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Supplementary Methods 

More Details on Microscope Configurations 

The differences in microscope configurations for fluorescence and non-fluorescence 

measurements are described as following. For experiments with DivJ-EGFP, a high numerical 

aperture oil objective (Plan APO 60X N.A. 1.4, Nikon Instrument, Melville, NY) was used to 

perform objective-based total internal reflection fluorescence (TIRF) microscopy. With an 

additional 4X eyepiece expander (Nikon Instrument, Austin, TX), the total magnification is 

240X. The laser beam, reflected by a dichroic mirror (FF500/646-Di01, Semrock, Rochester, 

NY), was directed to the coverslip-water interface at the critical reflection angle with a 

relatively low incident power of 0.3 mW (corresponds to ~ 20 W/cm2 out of the objective). 

The fluorescence emission passed through a band pass filter (HQ525/50, Chroma Technology, 

Rockingham, VT) and was imaged onto a back-illuminated EMCCD (iXon DV887-BI, Andor 

Technology, South Windsor, CT) with 1 sec exposure time and 200 EM gain. The 

fluorescence image (512 pixels X 512 pixels in size corresponds to a 34 μm X 34μm area) 

was taken once every five minutes while the bright-field DIC image of the same area was 

taken at 1/min frame rate. For autofocusing, we used the position information of the back 

reflected beam of another TIR-aligned 633 nm laser (LHRP-0081, Research Electro-Optics, 

Boulder, CO) as the continuous feedback for the adjustment of objective motor allowing 

focus stabilization with up to 50 nm precision. For experiments with strains where DivJ does 

not have EGFP tag, a long working-distance objective (LUCPLFLN 40X N.A. 0.6, Olympus 

America, Center Valley, PA) was used to prevent heat loss through the objective. The total 

magnification was 60X with the use of an additional 1.5X slider in the microscope. A 

conventional bright-filed image was captured by a monochrome CCD (LCL-902C, Watec Inc, 

Orangeburg, NY) with 50 ms exposure time (a size of 640 pixels X 480 pixels corresponding 

to a 90 μm X 78 μm area) at a frame rate of 1/min. Focus measures [1] calculated from 

bright-field images were used as criteria for autofocusing. 

 

Image Processing and Data Analysis 

For analysis of the data from non-fluorescent construct, regular bright-field images (1 

frame per min) for each experiment were loaded as a stack into ImageJ, thresholded, and 

analyzed with object analyzer to obtain the growth curves in Figure 5B. This analysis relies 

on the threshold brightness level for defining the cell bodies as well as the threshold pixel 

number for defining an object (i.e. a cell), and we chose both thresholds manually for each 

stack of images by comparing the thresholded stack and the original stack. The stalked cell 

cycle is defined as the time difference between two successive divisions of the stalked cell. 

The swarmer cell cycle is the time difference between its initial attachment to the surface and 

its first division. These times were analyzed manually for individual bacteria and statistics are 

obtained as in Figure 2B. To analyze division time statistics for the divJ::Tn5 mutant strain 

which has a noisy genetic background [2], we only characterized cells with length less than 

about four times that of the wild-type cells since most filamentous cells tend to grow out of 

the surface and out of the field of view. The swarmer cell adhesion frequency is calculated by 

the number of surface adhered swarmer cells over the total number of new born swarmer cells. 

The filament fraction is defined by percentage of cells that become filamented within 3hrs of 
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appearance, i.e. number of cells that turn into the filament form within 3 hrs of appearance 

divided by the total number of cells tracked. We restricted this analysis to a 3 hr period for 

each cell because the high surface density that occurs at later times under some conditions 

does not allow long time tracking of individual cells.  

For analysis of images from the fluorescent construct, the fluorescent images (16-bit, 1 

frame every 5 min) were first loaded into ImageJ (NIH, Bethesda, MD) as a stack and were 

processed with the non-uniform background subtraction plugin for initial background 

subtraction. With ImageJ ROI tool, three rectangular boxes were manually drawn for each 

individual cell: to define the signal from the lateral membrane (excluding the stalked pole), 

the stalked pole, and the background area near each cell for successive frames. It should be 

noted that not all images are well focused (partially due to the inefficiency of the autofocusing 

system) and therefore only the sharp focused images are included in this analysis. The image 

stack and the ROI information are imported and processed with Matlab (Mathworks, Natick, 

MA) to obtain intensities of each area (membrane, stalked pole, and background area), 

defined as the average of the five brightest pixels inside each area. The background intensity 

was subtracted from the lateral membrane and stalked intensities to yield traces as shown 

(Figure 7C, Figure S5). For the steady-state intensities shown in Figure 7F, fluorescence 

image obtained after 6hrs of induction for each stack is used to calculate individual cells’ 

lateral membrane and stalked intensities. Note that for steady state analysis, only cells within 

the center of the illumination (i.e. center of the laser profile) were included. For the analysis 

of integrated intensity that is used for quantitative comparison between experiment and 

simulation (i.e. Figure S7A), stalked cells that just divided are used to calculate the integrated 

intensities for both stalked and lateral membrane regions. 

 

Deterministic Simulation of the Simplified Caulobacter Network 

We include five components (CtrA, CtrA~P, DivK, DivK~P, DivJ) in our simulation of 

a simplified network for the stalked cell cycle of Caulobacter (Figure 3A) and to model the 

oscillatory behaviors of these proteins along the ~ 60 min cycle period (experimental stalked 

cell cycle time in microfluidics ([2] and our experiment)). We do not try to describe the 

detailed cellular processes controlled by regulatory proteins and the feedback signals from 

these processes as in [3]. Instead we focus on the production, phosphorylation, and the 

degradation mechanisms leading to the oscillation of CtrA (and its active form CtrA~P). 

Protein-level modeling is employed with the assumption that the production profile of each 

protein follows its mRNA profile [4], which is justified for CtrA and DivK [5-6]. We also 

employ a Hill-function model for activation and inhibition of promoter expression as in [3-4, 

7] with Hill coefficients n = 2. For phosphorylation, dephosphorylation, and degradation, we 

apply first-order reaction rate constants for these processes defined by their half-life times. 

The differential equations governing the concentration evolution of each protein are listed in 

Table S2 and the explanations of each parameter value as well as the values of initial 

conditions and thresholds are included in Table S3. The source code (Matlab) is included as a 

supplement to the manuscript. The detailed mechanisms of the modeling for each protein are 

described as follows. 

CtrA : Two promoters ctrA P1 and ctrA P2, with temporally regulated activities, are 

responsible for the production of CtrA in the cell cycle [8]. After the chromosome is 
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hemi-methylated, the P1 promoter is activated by the signal from GcrA, another regulatory 

protein whose expression is initiated at the beginning of the stalk cell cycle [9-10], and is 

repressed by phosphorylated CtrA [8] as well as full-methylation of the chromosome at the 

later cell cycle stage. In modeling the production of CtrA from the P1 promoter, two 

simplifications are made: (1) since concentration variation of GcrA is fairly small in the early 

stalk cell [10] where P1 activity peaks, we assume a constant signal of activation from GcrA 

and do not consider the GcrA concentration oscillation; (2) we do not consider the 

methylation state of the chromosome, which regulates the activity of the P1 promoter and 

assume that the P1 promoter quickly becomes hemi-methylated and active after the beginning 

of each stalk cycle. For the modeling of the stronger promoter, the P2 promoter whose activity 

is initiated by the accumulating CtrA~P and peaks at the late predivisional cell [8], we assume 

a large binding constant between CtrA~P and its P2 promoter (Kbd,ctra2 = 9000 nM) in the Hill 

function to account for the late activation of this promoter. Relatively high activities are 

assumed for ctrA promoters in order to produce a large amount of CtrA (~22,000 molecules, 

[11]). For the CtrA phosphorylation and degradation, a recently identified 

CckA→ChpT→CtrA phosphorelay is responsible for the phosphorylation of CtrA and another 

CckA→ChpT→CpdR phosphorelay inhibits ClpXP protease for CtrA (Fig. 3A), and both 

pathways are shown to be negatively regulated by DivK~P [12-14], a single domain response 

regulator whose expression is positively regulated by CtrA~P [15-16]. In the model, a further 

simplification is made so that the CckA→ChpT→(CtrA, CpdR) pathways remain active until 

DivK~P reaches a threshold concentration at the later predivisional stage, and then CtrA stops 

being phosphorylated and is rapidly cleared from the stalk compartment by ClpXP. This 

assumption is based on the observation that the inner membrane compartmentalization 

occurring prior to cell division allows fast degradation of CtrA [11] and the inner membrane 

compartmentalization event is assumed to coincide with the event of DivK~P reaching its 

threshold.  

DivK : DivK is present throughout the cell cycle and peaks slightly at the late 

predivisional cell stage [17-18]. It co-localizes with DivJ kinase at the stalk pole after 

swarmer to stalk differentiation while its phosphatase, PleC, is localized at the opposite pole 

[18-20]. The expression of divK is directly activated by CtrA~P [15-16] and a relatively large 

binding constant between CtrA~P and the divK promoter is assumed to account for the late 

activation of divK expression [18]. Also, a relatively low divK promoter activity is assigned in 

the model to be in accordance with the measured activity [17]. DivK protein is very stable [18] 

and we apply a degradation rate to only account for the dilution effect by cell growth. The 

phosphorylation of DivK is modeled as a pseudo-second-order reaction with the rate 

depending on the amount of polar localized DivJ and its half-life in the phosphorylation 

reaction. The transformation of DivK~P to DivK is modeled as a first-order reaction with rate 

constant determined by the DivK~P half-life in the dephosphorylation reaction. A recent 

experiment identified another independent in vivo pathway for regulating DivK 

phosphorylation by DivL [21] and this is modeled as the second DivK phosphorylation 

mechanism, whose first-order rate constant is defined by the half-life of DivK in this pathway.  

However, more recent experiments have shown that DivL functions as a localization factor 

that recruits CckA and promotes CtrA phosphorylation [22]. The apparent regulation of DivK 

phosphorylation by DivL observed in [21] may arise from this newly identified pathway. 
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Regardless, the specific mechanism that contributes to the minor DivK phosphorylation 

pathway is not crucial and our model assumes DivL directly or indirectly promotes DivK 

phosphorylation.  

DivJ : The activity of the divJ promoter peaks during swarmer-stalk transition and DivJ 

concentration remains relatively constant throughout the rest of cell cycle [19, 23]. This also 

indicates that DivJ is relatively stable therefore its degradation rate constant is chosen to be 

the same as DivK. Although direct regulation of the divJ promoter has not been identified, we 

assume that DivJ is very slowly synthesized during the stalk cell cycle to compensate for its 

degradation under the regulation of CtrA~P. The possibility that CtrA indirectly regulates 

DivJ [24-25] makes this assumption reasonable. In modeling the DivJ-mediated DivK 

phosphorylation, a constraint is placed on the number of DivJ proteins that can be adsorbed to 

the stalked pole and that phosphorylate DivK.  

 

Stochastic Simulation of the Simplified Caulobacter Network 

To assess the effect of molecular noise on cell cycle oscillation, we simulate the 

network with the Gillespie method [26], which randomly picks the type of reaction that takes 

place at every time step as well as the time interval between each step according to the 

probabilities of individual reactions inside the system. We perform the stochastic simulation 

by grouping each linear and nonlinear term that appears in the deterministic mode (Table S2) 

into sequenced reactions and attributing different probabilities to each of these reactions based 

on the rate constants and number of molecules of all species involved. This is the so-called 

“non-detailed” stochastic model [27] that does not decompose each nonlinear term into 

elementary reactions and incorporates quasi-steady-state assumption [28]. Table S5 includes a 

list of these sequenced reactions (13 reactions) as well as the probability and changes of 

molecular species for each reaction. To obtain the statistics of the cell cycle oscillation periods 

as in Figure 4B and Figure S4, each simulation is done with the same initial conditions and 

the CtrA~P trajectory is used to calculate inter-peak distances that are larger than a preset 

minimum distance (20 min). To ensure that each simulation is fully independent on the initial 

conditions, the initial 1000 min of each trajectory (10,000 min) is discarded in calculating the 

period. The source code (Matlab) is included as a supplement to the manuscript. 

 

Mutant Simulations 

For deterministic mutant simulations shown in Figure S2, alternations of parameters as 

listed in Table S4 are introduced at 200 min following the wild-type simulation for each type 

of mutant. Trajectories are normalized to the maximum levels of individual species. Most of 

these are adopted from some of the mutants described in a recent Caulobacter model [7] 

except for the ΔdivJ mutant. For stochastic simulations with ΔdivJ without constitutive 

induction, all parameters are the same as wild-type other than setting ks,divj = 0 and the same 

initial conditions as the wild-type are used except setting cDivJ0 = 0. With xylose induction, 

DivJ is assumed to be constitutively expressed starting from time zero at a rate of ks,divj
* 

without the control by CtrA~P, i.e. a12 in Table S5 becomes a12 = ks,divj
*×Ω and ks,divj

* value is 

described in each figure legend. For simulations in Figure S4A, the DivL-mediated DivK 

phosphorylation pathway is altered by changing the parameter hlDivKp2 in Table S5 into 

values as described in the figure legend. 
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Diffusion-and-Capture Model Simulation for DivJ-EGFP Subcellular Localization 

Four species are included in the model described in Figure 7D. “A” represents lateral 

membrane-bound dark DivJ-EGFP, “A*” represents lateral membrane-bound bright 

DivJ-EGFP, “AS” represents pole localized dark DivJ-EGFP, and “A*S” represents pole 

localized bright DivJ-EGFP. The symbol “S” represents the adsorption site on the adsorber. 

A total of 13 reaction pathways are described in Table S6, including the probability for each 

pathway and the resulting transitions.  Model parameters and initial conditions are included 

in Table S7.  

This model assumes a constant volume of the cell throughout the simulation time 

course. The dilution effect by cell division is modeled by first-order degradation reaction with 

half-life similar to the cell cycle time (Table S6). We simulate the temporal trajectories of the 

numbers of individual species with an exact stochastic approach as described in [26]. 

Simulations presented are based on the same parameter set except for k1 as noted in each 

figure legend. The source code (Matlab) is included as a supplement for the manuscript. 

We scale the simulated trajectories of A* and A*S molecule numbers as intensities for 

direct comparison with experimental trajectories (Figure 7E vs. Figure 7C; Figure S6 vs. 

Figure S5).  We note that the simulation outputs are the number of molecules in a constant 

cell membrane surface area (or pole surface area); while the experimentally measured 

intensities are the measures of concentration.  The two measures (i.e. total number of 

molecules and mean fluorescence intensities) are reconciled by the following approach. We 

first identify the parameter regime of DivJ-EGFP expression rate k1 that corresponds to our 

experimental conditions (i.e. different xylose concentrations) with the rest of parameters fixed 

in the model. The ratio between the number of bright molecules on the lateral membrane over 

that on the stalked pole, is used to for quantitative comparison between experiment and 

simulation. Experimentally, we analyze the integrated intensities at the lateral membrane and 

the stalked pole at the instance when each cell just finished a round of reproduction (and 

after >6hrs of induction). The ratio between the integrated lateral and stalked intensities is 

plotted in Figure S7A. We use the data from 0.00015% to 0.015% xylose to construct a linear 

fit (Figure S7A, red) since the error bar for 0.000015% data is too large. Both the linear trend 

(including the fitted intercept) and the absolute ratios are in good agreement with those from 

simulations (compare with the region from k1 = 0.02 to 0.5 in Figure S7B). Therefore, each of 

our xylose induction concentrations can be mapped to a specific k1 value in simulation by 

relating the lateral/stalked ratio with the A*/A*S ratio. With this mapping and with the 

simulated trajectory with each mapped k1, we scale the number of molecules in the trajectory 

to the measurement intensity (as in Figure 7C) according to the quantified steady-state 

intensities for the corresponding experimental induction concentration (i.e. Figure 7F). For the 

experimental trajectory shown in Figure 7C (0.015% xylose), its simulation counterpart is 

shown in Figure 7E (k1 = 0.37). And for other conditions, the experiments are also mapped to 

their simulation counterparts (Figure S5 and Figure S6), specifically the mapped k1 parameter 

values for 0.0015%, 0.00015%, and 0.000015% xylose are 0.28, 0.20, and 0.11, respectively.  
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Supplementary Figures 

 
 

Figure S1. Single-cell analysis of morphological defects in the divJ mutant for different 

xylose induction levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7

 

 

Figure S2. Mutant simulations for cell cycle model by deterministic method. (A) ΔctrA P1, 

(B) ΔctrA, (C) ΔctrA+Pxyl-ctra, (D) ΔdivJ, (E) ΔdivK, and (F) DivK phosphorylation defect 

mutant DivKD53A. Mutations are introduced at t = 200 min by altering the corresponding 

parameters. Parameter changes and explanations are summarized in Table S4. The color 

scheme is the same as Figure 3. 
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Figure S3. Representative trajectories from stochastic simulations of the simplified cell cycle 

model. (A) Wild-type trajectories. (B) ΔdivJ mutant trajectories (ks,divj = 0, cDivJ0=0). (C) 

Constitutive induction of divJ for ΔdivJ mutant (ks,divj
* = 0.04 nM/sec). Refer to 

Supplementary Methods for details of wild-type and mutant stochastic simulations. 
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Figure S4. Simulated CtrA~P oscillation period statistics. (A) CtrA~P oscillation period 

statistics for different strengths of the DivL-mediated DivK phosphorylation pathway. 

Wild-type and ΔdivJ mutant simulations are done as described in the Supplementary Methods. 

All parameters are kept the same except that the parameter hlDivKp2 (min) is varied as 

indicated in the horizontal axis. Note that we adopt hlDivKp2 = 10 min (Table S3) for all 

other simulations presented in the paper. (B) CtrA~P oscillation period statistics under 

different DivJ induction rates (ks,divj
*) for ΔdivJ mutant. ks,divj

* is varied from 0.005 to 0.08 

nM/sec. 
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Figure S5. Experimental single-cell fluorescence intensity traces. Example single C. 

crescentus cell lateral membrane and stalked pole temporal intensity trajectories for different 

xylose induction levels are shown: 0.015% xylose (A), 0.0015% xylose (B), 0.00015% xylose 

(C), and 0.000015% xylose (D). Note that panel (A) is a replica of Figure 7C.  
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Figure S6. Model simulation for DivJ-EGFP kinetics. (A) Cartoon illustration of the 

simulated species. (B) Example simulated time traces for different species as indicated at k1 = 

0.2. (C) Example simulated temporal traces for A* and A*S for different production rates as 

indicated. Each k1 corresponds to an experimental induction condition (See Supplementary 

Methods). The intensity scale (for comparison with experimental trajectories) is shown on the 

left Y-axis while the scale for the number of molecules (simulation output) is shown on the 

right. Note that k1 = 0.37 panel is a replica of Figure 7E. 
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Figure S7. Experimental and simulated DivJ-EGFP steady states, and the simulated 

adsorption/desorption isotherm. (A) Ratio of the integrated lateral membrane fluorescence 

over the integrated stalked pole fluorescence at steady states under different xylose levels. 

Red line is a linear fit of the rightmost three data points (y=2.57*10-5x+1.39). See 

Supplementary Methods for details. (B) Simulation counterpart of (A). The ratio A*/A*S is 

plotted against the number of A* from simulations with k1 = 0.02 to 0.5. The line fit (solid red) 

gives y=0.00451x+0.940. The insert shows the same plot for a larger range of k1 , i.e. from 

0.02 to 2. (C) Simulated steady states levels of A* and A*S from k1 = 0.02 to 2. These levels 

are used for construction of (B). (D) Simulated adsorption/desorption isotherm from k1 = 0.02 

to 2. The adsorber coverage (number of AS+A*S over number of total adsorber sites) is 

plotted against the number of bath protein molecules (A+A*).  
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Figure S8. Premature localization of DivJ-EGFP to the flagellated pole in a late predivisional 

cell (lower cell). Shown are C. crescentus cells in microfluidic culture expressing DivJ-EGFP 

(divJ::Tn5 cells expressing divJ-egfp from the xylX chromosomal locus) under 0.015% xylose 

induction. Bright-field DIC image (top) and a false-color fluorescence image from the same 

area (bottom). The flow direction is from right to left. 
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Supplementary Tables 

 

Table S1. Summary of measured single-cell division times. This table corresponds to Figure 

2B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strain 
Xylose 

(w/v) 

ST Cell Cycle 

(Mean ± SD, 

min) 

COV 

(SD/Mea

n) 

Number of 

ST Cycle 

NST 

SW Cell Cycle 

(Mean ± SD, min) 

COV 

(SD/Mea

n) 

Number of 

SW Cycle 

NSW 

CB15 
0 60.6 ± 7.6 0.125 519 75.0 ± 7.5 0.100 118 

0.15% 61.6 ± 7.5 0.122 444 76.3 ± 7.8 0.102 92 

CB15 

divJ::Tn5 + 

pMR20 

-Pxyl-divJ 

0 76.2 ± 18.7 0.246 224 92.2 ± 26.2 0.284 71 

1.5×10-6 % 72.0 ± 12.3 0.171 195 86.3 ± 18.4 0.213 57 

1.5×10-5 % 66.8 ± 8.9 0.134 387 77.0 ± 8.3 0.108 97 

1.5×10-4 % 67.1 ± 8.4 0.125 253 75.2 ± 7.6 0.101 59 

1.5×10-3 % 67.5 ± 9.0 0.134 689 75.8 ± 10.1 0.133 49 

1.5×10-2 % 65.4 ± 7.9 0.121 412 74.0 ± 8.5 0.115 41 

0.15% 67.2 ± 10.3 0.154 649 72.5 ± 7.7 0.106 56 



 15

Table S2. Differential equations for cell cycle oscillation model described in Figure 3A. 

 

1,CtrA CtrA

1, 2, ,

1,CtrA CtrA 2,CtrA CtrA

1, 2, 1, 2,

[CtrA] [CtrA~P]
[CtrA~P]

[CtrA~P] [CtrA~P]

                 ( phosphosignal )[CtrA] clpXP  [C

n n
d

s ctra s ctra dp ctrapn n n n

d d

p ctra p ctra d ctra d ctra

Kd
k k k

dt K K

k k k k



 

 
 

     



trA]

 

 
1, 2, ,

1, 2,

[CtrA~P]
( phosphosignal )[CtrA] [CtrA~P]

                     clpXP  [CtrA~P]

p ctra p ctra dp ctrap

d ctra d ctra

d
k k k

dt

k k

   

  
 

, ,

,CtrA DivK

1, 2, ,

[DivK] [CtrA~P]
[DivK~P]

[CtrA~P]

                 ( )[DivK] [DivK]

n

s divk dp divkpn n

d

p divk DivJ p divk d divk

d
k k

dt K

k k k


 


  

 

1, 2, , ,

[DivK~P]
( )[DivK] [DivK~P] [DivK~P]p divk DivJ p divk dp divkp d divk

d
k k k k

dt
     

, ,

,CtrA DivJ

[DivJ] [CtrA~P]
[DivJ]

[CtrA~P]

n

s divj d divjn n

d

d
k k

dt K 

 


 

  TH

TH

When DivK ~ P [DivKP] ,  phosphosignal  0 and clpXP  1;  

otherwise,  phosphosignal  1 and clpXP  0.

[DivJ]
 is defined as min ,  1 .

  [DivJ]
DivJ

  

 

 
 
 
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Table S3. Parameters and initial conditions for cell cycle model described in Figure 3A and 

Table S2. 

Symbol Parameter 
Value 

(unit) 

Related Parameter 

(unit) 
Source / Note 

hlCtrAd1 

Half-life for CtrA 

(and CtrA~P) 

degradation with 

ClpXP 

2 (min) 1,

ln(2)

60 hlCtrAd1
d ctrak 


 

(s-1) 

The half-life of CtrA is less than 

5 min [29]. 

hlCtrAd2 

Half-life for CtrA 

(and CtrA~P) 

degradation without 

ClpXP 

52 (min) 2,

ln(2)

60 hlCtrAd2
d ctrak 


 

(s-1) 

[30]. 

hlCtrAp1 

Half-life for CtrA 

phosphorylation with 

phosphosignal 

2 (min) 
1,

ln(2)

60 hlCtrAp1
p ctrak 


 

(s-1) 

The cell cycle profile of CtrA~P 

follows that of CtrA [29], 

indicating the fast 

phosphorylation of CtrA. 

hlCtrAp2 

Half-life for CtrA 

phosphorylation 

without 

phosphosignal 

100 (min) 
2,

ln(2)

60 hlCtrAp2
p ctrak 


 

(s-1) 

CtrA is barely phosphorylated 

without phosphosignal from 

active CckA [31].  

hlCtrAPdp 
Half-life for CtrA~P 

dephosphorylation  
5 (min) 

,

ln(2)

60 hlCtrAPdp
dp ctrapk 


 

(s-1) 

The half-life of CtrA~P is less 

than 5min, which may due to 

both degradation and 

dephosphorylation [29]. 

hlDivKd 

Half-life for DivK 

(and DivK~P) 

degradation  

60 (min) ,

ln(2)

60 hlDivKd
d divkk 


 

(s-1) 

No significant degradation of 

DivK over long time course [6, 

18]. 60 min is taken to account 

for the dilution due to doubling in 

volume every cycle. 

hlDivKp1 

Half-life for DivK 

phosphorylation 

through DivJ 

5 (min) 
1,

ln(2)

60 hlDivKp1
p divkk 


 

(s-1) 

[17] 

hlDivKp2 

Half-life for DivK 

phosphorylation 

through DivL 

10 (min) 
2,

ln(2)

60 hlDivKp2
p divkk 


 

(s-1) 

DivL pathway is estimated to be 

~one fold slower than DivJ from 

[21]. 

hlDivKPdp 
Half-life for DivK~P 

dephosphorylation  
10 (min) 

,

ln(2)

60 hlDivKPdp
dp divkpk 


 

(s-1) 

The phosphatase PleC only 

transiently localizes to the stalk 

pole in the stalk cell [19], 

therefore we use the 

dephosphorylation rate in the 

absence of PleC. This time 
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constant is estimated from [25]. 

hlDivJd 
Half-life for DivJ 

degradation  
60 (min) ,

ln(2)

60 hlDivJd
d divjk 


 

(s-1) 

The divJ promoter activity peaks 

at swarmer to stalk transition 

[23], and the DivJ level stays 

almost constant through the rest 

of cell cycle [19]. We therefore 

assume that DivJ is relatively 

stable. 

ks1,ctra 

Maximum rate for 

CtrA production 

from ctrA P1 

promoter. 

10 (nM/s) 

About 22,000 CtrA molecules [11] are present in the late 

predivisional cell and this rate is chosen to account for such fast 

synthesis of CtrA. 

ks2,ctra 

Maximum rate for 

CtrA production 

from ctrA P2 

promoter. 

35 (nM/s) 

ctrA P2 promoter is stronger than ctrA P1 promoter [8-9]). It is 

estimated that P2 promoter is ~ 3 times as strong as P1 promoter 

[3]. 

ks,divk 

Maximum rate for 

DivK production 

from divK promoter. 

1.6 (nM/s) 

According to study of protein synthesis along cell cycle 

progression [6], we estimated the number of DivK proteins in 

predivisional cell to be ~ 10% of CtrA, i.e. about 2000 molecules. 

Accordingly, we choose a relatively low DivK synthesis rate. 

ks,divj 

Maximum rate for 

DivJ production from 

divJ promoter. 

0.05 (nM/s) 

Most of DivJ is synthesized during swarmer to stalk transition [23] 

and there is only little variation in DivJ level after the transition 

[19] , so we assume a very low synthesis rate. 

Kd1,CtrA-CtrA 

Binding constant 

between CtrA~P and 

ctrA P1 promoter 

site. 

1,500 (nM) 

CtrA~P inhibits ctrA P1 and transcripts from ctrA P1 peaks in the 

early stalk cell [8]. This constant is chosen so that the expression 

of ctrA P1is barely inhibited until CtrA~P concentration exceeds 

1500nM, i.e. roughly in the early stalked cell. 

Kd2,CtrA-CtrA 

Binding constant 

between CtrA~P and 

ctrA P2 promoter 

site. 

9,000 (nM) 

CtrA~P activates ctrA P2 and transcripts from ctrA P2 peaks in the 

late predivisional cell [8]. This constant is chosen so that the 

expression of ctrA P2 is fully activated until CtrA~P concentration 

exceeds 9000 nM. 

Kd,CtrA-DivK 

Binding constant 

between CtrA~P and 

divK promoter site. 

9,000 (nM) 

CtrA~P directly activates DivK expression [15-16]. DivK is 

present through the cell cycle and peaks at the late predivisional 

cell [17-18]. This constant is chosen so that the expression of divK 

is fully activated until CtrA~P concentration exceeds 9000 nM.. 

Kd,CtrA-DivJ 

Binding constant 

between CtrA~P and 

divJ promoter site. 

1,500 (nM) 

Although it has not been shown that CtrA~P directly activates the 

expression of divJ, there are evidences indicating that CtrA~P 

might indirectly regulate DivJ [24-25]. We therefore assume 

CtrA~P promotes the synthesis of DivJ in the model. 

[DivKP] TH 

Threshold DivK 

concentration to 

induce the loss of 

phosphosignal and 

trigger fast CtrA 

3000 (nM) 

The accumulation of DivK~P in the late predivisional cell inhibits 

CckA-ChpT-CtrA phosphorelay and also triggers the proteolysis of 

CtrA [12-13]. We therefore assume that both events will occur 

when DivK~P concentration exceeds this threshold. This threshold 

is chosen to match the estimations that there are a maximum of 
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degradation 22,000 CtrA molecules at the late predivisional stage [11]. 

[DivJ]TH 

Maximum 

concentration/numbe

r of DivJ that could 

participate in the 

phosphorylation of 

DivK 

220 (nM) 

or 

100 

(molecules) 

This constraint is necessary in modeling our experiment with 

constitutive expression of divJ. We estimated the number of 

histidine kinase DivJ that localize to the pole in wild-type 

Caulobacter to be on the order of ~100 based on two 

measurements: a) quantitative Western blot measurement on a 

typical bacterial two-component system [32]; b) in vivo 

single-molecule fluorescent measurements of another histidine 

kinase PleC-EYFP in Caulobacter [33]. 

n Hill coefficient 2 We use n = 2 as the Hill coefficient. 

cCtrA0 
Initial concentration 

of CtrA 
4600 (nM) This concentration corresponds 13% of its peak level in wild-type. 

cCtrAP0 
Initial concentration 

of CtrA~P 
1250 (nM) 

This concentration corresponds to ~570 CtrA~P molecules and is 

2% of its peak level in wild-type. Low CtrA~P is necessary 

otherwise DNA replication is inhibited [34]. 

cDivK0 
Initial concentration 

of DivK 
1150 (nM) 

DivK presents throughout the cell cycle and only increases slightly 

in later cell cycle stage [18]. 

cDivKP0 
Initial concentration 

of DivK~P 
3100 (nM) 

DivK~P level stays almost constant after swarmer to stalk 

transition [18]. 

cDivJ0 
Initial concentration 

of DivJ 
225 (nM) 

DivJ level stays almost constant after swarmer to stalk transition 

[19]. 
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Table S4. Descriptions, changes of parameters, and explanations for in silico mutant 

simulations corresponding to Figure S2.  

Mutant 

Genotype 

Description / 

Reference 
Parameter Change Explanations 

ΔctrA P1 Expression from ctrA 

P1 is greatly 

repressed  [9]. 

ks1,ctra = 1.5 (15% of 

wild-type [7]) 

The cells are able to divide 

but with prolonged division 

time [9]. Our simulation 

(Figure S2A) confirms this 

observation. 

ΔctrA  ΔctrA::spec ctrA-null 

mutant [35]. 

ks1,ctra = 0; 

ks2,ctra = 0. 

Cell division is arrested 

[35] and is confirmed by 

simulation (Figure S2B). 

ΔctrA +Pxyl-ctra ΔctrA::spec  

+ Pxyl-ctra [35]. 

ks1,ctra = 0; 

ks2,ctra = 0; 

kpxyl-ctra = 10. 

Cell is viable with the 

expression of xylose- 

inducible ctrA. [35]. Our 

simulation (Figure S2C) 

confirms this observation. 

ΔdivJ divJ-null mutant [19]. ks,divj = 0. Mutant cells are still able to 

division but with prolonged 

division time as shown in 

our experiment and 

simulation (Figure S2D). 

ΔdivK divK-null mutant 

[17]. 

ks,divk = 0. DivK is essential to the cell 

[17]  and our simulation 

shows the division is 

arrested (Figure S2E). 

DivKD53A Suppression of DivK 

phosphorylation with 

mutated amino acid 

[20]. 

kp1,divk = 0; 

kp2,divk = 0. 

DivK phosphorylation is 

essential to the cell [20] and 

our simulation shows the 

division is arrested (Figure 

S2F). 
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Table S5. Stochastic simulation for the cell cycle model described in Figure 3A and Table S2. 

# Reaction Description Probability Transitions 

1 → CtrA 
Production of 

CtrA 

1,CtrA CtrA

1 1,

1,CtrA CtrA

2,

2,CtrA CtrA

(

( CtrA~P

)
( )

)

CtrA~P
  ( )

( ) CtrA~P

      

n

d

s ctra n n

d

n

s ctra n n

d

K
k

K

k
K

a 








 



 
 

 
CtrA → CtrA+1 

2 CtrA → CtrA~P 
Phosphorylation 

of CtrA 
1, 2,2 ( phosphosignal ) CtrAp ctra p ctrak ka      

CtrA → CtrA-1 

CtrA~P → CtrA~P+1 

3 CtrA~P → CtrA 
Dephosphorylati

on of CtrA~P 
,3 CtrA~Pdp ctrapa k   

CtrA → CtrA+1 

CtrA~P → CtrA~P-1 

4 CtrA → Ø 
Degradation of 

CtrA 
 1, 2,4 clpXP CtrAd ctra d ctrak ka     CtrA → CtrA-1 

5 CtrA~P → Ø 
Degradation of 

CtrA~P 
 1, 2,5 clpXP CtrA~Pd ctra d ctrak ka     CtrA~P → CtrA~P-1 

6 → DivK 
Production of 

DivK 
,6

,CtrA DivK

CtrA~P
(

( CtrA~P
)

)

n

s divk nn
d

a k
K  

 


 DivK → DivK+1 

7 
DivK → DivK~P 

(by DivJ) 

Phosphorylation 

of DivK through 

DivJ pathway  

1,7 DivKp divk DivJa k    
DivK → DivK-1 

DivK~P → DivK~P+1 

8 
DivK → DivK~P 

(by DivL) 

Phosphorylation 

of DivK through 

DivL pathway  

2,8 DivKp divka k   
DivK → DivK-1 

DivK~P → DivK~P+1 

9 DivK~P → DivK 
Dephosphorylati

on of DivK~P 
,9 DivK~Pdp divkpa k   

DivK → DivK+1 

DivK~P → DivK~P-1 

10 DivK → Ø 
Degradation of 

DivK 
,10 DivKd divka k   DivK → DivK-1 

11 DivK~P → Ø 
Degradation of 

DivK~P 
,11 DivK~Pd divka k   DivK~P → DivK~P-1 

12 → DivJ 
Production of 

DivJ 
,12

,CtrA DivJ

CtrA~P
(

( CtrA~P
)

)

n

s divj nn
d

a k
K  

 


 DivJ → DivJ+1 

13 DivJ → Ø 
Degradation of 

DivJ 
,13 DivJd divja k   DivJ → DivJ-1 

TH

1 nM
 is conversion constant from nM to number of molecules, i.e. (6).

2.2 nM/per molecule

All species are described in number of molecules and are converted, i.e. DivJ = [DivJ] .

Thresholds (DivJ  

   



THand DivK ) are also in number of molecules.
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Table S6. Modeling of DivJ-EGFP dynamics described in Figure 7D, including 13 reaction 

pathways and their probabilities and corresponding transitions.  

Reaction 

# 
Reaction Description Probability Transitions 

1 → A Production of DivJ-EGFP a1 = k1 A → A+1 

2 A → A* 
Chromophore maturation of 

membrane bound DivJ-EGFP 
a2 = k4×A 

A → A-1  

A* → A*+1 

3 A* → A 
Chromophore unfolding of 

membrane bound DivJ-EGFP 
a3 = k5×A* 

A → A+1  

A* → A*-1 

4 A → Ø 
Degradation of membrane 

bound dark DivJ-EGFP 
a4 = kda×A A → A-1 

5 A* → Ø 
Degradation of membrane 

bound bright DivJ-EGFP 
a5 = kda×A* A* → A*-1 

6 A +S → AS 

Polar adsorption of 

membrane bound dark 

DivJ-EGFP 

a6 = k2×A×S 

A → A-1 

AS → AS+1 

S → S-1 

7 AS → A+S 
Desorption of polar localized 

dark DivJ-EGFP 
a7 = k3×AS 

A → A+1 

AS → AS-1 

S → S+1 

8 A* +S → A*S 

Polar adsorption of 

membrane bound bright 

DivJ-EGFP 

a8 = k2×A*×S 

A* → A*-1 

A*S → A*S+1 

S → S-1 

9 A*S → A*+S 
Desorption of polar localized 

bright DivJ-EGFP 
a9 = k3×A*S 

A* → A*+1 

A*S → A*S-1 

S → S+1 

10 AS → A*S 
Chromophore maturation of 

pole localized DivJ-EGFP 
a10 = k4×AS 

AS → AS-1  

A*S → A*S+1 

11 A*S → AS 
Chromophore unfolding of 

pole localized DivJ-EGFP 
a11 = k5×A*S 

AS → AS+1  

A*S → A*S-1 

12 AS → Ø 
Degradation of pole localized 

dark DivJ-EGFP 
a12 = kdas×AS 

AS → AS-1 

S → S+1 

13 A*S → Ø 
Degradation of pole localized 

bright DivJ-EGFP 
a13 = kdas×A*S 

A*S → A*S-1 

S → S+1 
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Table S7. Parameters and initial conditions for the DivJ-EGFP model described in Figure 7D 

and Table S6. 

Symbol Parameter Value (unit) Source / Note 

k1 
Production rate of 

DivJ-EGFP 
0.37 (s-1) 

This rate is 0.37s-1 in Fig. 7E, and is varied in 

Figs. S6 and S7 as indicated. 

k2 

Second-order rate constant 

for adsorption of  

membrane bound 

DivJ-EGFP 

2.31 × 10-5 (s-1) 

Assuming a pseudo-first-order kinetics at the 

beginning of the reaction (i.e. adsorber site S 

assumed to be a constant as 500), k2×S yields 

a 60 sec half-life for polar adsorption of 

membrane bound protein, which is 

comparable to the diffusion time of membrane 

protein across whole cell body [36]. 

k3 

First-order rate constant for 

desorption of pole localized 

DivJ-EGFP 

0.0116 (s-1) 

This rate constant yields 60 sec half-life for 

desorption of pole localized protein. This 

constant is chosen according to k2 and our 

experimental traces.  

k4 
First-order maturation rate 

constant of DivJ-EGFP 
1.93 × 10-4 (s-1) 

This rate constant yields 60 min half-life for 

EGFP maturation. This number is estimated 

from multiple reported values [37-40]. 

k5 
First-order unfolding rate 

constant of DivJ-EGFP 
6.42 × 10-5 (s-1) 

EGFP is known to be stable and this rate 

constant assumes 3 hrs half-life. We assume 

minimum photobleaching during our 

experiment due to relatively low laser power 

and slow frame rate (1 per 5 min). 

kda 

First-order degradation rate 

constant for membrane 

bound DivJ-EGFP.   

1.93 × 10-4 (s-1) 

This rate constant yields 60 min half-life for 

membrane bound DivJ-EGFP degradation. 

This time is assumed to be approximately the 

cell cycle time in order to account for dilution 

by cell volume doubling every cell cycle. 

kdas 

First-order degradation rate 

constant for pole localized 

DivJ-EGFP.   

6.42 × 10-5 (s-1) 

This rate constant yields 3hrs half-life. Due to 

adsorption/desorption and fast membrane 

bound protein degradation, this constant is not 

critical. 

A0 
Initial number of membrane 

bound dark DivJ-EGFP 
0 No A present initially. 

A*0 
Initial number of membrane 

bound bright DivJ-EGFP 
0 No A* present initially. 

AS0 
Initial number of pole 

localized dark DivJ-EGFP 
0 No AS present initially. 

A*S0 
Initial number of pole 

localized bright DivJ-EGFP 
0 No A*S present initially. 

S0 
Initial number of adsorber 

sites (i.e. adsorber capacity) 
500 

This number is chosen by the estimation that 

the number pole localized DivJ protein is in 

the order of hundreds (see Table S3).  
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Source Codes for Models 

 
The source codes for the models (i.e. the deterministic cell cycle model and its 

stochastic version, and the DivJ-EGFP localization model) described in this manuscript can 

be downloaded from the Mol. Syst. Biol. website. 
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