(-v_5+v_6)/V_{\text{nuc}}[nM/\text{min}]$	
dReNrL _n /dt	$(+v_5-v_6)/V_{nuc}[nM/min]$	
dDegr _n /dt	+v ₆ /V _{nuc} [nM/min]	
	Conserved Moieties	
$DNA_{i+i+1} \cdot V$	Re $NrL_n(t) \cdot V_{nuc} + \operatorname{Re}_n(t) \cdot V_{nuc}$ [nmoles/cell]	$DNA_{1,1,1} \cdot V_{1,1,1} = 1000 * 10^{9} / N_{A} =$
- · total ' nuc		1.67×10^{-12} nm olog (10^3 m olog (10^3
	$M_{nI}(4) V \rightarrow M_{nI}(4) V \rightarrow D_{n} M_{nI}(4) V$	1.07 × 10 nmoles (10 molecules/cell)
$NR_{total} \cdot (V_{nuc} + V_{cyt})$	$INTL_n(t) \cdot V_{nuc} + INTL_c(t) \cdot V_{cyt} + KeINTL_n(t) \cdot V_{nuc}$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) =$
	$+ NrLIMP_{(t)} \cdot V_{-} + NrLIMP_{(t)} \cdot V_{-} + Degr$	1.31×10^{-12} nmoles

Model for Figure 1 of Supplementary Information

	[nmoles/cell]	
$IMP_{total} \cdot (V_{nuc} + V_{cvt})$	$NrLIMP_n(t) \cdot V_{nuc} + NrLIMP_c(t) \cdot V_{cyt}$	Variable;
iotai nuo eyr	$\pm IMP(t) \cdot V \pm IMP(t) \cdot V \qquad [amolog(a)]]$	For Fig. 1S D:
	+ $\Pi_{c}(l) \cdot V_{cyt} + \Pi_{n}(l) \cdot V_{nuc}$ [nmoles/cell]	$IMP_{total} \cdot (V_{nuc} + V_{cvt}) = 0.1 \times 10^{-12}$
		nmoles
	Initial conditions	
DNA (0)	DNA _{total} [nM]	
$NrL_{c}(0)$	$NR_{total} \cdot (V_{nuc} + V_{cvt})$	
	V_{cyt} [nM]	
Imp _c (0)	k_{3b}	
	$K_{3f} \cdot V_{nuc} + k_{3b} \cdot V_{cyt}$	
ImpNrL _c (0)	0 [nM]	
$NrL_n(0)$	0 [nM]	
$Imp_n(0)$	k_{3f}	
	$IMP_{total} \cdot (V_{nuc} + V_{cyt}) \times \frac{1}{k_{3f} \cdot V_{nuc} + k_{3b} \cdot V_{cyt}} [nM]$	
$ImpNrL_n(0)$	0 [nM]	
Degr _n (0)	0 [nM]	
Volumes: $V_{nuc} = 0.45 \times 10^{-1}$	² l; $V_{cyt}=1.55 \times 10^{-12}$ l; $V_{cell}=2 \times 10^{-12}$ l; $N_A=Avogadro's$ numb	$er=6.02 \times 10^{23}$
Various regimes of Nr nu	cleo-cytoplasmic transport (reactions 2 and 3):	
(Fig. 3A) reversible pore (t	black dashed line):	
Kappa _{2f} = 5.4×10^{-12} l/min;	$Kappa_{2b} = 5.4 \times 10^{-12} I/min; Kappa_{3f} = 5.4 \times 10^{-12} I/min; Kappa_{3t}$	$=5.4 \times 10^{-12}$ l/min
(Fig. 3B) active import of NrLImp complex (grey solid line):		
Kappa ₂₁ = 5.4×10^{-12} l/min;	Kappa _{2f} = 5.4×10^{-12} l/min; Kappa _{2b} =0 l/min; Kappa _{3f} = 5.4×10^{-12} l/min; Kappa _{3b} = 5.4×10^{-12} l/min	
(Fig. 3C) active export of I	MP (black solid line):	
Kappa _{2f} = 5.4×10^{-12} l/min;	Kappa _{2b} =5.4×10 ⁻¹² l/min; Kappa _{3f} =0 L/min; Kappa _{3b} =5.4×1	0 ⁻¹² l/min

Ĵ	Reactions	Parameters
v ₁	Nuclear RE binding NRL:	$k_{1f} = 60 \text{ nM}^{-1} \text{min}^{-1}$ (diffusion limited); $k_{1b} = 60$
	$(k_{1f} \cdot \operatorname{Re}_n(t) \cdot NrL_n(t) - k_{1h} \cdot \operatorname{Re} NrL_n(t)) V_{nuc}$	
	[nmoles/min]	(in oreder kd=1 nM (Drouin et al, 1992))
V ₂	NR binding nuclear ligand:	$k_{2f} = 60 \text{ nM}^{-1} \text{min}^{-1} (\text{diffusion limited}); k_{2h} = 60$
12	$(k \cdot Nr(t) \cdot I(t) - k \cdot NrI(t)) \cdot V$ [nmoles/min]	min ⁻¹ (Marissal-Arvy et al, 1999))
	$(\mathbf{r}_{2f} + \mathbf{r}_n(t) + \mathbf{E}_n(t) + \mathbf{r}_{2b} + \mathbf{r}_n(t)) \mathbf{r}_{nuc}$ [indexs, init]	
v ₃	Mass Action: NR that sits near plasma membrane binds ligand from the plasma membrane	$k_{3f} = 60 \text{ nM} \text{ min} (\text{diffusion limited}); k_{3b} = 60 \text{ min}^{-1}(\text{Marissal} \text{ Aryy et al} (1990))$
	$\begin{pmatrix} l_{L} & N_{L}(t) \end{pmatrix} = L(t) + L(t) \end{pmatrix} V = L(t)$	
	$(\kappa_{3f} \cdot I v_c(t) \cdot L_n(t) - \kappa_{3b} \cdot I v L_c(t)) \cdot v_{cyt}$ [infolds/fillin]	10
v ₄	Active transports of NR across nuclear membrane:	$Kappa_{4f}=0.6 \times 10^{-12} L/min$ (in the range of
	$Kappa_{4importin} \cdot Nr_{c}(t) - Kappa_{4exportin} \cdot Nr_{n}(t)$	al 2008)
	[nmoles/min]	Kappa _{4b} =1 \times 10 ⁻¹² L/min (fitted)
v ₅	Active transports of NRL across nuclear membrane:	$Kapp_{5f} = 5 \times 10^{-12} L/min \text{ (fitted)};$
	$Kappa_{\text{Supportion}} \cdot NrL_{a}(t) - Kappa_{\text{Supportion}} \cdot NrL_{a}(t)$	$Kappa_{5b}=0.04\times10^{-12} L/min \text{ (fitted)}$
	[nmoles/min]	
V ₆	Ligand diffusion between cytosol and nucleus:	Kappa ₆ =* $\kappa_{\text{Ligand diffusion}}$ =32×10 ⁻¹² L/min; L _c =
	$Kanna \cdot (L - L(t))$ [nmoles/min]	0.005 nM
	$\mathbf{Rappu_6} (\mathbf{L}_c \mathbf{L}_n(t)) \text{ [initial symmetry]}$	
dL (t)/dt	$(v_{c}-v_{a})/V [nM/min]$	
$dR_n(t)/dt$	$-v_1/V_{\text{nuc}}[nM/min]$	
dReNrL _n (t)/dt	$+v_1/V_{nuc}[nM/min]$	
dNr _n /dt	$(+v_4-v_2)/V_{nuc} [nM/min]$	
dNrL _n (t)	$(+v_2+v_5-v_1)/V_{nuc}$ [nM/min]	
dNr _c /dt	$(-v_3-v_4)/V_{cyt}[nM/min]$	
dinfL _c /di	(+V ₃ -V ₅)/V _{cyt} [nM/min] Conserved Moieties	
DNA .V	$\operatorname{Re} Nr(t) \cdot V + \operatorname{Re} NrI(t) \cdot V [nmolas/call]$	$DNA = V = 1000 * 10^9 (N_{\odot} = 1.67 \times 10^5)$
D IVII total v nuc	$\mathbf{K} = \mathbf{V}_n(t) + \mathbf{K} = \mathbf{V} \mathbf{L}_n(t) + \mathbf{V}_{nuc} + \mathbf{K} \mathbf{U} \mathbf{U} \mathbf{L}_n(t) + \mathbf{V}_{nuc} + \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}$	D_{1} total $V_{nuc} = 1000 \ 10 \ M_A = 1.07 \ K10$
		2000)
$NR_{total} \cdot (V_{nuc} + V)$	V_{cyt}) $Nr_n(t) \cdot V_{nuc} + Nr_c(t) \cdot V_{cyt} + NrL_n(t) \cdot V_{nuc}$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) = 10^5 * 10^9 / N_A =$
	$+ NrI(t) \cdot V + Re NrI(t) \cdot V$ [nmolas/call]	167×10^{-12} nmoles (10 ⁵ molecules/cell)
	$\Gamma_{c}(t) = \Gamma_{c}(t) + \Gamma_{cyt} + \Gamma_{n}(t) + \Gamma_{n}(t) + \Gamma_{nuc}$	(Nordeen et al, 1989; van Steensel et al,
	Tritial conditions	1995)
$\mathbf{D} \circ \mathbf{M}_{\mathbf{r}}(0)$		
$\operatorname{Ke} Nr_n(0)$		
$\operatorname{Re} NrL_n(0)$	0 [fiM]	
$Nr_n(0)$	k_{4f}	
	$[NK_{total} \cdot (V_{nuc} + V_{cyt}) \times \frac{1}{k_{Af} \cdot V_{nuc} + k_{Ab} \cdot V_{cyt}} [nM]$	
NrL(0)	0 [nM]	
$III \underline{D}_n(0)$	1	
$Nr_c(0)$	$NR_{total} \cdot (V_{nuc} + V_{cyt}) \times \frac{k_{4b}}{1 - 1 - 1} $ [nM]	
	$k_{4f} \cdot V_{nuc} + k_{4b} \cdot V_{cyt}$	
$NrL_{c}(0)$	0 [nM]	
$L_n(0)$	0 [nM]. The addition of ligand was modeled as the increase of	f its fixed concentration in the outer cellular
	membrane (L_c) from 0 to 0.005 nM (and maintained constant	at the latter level), where the concentrations
	are quantified as the aqueous concentrations in the cytosol in	mediately adjacent to the plasma membrane;
1	we shall assume a rapid equilibration of the ligand between the	his aqueous phase and the plasma-membrane

Table 10
Model for Figure 2S of Supplementary Information (GR specific model)

	phase. The concentration of ligand in the nucleus $(L_n(t))$ was treated as aqueous only, i.e. in terms of the
	total number of molecules divided by the volume of the nucleus.
Volumes: $V_{m} = 0.45 \times 10^{-12}$ I; $V_{m} = 1.55 \times 10^{-12}$ I; $V_{m} = 2 \times 10^{-12}$ I; $N_{m} = A \log a dropping and P = 0.2 \times 10^{23}$ (Riddick and Macara 2007)	

We describe a spherical cell of radius 7.85 μ m, with a spherical nucleus of radius 4.75 μ m. Consequently, Area_{nuc} (area of nuclear membrane) =280 μ m²=2.8 · 10⁻⁸ dm², Dist (distance between cytoplasmic and nuclear membrane)=3.1 μ m=3.1 · 10⁻⁵ dm ; V_{nuc}=450 μ m³, V_{cytoplasm}=1575 μ m³, and V_{cell}=2025 μ m³.

 $D_{Protein} = 6 \cdot 10^{-9} dm^2/min$ (diffusion coefficient for protein (Kholodenko et al, 2000a). $D_{Ligand} = 36 \cdot 10^{-9} dm^2/min$ (calculated from the Stokes-Einstein equation by comparing with $D_{Protein}$).

* $\kappa_{\text{Ligand diffusion}} = D_{\text{Ligand}} \times \frac{Area_{nuc}}{Dist}$ [litre/min= dm³/min]=32.5pL/min=32.5·10⁻¹² L/min.

SENSITIVITY ANALYSIS OF MAIN CONCLUSIONS

We have varied parameter values and checked whether the conclusions persisted. Our conclusions were mostly robust for up to five-fold changes in parameter values, but the precise details are given below.

Figure 2: Design 6 is the most advantageous. This conclusion was not affected by at least 5 fold perturbation of any single parameter in the model. The only exception was related to the rate of nuclear import of liganded receptor. If active nuclear import of liganded receptor in design 6 is decreased more then 3 fold, then the advantages of the design 6 comparing with the design 2 almost disappear. This fits well in the context of the main messages of our manuscript. Indeed, an advantageous feature of the design 6 is exactly the active import of ligand into the nucleus achieved by preferential nuclear import of the ligand bound receptor.

Figure 3: Active export of importins prevents sequestration of the receptor in the nucleus by importins. This conclusion was not affected by 10 fold perturbation of any single parameter in the model.

Figure 4: flux through the NPC may be robust even if all pathways run through the same pore. This conclusion was not affected by 10 fold perturbation of any single parameter in the model.

Table 11 SENSITIVITY ANALYSIS OF MAIN CONCLUSIONS FOR FIG. 2

Table 12 SENSITIVITY ANALYSIS OF MAIN CONCLUSIONS FOR FIG. 3

Table 13 SENSITIVITY ANALYSIS OF MAIN CONCLUSIONS FOR FIG. 4

Supplementary References

- Bakker BM, Mensonides FI, Teusink B, van Hoek P, Michels PA, Westerhoff HV (2000) Compartmentation protects trypanosomes from the dangerous design of glycolysis. Proc Natl Acad Sci USA 97: 2087-2092.
- Schmierer B, Tournier AL, Bates PA, Hill CS (2008) Mathematical modeling identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system. Proc Natl Acad Sci USA 105: 6608-6613.